use std::sync::Arc; use candle::{DType, Device, Module, Result, Tensor, D}; use candle_nn::{linear_b as linear, Activation, Linear, VarBuilder}; fn default_max_position_embeddings() -> usize { 4096 } #[derive(serde::Deserialize, Debug, Clone)] pub struct Config { pub attention_bias: bool, pub head_dim: usize, // The code gemma configs include both hidden_act and hidden_activation. pub hidden_act: Option, pub hidden_activation: Option, pub hidden_size: usize, pub intermediate_size: usize, pub num_attention_heads: usize, pub num_hidden_layers: usize, pub num_key_value_heads: usize, pub rms_norm_eps: f64, pub rope_theta: f64, pub vocab_size: usize, #[serde(default = "default_max_position_embeddings")] pub max_position_embeddings: usize, } impl Config { fn hidden_act(&self) -> Result { match (self.hidden_act, self.hidden_activation) { (None, Some(act)) | (Some(act), None) => Ok(act), (Some(_), Some(_)) => candle::bail!("both hidden_act and hidden_activation are set"), (None, None) => candle::bail!("none of hidden_act and hidden_activation are set"), } } } #[derive(Debug, Clone)] struct RmsNorm { weight: Tensor, eps: f64, } impl RmsNorm { fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result { let weight = vb.get(dim, "weight")?; Ok(Self { weight, eps }) } } impl Module for RmsNorm { fn forward(&self, x: &Tensor) -> Result { let x_dtype = x.dtype(); let internal_dtype = match x_dtype { DType::F16 | DType::BF16 => DType::F32, d => d, }; let hidden_size = x.dim(D::Minus1)?; let x = x.to_dtype(internal_dtype)?; let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?; let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; x_normed .to_dtype(x_dtype)? .broadcast_mul(&(&self.weight + 1.0)?) } } #[derive(Debug, Clone)] struct RotaryEmbedding { sin: Tensor, cos: Tensor, } impl RotaryEmbedding { fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result { let dim = cfg.head_dim; let max_seq_len = cfg.max_position_embeddings; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; let t = Tensor::arange(0u32, max_seq_len as u32, dev)? .to_dtype(dtype)? .reshape((max_seq_len, 1))?; let freqs = t.matmul(&inv_freq)?; Ok(Self { sin: freqs.sin()?, cos: freqs.cos()?, }) } fn apply_rotary_emb_qkv( &self, q: &Tensor, k: &Tensor, seqlen_offset: usize, ) -> Result<(Tensor, Tensor)> { let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?; let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?; Ok((q_embed, k_embed)) } } #[derive(Debug, Clone)] #[allow(clippy::upper_case_acronyms)] struct MLP { gate_proj: Linear, up_proj: Linear, down_proj: Linear, act_fn: candle_nn::Activation, } impl MLP { fn new(cfg: &Config, vb: VarBuilder) -> Result { let hidden_sz = cfg.hidden_size; let intermediate_sz = cfg.intermediate_size; let gate_proj = linear(hidden_sz, intermediate_sz, false, vb.pp("gate_proj"))?; let up_proj = linear(hidden_sz, intermediate_sz, false, vb.pp("up_proj"))?; let down_proj = linear(intermediate_sz, hidden_sz, false, vb.pp("down_proj"))?; Ok(Self { gate_proj, up_proj, down_proj, act_fn: cfg.hidden_act()?, }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result { let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?; let rhs = xs.apply(&self.up_proj)?; (lhs * rhs)?.apply(&self.down_proj) } } #[derive(Debug, Clone)] struct Attention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, num_heads: usize, num_kv_heads: usize, num_kv_groups: usize, head_dim: usize, rotary_emb: Arc, kv_cache: Option<(Tensor, Tensor)>, use_flash_attn: bool, } impl Attention { fn new( rotary_emb: Arc, use_flash_attn: bool, cfg: &Config, vb: VarBuilder, ) -> Result { let hidden_sz = cfg.hidden_size; let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads; let num_kv_groups = num_heads / num_kv_heads; let head_dim = cfg.head_dim; let bias = cfg.attention_bias; let q_proj = linear(hidden_sz, num_heads * head_dim, bias, vb.pp("q_proj"))?; let k_proj = linear(hidden_sz, num_kv_heads * head_dim, bias, vb.pp("k_proj"))?; let v_proj = linear(hidden_sz, num_kv_heads * head_dim, bias, vb.pp("v_proj"))?; let o_proj = linear(num_heads * head_dim, hidden_sz, bias, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, num_heads, num_kv_heads, num_kv_groups, head_dim, rotary_emb, kv_cache: None, use_flash_attn, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let (b_sz, q_len, _) = xs.dims3()?; let query_states = self.q_proj.forward(xs)?; let key_states = self.k_proj.forward(xs)?; let value_states = self.v_proj.forward(xs)?; let query_states = query_states .reshape((b_sz, q_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let (query_states, key_states) = self.rotary_emb .