//! EVA-2 inference implementation. //! //! See ["EVA-02: A Visual Representation for Neon Genesis"](https://arxiv.org/abs/2303.11331) //! //! Based on implementation from [pytorch-image-models](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/eva2.py) use candle::{IndexOp, Result, Tensor, D}; use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; const IMG_SIZE: usize = 448; const PATCH_SIZE: usize = 14; const NUM_CLASSES: usize = 1000; fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result { if bias { candle_nn::linear(in_dim, out_dim, vb) } else { candle_nn::linear_no_bias(in_dim, out_dim, vb) } } #[derive(Debug)] struct Attention { q: Linear, k: Linear, v: Linear, proj: Linear, rot_pos_embed: Tensor, num_heads: usize, scale: f64, } impl Attention { fn new( vb: VarBuilder, dim: usize, num_heads: usize, qkv_bias: bool, proj_bias: bool, rot_pos_embed: &Tensor, ) -> Result { let q = linear(vb.pp("q_proj"), dim, dim, qkv_bias)?; let k = linear(vb.pp("k_proj"), dim, dim, false)?; // no bias for Key let v = linear(vb.pp("v_proj"), dim, dim, qkv_bias)?; let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; let rot_pos_embed = rot_pos_embed.clone(); let scale = 1. / ((dim / num_heads) as f64).sqrt(); Ok(Self { q, k, v, proj, rot_pos_embed, num_heads, scale, }) } } impl Attention { // See: https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/pos_embed_sincos.py#L210 fn apply_rot_embed_cat(x: &Tensor, emb: &Tensor) -> Result { let cos_emb = emb.i((0.., 64..128))?; //.transpose(0, 1)?; let sin_emb = emb.i((0.., 0..64))?; //.transpose(0, 1)?; let index_even: [u32; 32] = (0u32..=63) .step_by(2) .collect::>() .try_into() .expect("wrong size iterator"); let index_odd: [u32; 32] = (1u32..=63) .step_by(2) .collect::>() .try_into() .expect("wrong size iterator"); let t_index_even = Tensor::new(&index_even, x.device())?; let t_index_odd = Tensor::new(&index_odd, x.device())?; let x_c = x.contiguous()?; let rot_x_even = x_c.index_select(&t_index_even, D::Minus1)?; let rot_x_odd_minus = (-1.0 * x_c.index_select(&t_index_odd, D::Minus1)?)?; let rot_x = Tensor::stack(&[&rot_x_odd_minus, &rot_x_even], D::Minus1)?.reshape(x.shape())?; x.broadcast_mul(&cos_emb)? + rot_x.broadcast_mul(&sin_emb)? } } impl Module for Attention { fn forward(&self, xs: &Tensor) -> Result { let (b, n, c) = xs.dims3()?; let qkv = Tensor::cat( &[ &self.q.forward(xs)?, &self.k.forward(xs)?, &self.v.forward(xs)?, ], 2, )? .reshape((b, n, 3, self.num_heads, c / self.num_heads))? .transpose(1, 2)? // 02134 .transpose(0, 1)? // 20134 .transpose(2, 3)?; // 20314 let q = qkv.i(0)?; let k = qkv.i(1)?.contiguous()?; let v = qkv.i(2)?.contiguous()?; let npt = 1; // num_prefix_tokens = 1 for CLS token let q = Tensor::cat( &[ &q.i((0.., 0.., ..npt, 0..))?, &Self::apply_rot_embed_cat(&q.i((0.., 0.., npt.., 0..))?, &self.rot_pos_embed)?, ], 2, )?; let k = Tensor::cat( &[ &k.i((0.., 0.., ..npt, 0..))?, &Self::apply_rot_embed_cat(&k.i((0.., 0.., npt.., 0..))?, &self.rot_pos_embed)?, ], 2, )?; let q = (q * self.scale)?; let attn = &q.matmul(&k.t()?)?; let attn = candle_nn::ops::softmax(attn, D::Minus1)?; let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; self.proj.forward(&attn) } } #[derive(Debug)] struct Mlp { fc1_g: Linear, fc1_x: Linear, norm: LayerNorm, fc2: Linear, } impl Mlp { fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result { let out_features = in_features; let fc1_g = linear(vb.pp("fc1_g"), in_features, hidden_features, bias)?; let fc1_x = linear(vb.pp("fc1_x"), in_features, hidden_features, bias)?; let norm = layer_norm(hidden_features, 1e-6, vb.pp("norm"))?; let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; Ok(Self { fc1_g, fc1_x, norm, fc2, }) } } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result { let xs_g = self.fc1_g.forward(xs)?.silu()?; let xs = self.fc1_x.forward(xs)?; let xs = self.norm.forward(&(xs_g.mul(&xs)?))?; self.fc2.forward(&xs) } } #[derive(Debug)] struct Block { norm1: LayerNorm, attn: Attention, norm2: LayerNorm, mlp: Mlp, } impl Block { fn new(vb: VarBuilder, dim: usize, num_heads: usize, rot_pos_embed: &Tensor) -> Result { let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?; let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true, rot_pos_embed)?; let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?; let hidden_dim = dim * 4 * 2 / 3; // 768 * 4 * 2 / 3 = 3072 * 2 / 3 = 2048 let mlp = Mlp::new(vb.pp("mlp"), dim, hidden_dim, true)?; Ok(Self { norm1, attn, norm2, mlp, }) } } impl Module for Block { fn forward(&self, xs: &Tensor) -> Result { let residual = xs; let xs = &self.attn.forward(&self.norm1.forward(xs)?)?; let xs = (xs + residual)?; let residual = &xs; let xs = &self.mlp.forward(&self.norm2.forward(&xs)?)