//! Based on the BEIT vision-language model. //! //! See "BEIT: BERT Pre-Training of Image Transformers", Bao et al. 2021 //! - [Arxiv](https://arxiv.org/abs/2106.08254) //! - [Github](https://github.com/microsoft/unilm/tree/master/beit) //! use candle::{DType, Device, IndexOp, Result, Tensor, D}; use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; const IMG_SIZE: usize = 384; const PATCH_SIZE: usize = 16; const NUM_CLASSES: usize = 1000; const WINDOW_SIZE: usize = IMG_SIZE / PATCH_SIZE; // 384 / 16 = 24 const NB_TOKENS: usize = WINDOW_SIZE * WINDOW_SIZE + 1; // 24 * 24 + 1 = 577 fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result { if bias { candle_nn::linear(in_dim, out_dim, vb) } else { candle_nn::linear_no_bias(in_dim, out_dim, vb) } } #[derive(Debug)] struct Attention { qkv: Linear, proj: Linear, relative_position_bias_table: Tensor, relative_position_index: Tensor, num_heads: usize, scale: f64, } impl Attention { fn new( vb: VarBuilder, dim: usize, num_heads: usize, qkv_bias: bool, proj_bias: bool, ) -> Result { let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; // num_relative_distance = token-token(47x47) + token-CLS(1) + CLS-token(1) + CLS-CLS(1) = 2212 let num_relative_distance = (2 * WINDOW_SIZE - 1) * (2 * WINDOW_SIZE - 1) + 3; let relative_position_bias_table = vb.get( (num_relative_distance, num_heads), "relative_position_bias_table", )?; let relative_position_index = Self::gen_relative_position_index(relative_position_bias_table.device())?; let scale = 1. / ((dim / num_heads) as f64).sqrt(); Ok(Self { qkv, proj, relative_position_bias_table, relative_position_index, num_heads, scale, }) } } impl Attention { // See: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/beit.py#L61 fn gen_relative_position_index(device: &Device) -> Result { let num_relative_distance = (2 * WINDOW_SIZE - 1) * (2 * WINDOW_SIZE - 1) + 3; let w_area = WINDOW_SIZE * WINDOW_SIZE; let t_arange: Tensor = Tensor::arange(0, WINDOW_SIZE as u32, device)?; let t_ndgrid = Tensor::meshgrid(&[&t_arange, &t_arange], false)?; let coords_flatten = Tensor::stack(&t_ndgrid, 0)?.flatten(1, 2)?; let tmp1 = coords_flatten .unsqueeze(2)? .broadcast_as((2, w_area, w_area))? .to_dtype(DType::I64)?; let tmp2 = coords_flatten .unsqueeze(1)? .broadcast_as((2, w_area, w_area))? .to_dtype(DType::I64)?; let relative_coords = (tmp1 - tmp2)? .transpose(0, 1)? // 102 .transpose(1, 2)? // 120 .contiguous()?; let relative_coords = relative_coords.slice_assign( &[0..w_area, 0..w_area, 0..1], &(relative_coords.i((0..w_area, 0..w_area, 0..1))? + (WINDOW_SIZE - 1) as f64)?, )?; let relative_coords = relative_coords.slice_assign( &[0..w_area, 0..w_area, 1..2], &(relative_coords.i((0..w_area, 0..w_area, 1..2))? + (WINDOW_SIZE - 1) as f64)?, )?; let relative_coords = relative_coords.slice_assign( &[0..w_area, 0..w_area, 0..1], &(relative_coords.i((.., .., 0..1))? * (2. * (WINDOW_SIZE as f64) - 1.))?, )?; Tensor::zeros((w_area + 1, w_area + 1), DType::I64, device)? .slice_assign(&[1.., 1..], &relative_coords.sum(2)?)? .slice_assign( &[0..1, 0..(w_area + 1)], &(Tensor::ones((1, w_area + 1), DType::I64, device)? * ((num_relative_distance - 3) as f64))? .to_dtype(DType::I64)?, )? .slice_assign( &[0..(w_area + 1), 0..1], &(Tensor::ones((w_area + 1, 1), DType::I64, device)? * ((num_relative_distance - 2) as f64))? .to_dtype(DType::I64)?, )? .slice_assign( &[0..1, 0..1], &(Tensor::ones((1, 1), DType::I64, device)? * ((num_relative_distance - 1) as f64))? .to_dtype(DType::I64)?, ) } fn _get_rel_pos_bias(&self) -> Result { self.relative_position_bias_table .index_select( &self .relative_position_index .flatten_all()? .to_dtype(DType::U32)?, 0, )? .reshape((NB_TOKENS, NB_TOKENS, ()))? .transpose(0, 1)? // 102 .transpose(0, 2)? // 201 .contiguous()? .unsqueeze(0) } } impl Module for Attention { fn forward(&self, xs: &Tensor) -> Result { let (b, n, c) = xs.dims3()?; let qkv = self .qkv .forward(xs)? .reshape((b, n, 3, self.num_heads, c / self.num_heads))? .transpose(1, 2)? // 02134 .transpose(0, 1)? // 20134 .transpose(2, 3)?; // 20314 let q = (qkv.i(0)? * self.scale)?; let k = qkv.i(1)?.contiguous()?; let v = qkv.i(2)?.contiguous()?; let attn = (&q.matmul(&k.t()?)