//! Implementation of the ChatGLM2/3 models from THUDM. //! //! See: //! - ChatGLM3: ["ChatGLM3: Advancing Multilingual Conversational Language Models with High-Quality Data"](https://github.com/THUDM/ChatGLM3) //! - ChatGLM2: ["ChatGLM2: An Open Bilingual Chat LLM"](https://github.com/THUDM/ChatGLM2-6B) //! use crate::models::with_tracing::{linear_b as linear, Linear}; use candle::{DType, Device, IndexOp, Module, Result, Tensor, D}; use candle_nn::VarBuilder; #[derive(Debug, Clone)] pub struct Config { pub num_layers: usize, pub padded_vocab_size: usize, pub hidden_size: usize, pub ffn_hidden_size: usize, pub kv_channels: usize, pub num_attention_heads: usize, pub seq_length: usize, pub layernorm_epsilon: f64, pub rmsnorm: bool, pub apply_residual_connection_post_layernorm: bool, pub post_layer_norm: bool, pub add_bias_linear: bool, pub add_qkv_bias: bool, pub bias_dropout_fusion: bool, pub multi_query_attention: bool, pub multi_query_group_num: usize, pub apply_query_key_layer_scaling: bool, pub attention_softmax_in_fp32: bool, pub fp32_residual_connection: bool, } impl Config { pub fn glm3_6b() -> Self { Self { num_layers: 28, padded_vocab_size: 65024, hidden_size: 4096, ffn_hidden_size: 13696, kv_channels: 128, num_attention_heads: 32, seq_length: 8192, layernorm_epsilon: 1e-5, rmsnorm: true, apply_residual_connection_post_layernorm: false, post_layer_norm: true, add_bias_linear: false, add_qkv_bias: true, bias_dropout_fusion: true, multi_query_attention: true, multi_query_group_num: 2, apply_query_key_layer_scaling: true, attention_softmax_in_fp32: true, fp32_residual_connection: false, } } } #[derive(Debug, Clone)] struct RotaryEmbedding { cache: Tensor, } impl RotaryEmbedding { fn new(cfg: &Config, dtype: DType, dev: &Device) -> Result { let rotary_dim = cfg.kv_channels; let n_elem = rotary_dim / 2; let inv_freq: Vec<_> = (0..n_elem) .step_by(2) .map(|i| 1f32 / 10_000f64.powf(i as f64 / n_elem as f64) as f32) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; let t = Tensor::arange(0u32, cfg.seq_length as u32, dev)? .to_dtype(dtype)? .reshape((cfg.seq_length, 1))?; let freqs = t.matmul(&inv_freq)?; let cache = Tensor::stack(&[&freqs.cos()?, &freqs.sin()?], D::Minus1)?; Ok(Self { cache }) } fn apply(&self, xs: &Tensor, seqlen_offset: usize) -> Result { let (seqlen, _b, np, _hn) = xs.dims4()?; let cache = self.cache.narrow(0, seqlen_offset, seqlen)?; let rot_dim = cache.dim(D::Minus2)? * 2; let (xs, xs_pass) = ( xs.narrow(D::Minus1, 0, rot_dim)?, xs.narrow(D::Minus1, rot_dim, rot_dim)?, ); let xshaped = xs.reshape((seqlen, (), np, rot_dim / 2, 2))?; let cache = cache.reshape((seqlen, (), 1, rot_dim / 2, 2))?; let (xshaped0, xshaped1) = ( xshaped.i((.., .., .., .., 0))?, xshaped.i((.., .., .., .., 1))?, ); let (cache0, cache1) = (cache.i((.., .., .., .., 0))?, cache.i((.., .., .., .., 1))?); let xs_out = Tensor::stack( &[ (xshaped0.broadcast_mul(&cache0)? - xshaped1.broadcast_mul(&cache1)?)?, (xshaped1.broadcast_mul(&cache0)? + xshaped0.broadcast_mul(&cache1)?)?, ], D::Minus1, )?; let xs_out = xs_out.flatten_from(3)?; Tensor::cat(&[xs_out, xs_pass], D::Minus1) } } #[derive(Debug, Clone)] struct CoreAttention { coeff: Option, norm_factor: f64, } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } impl CoreAttention { fn new(layer_number: usize, cfg: &Config) -> Result { let norm_factor = (cfg.kv_channels as f64).sqrt(); let (norm_factor, coeff) = if cfg.apply_query_key_layer_scaling { let coeff = f64::max(1.0, layer_number as f64); (norm_factor * coeff, Some(coeff)) } else { (norm_factor, None) }; Ok(Self { coeff, norm_factor }) } fn forward( &self, query_layer: &Tensor, key_layer: &Tensor, value_layer: &Tensor, attention_mask: &Option, ) -> Result { let output_size = ( query_layer.dim(1)?, // b query_layer.dim(2)?, // np query_layer.dim(0)?, // sq key_layer.dim(0)?, // sk ); let query_layer = query_layer.reshape((output_size.2, output_size.0 * output_size.1, ()))?; let key_layer = key_layer.reshape((output_size.3, output_size.0 * output_size.1, ()))?; let matmul_result = Tensor::matmul( &query_layer.transpose(0, 1)?, &key_layer.transpose(0, 1)?.transpose(1, 2)?, )?; let matmul_result = (matmul_result / self.norm_factor)?.reshape(output_size)?; let matmul_result = match self.coeff { None => matmul_result, Some(coeff) => (matmul_result * coeff)?, }; let attention_scores = match attention_mask { Some(mask) => masked_fill( &matmul_result, &mask.broadcast_left((matmul_result.dim(0)?, matmul_result.dim(1)?))?, f32::NEG_INFINITY, )?, None => matmul_result, }; let attention_probs = candle_nn::ops::softmax_last_dim(&attention_scores)?; let output_size = ( value_layer.dim(1)?, value_layer.dim(2)?, query_layer.dim(0)?, value_layer.dim(3)?, ); let value_layer = value_layer.reshape((value_layer.dim(0)?, output_size.0 * output_size.1, ()))?; let attention_probs = attention_probs.reshape((output_size.0 * output_size.1, output_size.2, ()))?; let context_layer = Tensor::matmul(&attention_probs, &value_layer.transpose(0, 1)?)?; let context_layer = context_layer.reshape(output_size)?; let context_layer = context_layer.permute((2, 0, 1, 3))?.contiguous()?; context_layer.flatten_from(D::Minus2) } } #[derive(Debug, Clone)] struct SelfAttention { query_key_value: Linear, core_attention: CoreAttention, dense: Linear, multi_query_attention: bool, num_attention_heads_per_partition: usize, num_multi_query_groups_per_partition: usize, hidden_size_per_attention_head: usize, kv_cache: Option<(Tensor, Tensor)>, } impl SelfAttention { fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result { let projection_size = cfg.kv_channels * cfg.num_attention_heads; let hidden_size_per_attention_head = projection_size / cfg.num_attention_heads; let qkv_hidden_size = if cfg.multi_query_attention { projection_size + 2 * hidden_size_per_attention_head * cfg.multi_query_group_num } else { 3 * projection_size }; let query_key_value = linear( cfg.hidden_size, qkv_hidden_size, cfg.add_bias_linear || cfg.add_qkv_bias, vb.pp("query_key_value"), )?; let core_attention = CoreAttention::new(layer_number, cfg)?; let dense = linear( cfg.hidden_size, cfg.hidden_size, cfg.add_bias_linear, vb.pp("dense"), )?; Ok(Self { query_key_value, core_attention, dense, multi_query_attention: cfg.multi_query_attention, num_attention_heads_per_partition: cfg.num_attention_heads, num_multi_query_groups_per_partition: cfg.multi_query_group_num, hidden_size_per_attention_head: cfg.kv_channels, kv_cache: None, }) } fn reset_kv_cache(&mut self) { self.kv_cache = None } fn forward( &mut self, xs: &Tensor, attention_mask: &Option, rotary_emb: &RotaryEmbedding, ) -> Result { let mixed_x_layer = xs.apply(&self.query_key_value)?; if !self.multi_query_attention { candle::bail!