//! Implementation of the DINOv2 models from Meta Research. //! //! See: //! - DINOv2: ["DINOv2: Learning Robust Visual Features without Supervision"](https://github.com/facebookresearch/dinov2) //! use candle::{IndexOp, Result, Tensor, D}; use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; const IMG_SIZE: usize = 518; const PATCH_SIZE: usize = 14; const NUM_CLASSES: usize = 1000; fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> { if bias { candle_nn::linear(in_dim, out_dim, vb) } else { candle_nn::linear_no_bias(in_dim, out_dim, vb) } } #[derive(Debug)] struct Attention { qkv: Linear, proj: Linear, num_heads: usize, scale: f64, } impl Attention { fn new( vb: VarBuilder, dim: usize, num_heads: usize, qkv_bias: bool, proj_bias: bool, ) -> Result<Self> { let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; let scale = 1. / ((dim / num_heads) as f64).sqrt(); Ok(Self { qkv, proj, num_heads, scale, }) } } impl Module for Attention { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (b, n, c) = xs.dims3()?; let qkv = self .qkv .forward(xs)? .reshape((b, n, 3, self.num_heads, c / self.num_heads))? .transpose(1, 2)? // 02134 .transpose(0, 1)? // 20134 .transpose(2, 3)?; // 20314 let q = (qkv.i(0)? * self.scale)?; let k = qkv.i(1)?.contiguous()?; let v = qkv.i(2)?.contiguous()?; let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?; let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; self.proj.forward(&attn) } } #[derive(Debug)] struct LayerScale { gamma: Tensor, } impl LayerScale { fn new(vb: VarBuilder, dim: usize) -> Result<Self> { let gamma = vb.get(dim, "gamma")?; Ok(Self { gamma }) } } impl Module for LayerScale { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.broadcast_mul(&self.gamma) } } #[derive(Debug)] struct Mlp { fc1: Linear, fc2: Linear, } impl Mlp { fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> { let out_features = in_features; let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?; let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; Ok(Self { fc1, fc2 }) } } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let xs = self.fc1.forward(xs)?.gelu()?; self.fc2.forward(&xs) } } #[derive(Debug)] struct Block { norm1: LayerNorm, attn: Attention, ls1: LayerScale, norm2: LayerNorm, mlp: Mlp, ls2: LayerScale, } impl Block { fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> { let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?; let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?; let ls1 = LayerScale::new(vb.pp("ls1"), dim)?; let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?; let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?; let ls2 = LayerScale::new(vb.pp("ls2"), dim)?; Ok(Self { norm1, attn, ls1, norm2, mlp, ls2, }) } } impl Module for Block { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let residual = xs; let xs = self .ls1 .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?; let xs = (xs + residual)?; let residual = &xs; let xs = self .ls2 .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?; xs + residual } } #[derive(Debug)] struct PatchEmbed { proj: candle_nn::Conv2d, patch_size: (usize, usize), num_patches: usize, } impl PatchEmbed { fn new( vb: VarBuilder, img_size: usize, patch_size: usize, in_chans: usize, embed_dim: usize, ) -> Result<Self> { let config = candle_nn::Conv2dConfig { stride: patch_size, ..Default::default() }; let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; let num_patches = (img_size / patch_size) * (img_size / patch_size); Ok(Self { proj, patch_size: (patch_size, patch_size), num_patches, }) } } impl Module for PatchEmbed { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (_b, _c, h, w) = xs.dims4()?; let (patch_h, patch_w) = self.patch_size; if (h % patch_h) != 0 { candle::bail!("image height {h} is not a multiple of patch height {patch_h}") } if (w % patch_w) != 0 { candle::bail!