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?; let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let key_states = Tensor::cat(&[prev_k, &key_states], 2)?; let value_states = Tensor::cat(&[prev_v, &value_states], 2)?; (key_states, value_states) } }; self.kv_cache = Some((key_states.clone(), value_states.clone())); let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?; let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?; let attn_output = if self.use_flash_attn { // flash-attn expects (b_sz, seq_len, nheads, head_dim) let q = query_states.transpose(1, 2)?; let k = key_states.transpose(1, 2)?; let v = value_states.transpose(1, 2)?; let scale = 1f32 / (self.head_dim as f32).sqrt(); flash_attn(&q, &k, &v, scale, attention_mask.is_some())?.transpose(1, 2)? } else { let scale = 1f64 / f64::sqrt(self.head_dim as f64); let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; let attn_weights = match attention_mask { None => attn_weights, Some(mask) => attn_weights.broadcast_add(mask)?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; attn_weights.matmul(&value_states)? }; attn_output .transpose(1, 2)? .reshape((b_sz, q_len, ()))? .apply(&self.o_proj) } fn clear_kv_cache(&mut self) { self.kv_cache = None } } #[cfg(feature = "flash-attn")] fn flash_attn( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, causal: bool, ) -> Result { candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal) } #[cfg(not(feature = "flash-attn"))] fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result { unimplemented!("compile with '--features flash-attn'") } #[derive(Debug, Clone)] struct DecoderLayer { self_attn: Attention, mlp: MLP, input_layernorm: RmsNorm, post_attention_layernorm: RmsNorm, } impl DecoderLayer { fn new( rotary_emb: Arc, use_flash_attn: bool, cfg: &Config, vb: VarBuilder, ) -> Result { let self_attn = Attention::new(rotary_emb, use_flash_attn, cfg, vb.pp("self_attn"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?; let input_layernorm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?; let post_attention_layernorm = RmsNorm::new( cfg.hidden_size, cfg.rms_norm_eps, vb.pp("post_attention_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, post_attention_layernorm, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let residual = xs; let xs = self.input_layernorm.forward(xs)?; let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?; let xs = (xs + residual)?; let residual = &xs; let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; residual + xs } fn clear_kv_cache(&mut self) { self.self_attn.clear_kv_cache() } } #[derive(Debug, Clone)] pub struct Model { embed_tokens: candle_nn::Embedding, layers: Vec, norm: RmsNorm, lm_head: Linear, device: Device, dtype: DType, hidden_size: usize, } impl Model { pub fn new(use_flash_attn: bool, cfg: &Config, vb: VarBuilder) -> Result { let vb_m = vb.pp("model"); let embed_tokens = candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_l = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(rotary_emb.clone(), use_flash_attn, cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?; let lm_head = Linear::new(embed_tokens.embeddings().clone(), None); Ok(Self { embed_tokens, layers, norm, lm_head, device: vb.device().clone(), dtype: vb.dtype(), hidden_size: cfg.hidden_size, }) } pub fn embed_tokens(&self) -> &candle_nn::Embedding { &self.embed_tokens } fn prepare_decoder_attention_mask( &self, b_size: usize, tgt_len: usize, seqlen_offset: usize, ) -> Result { let mask: Vec<_> = (0..tgt_len) .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. })) .collect(); let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?; let mask = if seqlen_offset > 0 { let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?; Tensor::cat(&[&mask0, &mask], D::Minus1)? } else { mask }; mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))? .to_dtype(self.dtype) } pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result { let (b_size, seq_len) = input_ids.dims2()?; let attention_mask = if seq_len <= 1 { None } else { let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?; Some(mask) }; let xs = self.embed_tokens.forward(input_ids)?; let mut xs = (xs * (self.hidden_size as f64).sqrt())?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm)? .apply(&self.lm_head) } pub fn forward_embeds( &mut self, xs: &Tensor, attn_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let (_, seq_len, _) = xs.dims3()?; let mut xs = (xs * (self.hidden_size as f64).sqrt())?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attn_mask, seqlen_offset)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm)? .apply(&self.lm_head) } // Forward the model and return the hidden states without the lm_head pub fn forward_embeds_without_projection( &mut self, xs: &Tensor, attn_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let (_, _, _) = xs.dims3()?; let mut xs = (xs * (self.hidden_size as f64).sqrt())?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attn_mask, seqlen_offset)? } Ok(xs) } pub fn clear_kv_cache(&mut self) { for layer in self.layers.iter_mut() { layer.clear_kv_cache() } } }