("only multi_query_attention=true is supported") } let hpa = self.hidden_size_per_attention_head; let query_layer = mixed_x_layer.narrow(D::Minus1, 0, self.num_attention_heads_per_partition * hpa)?; let key_layer = mixed_x_layer.narrow( D::Minus1, self.num_attention_heads_per_partition * hpa, self.num_multi_query_groups_per_partition * hpa, )?; let value_layer = mixed_x_layer.narrow( D::Minus1, self.num_attention_heads_per_partition * hpa + self.num_multi_query_groups_per_partition * hpa, self.num_multi_query_groups_per_partition * hpa, )?; let query_layer = query_layer.reshape(( query_layer.dim(0)?, query_layer.dim(1)?, self.num_attention_heads_per_partition, hpa, ))?; let key_layer = key_layer.reshape(( key_layer.dim(0)?, key_layer.dim(1)?, self.num_multi_query_groups_per_partition, hpa, ))?; let value_layer = value_layer.reshape(( value_layer.dim(0)?, value_layer.dim(1)?, self.num_multi_query_groups_per_partition, hpa, ))?; // Rotary embeddings. let seqlen_offset = match &self.kv_cache { None => 0, Some((prev_k, _)) => prev_k.dim(0)?, }; let query_layer = rotary_emb.apply(&query_layer, seqlen_offset)?; let key_layer = rotary_emb.apply(&key_layer, seqlen_offset)?; // KV cache. let (key_layer, value_layer) = match &self.kv_cache { None => (key_layer, value_layer), Some((prev_k, prev_v)) => { let k = Tensor::cat(&[prev_k, &key_layer], 0)?; let v = Tensor::cat(&[prev_v, &value_layer], 0)?; (k, v) } }; self.kv_cache = Some((key_layer.clone(), value_layer.clone())); // Repeat KV. let ratio = self.num_attention_heads_per_partition / self.num_multi_query_groups_per_partition; let key_layer = { let (d0, d1, d2, d3) = key_layer.dims4()?; key_layer .unsqueeze(D::Minus2)? .expand((d0, d1, d2, ratio, d3))? .reshape(( d0, d1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, ))? }; let value_layer = { let (d0, d1, d2, d3) = value_layer.dims4()?; value_layer .unsqueeze(D::Minus2)? .expand((d0, d1, d2, ratio, d3))? .reshape(( d0, d1, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, ))? }; let context_layer = self.core_attention .forward(&query_layer, &key_layer, &value_layer, attention_mask)?; let output = context_layer.apply(&self.dense)?; Ok(output) } } #[allow(clippy::upper_case_acronyms)] #[derive(Debug, Clone)] struct MLP { dense_h_to_4h: Linear, dense_4h_to_h: Linear, } impl MLP { fn new(cfg: &Config, vb: VarBuilder) -> Result { let dense_h_to_4h = linear( cfg.hidden_size, cfg.ffn_hidden_size * 2, cfg.add_bias_linear, vb.pp("dense_h_to_4h"), )?; let dense_4h_to_h = linear( cfg.ffn_hidden_size, cfg.hidden_size, cfg.add_bias_linear, vb.pp("dense_4h_to_h"), )?; Ok(Self { dense_4h_to_h, dense_h_to_4h, }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result { xs.apply(&self.dense_h_to_4h)? .apply(&candle_nn::Activation::Swiglu)? .apply(&self.dense_4h_to_h) } } #[derive(Debug, Clone)] struct Block { input_layernorm: candle_nn::LayerNorm, self_attention: SelfAttention, post_attention_layernorm: candle_nn::LayerNorm, mlp: MLP, apply_residual_connection_post_layernorm: bool, } impl Block { fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result { let input_layernorm = if cfg.rmsnorm { candle_nn::rms_norm( cfg.hidden_size, cfg.layernorm_epsilon, vb.pp("input_layernorm"), )? .into_inner() } else { candle_nn::layer_norm( cfg.hidden_size, cfg.layernorm_epsilon, vb.pp("input_layernorm"), )? }; let post_attention_layernorm = if cfg.rmsnorm { candle_nn::rms_norm( cfg.hidden_size, cfg.layernorm_epsilon, vb.pp("post_attention_layernorm"), )? .into_inner() } else { candle_nn::layer_norm( cfg.hidden_size, cfg.layernorm_epsilon, vb.pp("post_attention_layernorm"), )? }; let self_attention = SelfAttention::new(layer_number, cfg, vb.pp("self_attention"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?; Ok(Self { input_layernorm, self_attention, post_attention_layernorm, mlp, apply_residual_connection_post_layernorm: cfg.apply_residual_connection_post_layernorm, }) } fn reset_kv_cache(&mut self) { self.self_attention.reset_kv_cache() } fn forward( &mut self, xs: &Tensor, attention_mask: &Option, rotary_emb: &RotaryEmbedding, ) -> Result { let layernorm_output = xs.apply(&self.input_layernorm)?; let attention_output = self.self_attention .forward(&layernorm_output, attention_mask, rotary_emb)?; let residual = if self.apply_residual_connection_post_layernorm { &layernorm_output } else { xs }; let layernorm_input = (residual + attention_output)?; let layernorm_output = layernorm_input.apply(&self.post_attention_layernorm)?; let mlp_output = layernorm_output.apply(&self.mlp)?; let residual = if self.apply_residual_connection_post_layernorm { &layernorm_output } else { &layernorm_input }; mlp_output + residual } } #[derive(Debug, Clone)] struct Transformer { layers: Vec, final_layernorm: Option, rotary_emb: RotaryEmbedding, } impl Transformer { fn new(cfg: &Config, vb: VarBuilder) -> Result { let vb_l = vb.pp("layers"); let mut layers = Vec::with_capacity(cfg.num_layers); for layer_index in 0..cfg.num_layers { let block = Block::new(layer_index + 1, cfg, vb_l.pp(layer_index))?; layers.push(block) } let final_layernorm = if cfg.post_layer_norm { let ln = if cfg.rmsnorm { candle_nn::rms_norm( cfg.hidden_size, cfg.layernorm_epsilon, vb.pp("final_layernorm"), )? .into_inner() } else { candle_nn::layer_norm( cfg.hidden_size, cfg.layernorm_epsilon, vb.pp("final_layernorm"), )? }; Some(ln) } else { None }; let rotary_emb = RotaryEmbedding::new(cfg, vb.dtype(), vb.device())?; Ok(Self { layers, final_layernorm, rotary_emb, }) } fn reset_kv_cache(&mut self) { for block in self.layers.iter_mut() { block.reset_kv_cache() } } fn forward(&mut self, xs: &Tensor, attention_mask: &Option) -> Result { let mut xs = xs.clone(); for block in self.layers.iter_mut() { xs = block.forward(&xs, attention_mask, &self.rotary_emb)? } match self.final_layernorm.as_ref() { None => Ok(xs), Some(ln) => xs.apply(ln), } } } #[derive(Debug, Clone)] struct Embedding { word_embeddings: candle_nn::Embedding, fp32_residual_connection: bool, } impl Embedding { fn new(cfg: &Config, vb: VarBuilder) -> Result { let word_embeddings = candle_nn::embedding( cfg.padded_vocab_size, cfg.hidden_size, vb.pp("word_embeddings"), )?; Ok(Self { word_embeddings, fp32_residual_connection: cfg.fp32_residual_connection, }) } } impl Module for Embedding { fn forward(&self, xs: &Tensor) -> Result { let xs = self.word_embeddings.forward(xs)?.transpose(0, 1)?; // b,s,h -> s,b,h if self.fp32_residual_connection { xs.to_dtype(candle::DType::F32) } else { xs.contiguous() } } } #[derive(Debug, Clone)] pub struct Model { embedding: Embedding, encoder: Transformer, output_layer: Linear, } fn get_mask(size: usize, device: &Device) -> Result { let mask: Vec<_> = (0..size) .flat_map(|i| (0..size).map(move |j| u8::from(j > i))) .collect(); Tensor::from_slice(&mask, (size, size), device) } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result { let vb = vb.pp("transformer"); let embedding = Embedding::new(cfg, vb.pp("embedding"))?; let encoder = Transformer::new(cfg, vb.pp("encoder"))?; let output_layer = linear( cfg.hidden_size, cfg.padded_vocab_size, false, vb.pp("output_layer"), )?; Ok(Self { embedding, encoder, output_layer, }) } pub fn reset_kv_cache(&mut self) { self.encoder.reset_kv_cache() } pub fn forward(&mut self, xs: &Tensor) -> Result { let (_b_size, seq_len) = xs.dims2()?; let input_embeds = xs.apply(&self.embedding)?; let attention_mask = if seq_len <= 1 { None } else { Some(get_mask(seq_len, xs.device())?) }; let xs = self.encoder.forward(&input_embeds, &attention_mask)?; let lm_logits = xs.i(seq_len - 1)?.apply(&self.output_layer)?; Ok(lm_logits) } }