("image width {w} is not a multiple of patch width {patch_w}") } let xs = self.proj.forward(xs)?; let (b, c, h, w) = xs.dims4()?; // flatten embeddings. xs.reshape((b, c, h * w))?.transpose(1, 2) } } #[derive(Debug)] pub struct DinoVisionTransformer { patch_embed: PatchEmbed, cls_token: Tensor, pos_embed: Tensor, blocks: Vec<Block>, norm: LayerNorm, head: Linear, } impl DinoVisionTransformer { pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> { let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?; let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; let num_tokens = 1; let pos_embed = vb.get( (1, patch_embed.num_patches + num_tokens, embed_dim), "pos_embed", )?; let head = linear(vb.pp("head"), 2 * embed_dim, NUM_CLASSES, true)?; let norm = layer_norm(embed_dim, 1e-5, vb.pp("norm"))?; let vb_b = vb.pp("blocks"); let blocks = (0..depth) .map(|i| Block::new(vb_b.pp(i.to_string()), embed_dim, num_heads)) .collect::<Result<Vec<_>>>()?; Ok(Self { patch_embed, cls_token, pos_embed, blocks, norm, head, }) } fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> { let npatch = xs.dim(1)? - 1; let n = self.pos_embed.dim(1)? - 1; let sqrt_n = (n as f64).sqrt(); if npatch == n && w == h { return Ok(xs.clone()); } let class_pos_embed = self.pos_embed.i((.., ..1))?; let patch_pos_embed = self.pos_embed.i((.., 1..))?; let dim = xs.dim(D::Minus1)?; let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1); let patch_pos_embed = patch_pos_embed .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))? .transpose(2, 3)? .transpose(1, 2)?; // This uses bicubic interpolation in the original implementation. let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?; let el_count = patch_pos_embed.shape().elem_count(); let patch_pos_embed = patch_pos_embed .transpose(1, 2)? .transpose(2, 3)? .reshape((1, el_count / dim, dim))?; Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1) } fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> { let (_b, _nc, w, h) = xs.dims4()?; let xs = self.patch_embed.forward(xs)?; let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?; &xs + &self.interpolate_pos_encoding(&xs, w, h)? } fn get_intermediate_layers_not_chunked( &self, xs: &Tensor, blocks_to_take: &[usize], ) -> Result<Vec<Tensor>> { let mut xs = self.prepare_tokens_with_mask(xs)?; let mut output = Vec::new(); for (i, blk) in self.blocks.iter().enumerate() { xs = blk.forward(&xs)?; if blocks_to_take.contains(&i) { output.push(xs.clone()); } } if output.len() != blocks_to_take.len() { candle::bail!( "only {} / {} blocks found", output.len(), blocks_to_take.len() ); } Ok(output) } pub fn get_intermediate_layers( &self, xs: &Tensor, blocks_to_take: &[usize], reshape: bool, return_class_token: bool, norm: bool, ) -> Result<Tensor> { let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?; let outputs = if norm { outputs .iter() .map(|out| self.norm.forward(out)) .collect::<Result<Vec<_>>>()? } else { outputs }; let class_tokens = outputs .iter() .map(|out| out.i((.., 0))) .collect::<Result<Vec<_>>>()?; let outputs = outputs .iter() .map(|out| out.i((.., 1..))) .collect::<Result<Vec<_>>>()?; let outputs = if reshape { let (b, _c, w, h) = xs.dims4()?; let patch_size = self.patch_embed.patch_size.0; let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size)); outputs .iter() .map(|out| { out.reshape((b, w / patch_size, h / patch_size, num_channels))? .transpose(2, 3)? .transpose(1, 2) }) .collect::<Result<Vec<_>>>()? } else { outputs }; let outputs = if return_class_token { outputs .iter() .zip(class_tokens.iter()) .map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1)) .collect::<Result<Vec<_>>>()? } else { outputs }; Tensor::stack(&outputs[..], 0) } } impl Module for DinoVisionTransformer { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let mut xs = self.prepare_tokens_with_mask(xs)?; for blk in self.blocks.iter() { xs = blk.forward(&xs)? } let xs = self.norm.forward(&xs)?; let xs_norm_clstoken = xs.i((.., 0))?; let xs_norm_patchtokens = xs.i((.., 1..))?.mean(1)?; let xs = Tensor::cat(&[xs_norm_clstoken, xs_norm_patchtokens], D::Minus1)?; self.head.forward(&xs) } } pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> { DinoVisionTransformer::new(vb, 12, 384, 6) }