?; xs + residual } } #[derive(Debug)] struct PatchEmbed { proj: candle_nn::Conv2d, patch_size: (usize, usize), num_patches: usize, } impl PatchEmbed { fn new( vb: VarBuilder, img_size: usize, patch_size: usize, in_chans: usize, embed_dim: usize, ) -> Result { let config = candle_nn::Conv2dConfig { stride: patch_size, ..Default::default() }; let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; let num_patches = (img_size / patch_size) * (img_size / patch_size); Ok(Self { proj, patch_size: (patch_size, patch_size), num_patches, }) } } impl Module for PatchEmbed { fn forward(&self, xs: &Tensor) -> Result { let (_b, _c, h, w) = xs.dims4()?; let (patch_h, patch_w) = self.patch_size; if (h % patch_h) != 0 { candle::bail!("image height {h} is not a multiple of patch height {patch_h}") } if (w % patch_w) != 0 { candle::bail!("image width {w} is not a multiple of patch width {patch_w}") } let xs = self.proj.forward(xs)?; let (b, c, h, w) = xs.dims4()?; // flatten embeddings. xs.reshape((b, c, h * w))?.transpose(1, 2) } } #[derive(Debug)] pub struct EVA2VisionTransformer { patch_embed: PatchEmbed, cls_token: Tensor, pos_embed: Tensor, blocks: Vec, norm: LayerNorm, head: Linear, } impl EVA2VisionTransformer { pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result { let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?; let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; let pos_embed = vb.get((1, patch_embed.num_patches + 1, embed_dim), "pos_embed")?; let rot_pos_embed = vb.get((patch_embed.num_patches, 128), "rot_pos_embed")?; let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?; let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?; let vb_b = vb.pp("blocks"); let blocks = (0..depth) .map(|i| Block::new(vb_b.pp(i.to_string()), embed_dim, num_heads, &rot_pos_embed)) .collect::>>()?; Ok(Self { patch_embed, cls_token, pos_embed, blocks, norm, head, }) } fn interpolate_pos_encoding( &self, xs: &Tensor, w: usize, h: usize, num_prefix_tokens: usize, ) -> Result { let npatch = xs.dim(1)? - 1; let n = self.pos_embed.dim(1)? - 1; let sqrt_n = (n as f64).sqrt(); if npatch == n && w == h { return Ok(self.pos_embed.clone()); } // Interpolate only local tokens, i.e. those after the CLS token let prefix_tokens_pos_embed = self.pos_embed.i((0.., ..num_prefix_tokens, 0..))?.clone(); let patch_pos_embed = &self.pos_embed.i((0.., num_prefix_tokens.., 0..))?; let dim = xs.dim(D::Minus1)?; let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1); let patch_pos_embed = patch_pos_embed .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))? .transpose(2, 3)? .transpose(1, 2)?; // This uses bicubic interpolation in the original implementation. let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?; let el_count = patch_pos_embed.shape().elem_count(); let patch_pos_embed = patch_pos_embed .transpose(1, 2)? .transpose(2, 3)? .reshape((1, el_count / dim, dim))?; Tensor::cat(&[&prefix_tokens_pos_embed, &patch_pos_embed], 1) } fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result { let (_b, _nc, w, h) = xs.dims4()?; if (w != IMG_SIZE) || (h != IMG_SIZE) { panic!("Error: The input tensor should have the shape: Bx3x518x518."); } let xs = self.patch_embed.forward(xs)?; let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?; let xs = (&xs + &self.interpolate_pos_encoding(&xs, w, h, 1)?)?; Ok(xs) } fn get_intermediate_layers_not_chunked( &self, xs: &Tensor, blocks_to_take: &[usize], ) -> Result> { let mut xs = self.prepare_tokens_with_mask(xs)?; let mut output = Vec::new(); for (i, blk) in self.blocks.iter().enumerate() { xs = blk.forward(&xs)?; if blocks_to_take.contains(&i) { output.push(xs.clone()); } } if output.len() != blocks_to_take.len() { candle::bail!( "only {} / {} blocks found", output.len(), blocks_to_take.len() ); } Ok(output) } pub fn get_intermediate_layers( &self, xs: &Tensor, blocks_to_take: &[usize], reshape: bool, return_class_token: bool, norm: bool, ) -> Result { let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?; let outputs = if norm { outputs .iter() .map(|out| self.norm.forward(out)) .collect::>>()? } else { outputs }; let class_tokens = outputs .iter() .map(|out| out.i((.., 0))) .collect::>>()?; let outputs = outputs .iter() .map(|out| out.i((.., 1..))) .collect::>>()?; let outputs = if reshape { let (b, _c, w, h) = xs.dims4()?; let patch_size = self.patch_embed.patch_size.0; let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size)); outputs .iter() .map(|out| { out.reshape((b, w / patch_size, h / patch_size, num_channels))? .transpose(2, 3)? .transpose(1, 2) }) .collect::>>()? } else { outputs }; let outputs = if return_class_token { outputs .iter() .zip(class_tokens.iter()) .map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1)) .collect::>>()? } else { outputs }; Tensor::stack(&outputs[..], 0) } } impl Module for EVA2VisionTransformer { fn forward(&self, xs: &Tensor) -> Result { let mut xs = self.prepare_tokens_with_mask(xs)?; for blk in self.blocks.iter() { xs = blk.forward(&xs)? } let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?; let xs_norm = self.norm.forward(&xs_moy_local_tokens)?; self.head.forward(&xs_norm) } } pub fn vit_base(vb: VarBuilder) -> Result { EVA2VisionTransformer::new(vb, 12, 768, 12) } pub fn vit_large(vb: VarBuilder) -> Result { EVA2VisionTransformer::new(vb, 24, 1024, 16) }