? + self._get_rel_pos_bias())?; let attn = candle_nn::ops::softmax(&attn, D::Minus1)?; let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; self.proj.forward(&attn) } } #[derive(Debug)] struct LayerScale { gamma: Tensor, } impl LayerScale { fn new(vb: VarBuilder, dim: usize) -> Result { let gamma = vb.get(dim, "gamma")?; Ok(Self { gamma }) } } impl Module for LayerScale { fn forward(&self, xs: &Tensor) -> Result { xs.broadcast_mul(&self.gamma) } } #[derive(Debug)] struct Mlp { fc1: Linear, fc2: Linear, } impl Mlp { fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result { let out_features = in_features; let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?; let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; Ok(Self { fc1, fc2 }) } } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result { let xs = self.fc1.forward(xs)?.gelu()?; self.fc2.forward(&xs) } } #[derive(Debug)] struct Block { norm1: LayerNorm, attn: Attention, ls1: LayerScale, norm2: LayerNorm, mlp: Mlp, ls2: LayerScale, } impl Block { fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result { let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?; let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?; let ls1 = LayerScale::new(vb.pp("ls1"), dim)?; let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?; let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?; let ls2 = LayerScale::new(vb.pp("ls2"), dim)?; Ok(Self { norm1, attn, ls1, norm2, mlp, ls2, }) } } impl Module for Block { fn forward(&self, xs: &Tensor) -> Result { let residual = xs; let xs = self .ls1 .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?; let xs = (xs + residual)?; let residual = &xs; let xs = self .ls2 .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?; xs + residual } } #[derive(Debug)] struct PatchEmbed { proj: candle_nn::Conv2d, patch_size: (usize, usize), } impl PatchEmbed { fn new(vb: VarBuilder, patch_size: usize, in_chans: usize, embed_dim: usize) -> Result { let config = candle_nn::Conv2dConfig { stride: patch_size, ..Default::default() }; let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; Ok(Self { proj, patch_size: (patch_size, patch_size), }) } } impl Module for PatchEmbed { fn forward(&self, xs: &Tensor) -> Result { let (_b, _c, h, w) = xs.dims4()?; let (patch_h, patch_w) = self.patch_size; if (h % patch_h) != 0 { candle::bail!("image height {h} is not a multiple of patch height {patch_h}") } if (w % patch_w) != 0 { candle::bail!("image width {w} is not a multiple of patch width {patch_w}") } let xs = self.proj.forward(xs)?; let (b, c, h, w) = xs.dims4()?; // flatten embeddings. xs.reshape((b, c, h * w))?.transpose(1, 2) } } #[derive(Debug)] pub struct BeitVisionTransformer { patch_embed: PatchEmbed, cls_token: Tensor, blocks: Vec, norm: LayerNorm, head: Linear, } impl BeitVisionTransformer { pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result { let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), PATCH_SIZE, 3, embed_dim)?; let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?; let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?; let vb_b = vb.pp("blocks"); let blocks = (0..depth) .map(|i| Block::new(vb_b.pp(i.to_string()), embed_dim, num_heads)) .collect::>>()?; Ok(Self { patch_embed, cls_token, blocks, norm, head, }) } fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result { let xs = self.patch_embed.forward(xs)?; Tensor::cat(&[&self.cls_token, &xs], 1) } fn get_intermediate_layers_not_chunked( &self, xs: &Tensor, blocks_to_take: &[usize], ) -> Result> { let mut xs = self.prepare_tokens_with_mask(xs)?; let mut output = Vec::new(); for (i, blk) in self.blocks.iter().enumerate() { xs = blk.forward(&xs)?; if blocks_to_take.contains(&i) { output.push(xs.clone()); } } if output.len() != blocks_to_take.len() { candle::bail!( "only {} / {} blocks found", output.len(), blocks_to_take.len() ); } Ok(output) } pub fn get_intermediate_layers( &self, xs: &Tensor, blocks_to_take: &[usize], reshape: bool, return_class_token: bool, norm: bool, ) -> Result { let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?; let outputs = if norm { outputs .iter() .map(|out| self.norm.forward(out)) .collect::>>()? } else { outputs }; let class_tokens = outputs .iter() .map(|out| out.i((.., 0))) .collect::>>()?; let outputs = outputs .iter() .map(|out| out.i((.., 1..))) .collect::>>()?; let outputs = if reshape { let (b, _c, w, h) = xs.dims4()?; let patch_size = self.patch_embed.patch_size.0; let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size)); outputs .iter() .map(|out| { out.reshape((b, w / patch_size, h / patch_size, num_channels))? .transpose(2, 3)? .transpose(1, 2) }) .collect::>>()? } else { outputs }; let outputs = if return_class_token { outputs .iter() .zip(class_tokens.iter()) .map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1)) .collect::>>()? } else { outputs }; Tensor::stack(&outputs[..], 0) } } impl Module for BeitVisionTransformer { fn forward(&self, xs: &Tensor) -> Result { let mut xs = self.prepare_tokens_with_mask(xs)?; for blk in self.blocks.iter() { xs = blk.forward(&xs)? } let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?; let xs_norm = self.norm.forward(&xs_moy_local_tokens)?; self.head.forward(&xs_norm) } } pub fn vit_base(vb: VarBuilder) -> Result { BeitVisionTransformer::new(vb, 12, 768, 12) } pub fn vit_large(vb: VarBuilder) -> Result { BeitVisionTransformer::new(vb, 24, 1024, 16) }