//! Granite is a Long Context Transformer Language Model. //! //! A high performance transformer model optimized for efficient processing //! of very long context sequences //! //! Based on implementation from [Nod.ai](https://github.com/nod-ai/granite) use super::with_tracing::{linear_no_bias as linear, Linear, RmsNorm}; use candle::{DType, Device, IndexOp, Result, Tensor, D}; use candle_nn::{embedding, Embedding, Module, VarBuilder}; use std::{collections::HashMap, f32::consts::PI}; pub const DEFAULT_MAX_SEQ_LEN: usize = 4096; #[derive(Debug, Clone, serde::Deserialize, Default)] pub enum GraniteRopeType { #[serde(rename = "granite")] Granite, #[default] #[serde(rename = "default")] Default, } #[derive(Debug, Clone, serde::Deserialize, Default)] pub struct GraniteRopeConfig { pub factor: f32, pub low_freq_factor: f32, pub high_freq_factor: f32, pub original_max_position_embeddings: usize, pub rope_type: GraniteRopeType, } #[derive(Debug, Clone, serde::Deserialize)] #[serde(untagged)] pub enum GraniteEosToks { Single(u32), Multiple(Vec), } #[derive(Debug, Clone, serde::Deserialize)] pub struct GraniteConfig { pub hidden_size: usize, pub intermediate_size: usize, pub vocab_size: usize, pub num_hidden_layers: usize, pub num_attention_heads: usize, pub num_key_value_heads: Option, pub rms_norm_eps: f64, #[serde(default = "default_rope")] pub rope_theta: f32, pub bos_token_id: Option, pub eos_token_id: Option, pub rope_scaling: Option, pub max_position_embeddings: usize, } impl GraniteConfig { pub fn num_key_value_heads(&self) -> usize { self.num_key_value_heads.unwrap_or(self.num_attention_heads) } } fn default_rope() -> f32 { 10_000.0 } impl GraniteConfig { pub fn into_config(self, use_flash_attn: bool) -> Config { Config { hidden_size: self.hidden_size, intermediate_size: self.intermediate_size, vocab_size: self.vocab_size, num_hidden_layers: self.num_hidden_layers, num_attention_heads: self.num_attention_heads, num_key_value_heads: self.num_key_value_heads(), rms_norm_eps: self.rms_norm_eps, rope_theta: self.rope_theta, use_flash_attn, bos_token_id: self.bos_token_id, eos_token_id: self.eos_token_id, rope_scaling: self.rope_scaling, max_position_embeddings: self.max_position_embeddings, } } } #[derive(Debug, Clone)] pub struct Config { pub hidden_size: usize, pub intermediate_size: usize, pub vocab_size: usize, pub num_hidden_layers: usize, pub num_attention_heads: usize, pub num_key_value_heads: usize, pub use_flash_attn: bool, pub rms_norm_eps: f64, pub rope_theta: f32, pub bos_token_id: Option, pub eos_token_id: Option, pub rope_scaling: Option, pub max_position_embeddings: usize, } #[derive(Debug, Clone)] pub struct Cache { masks: HashMap, pub use_kv_cache: bool, kvs: Vec>, cos: Tensor, sin: Tensor, device: Device, } fn calculate_default_inv_freq(cfg: &Config) -> Vec { let head_dim = cfg.hidden_size / cfg.num_attention_heads; (0..head_dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / head_dim as f32)) .collect() } impl Cache { pub fn new(use_kv_cache: bool, dtype: DType, config: &Config, device: &Device) -> Result { // precompute freqs_cis let theta = match &config.rope_scaling { None | Some(GraniteRopeConfig { rope_type: GraniteRopeType::Default, .. }) => calculate_default_inv_freq(config), Some(rope_scaling) => { let low_freq_wavelen = rope_scaling.original_max_position_embeddings as f32 / rope_scaling.low_freq_factor; let high_freq_wavelen = rope_scaling.original_max_position_embeddings as f32 / rope_scaling.high_freq_factor; calculate_default_inv_freq(config) .into_iter() .map(|freq| { let wavelen = 2. * PI / freq; if wavelen < high_freq_wavelen { freq } else if wavelen > low_freq_wavelen { freq / rope_scaling.factor } else { let smooth = (rope_scaling.original_max_position_embeddings as f32 / wavelen - rope_scaling.low_freq_factor) / (rope_scaling.high_freq_factor - rope_scaling.low_freq_factor); (1. - smooth) * freq / rope_scaling.factor + smooth * freq } }) .collect::>() } }; let theta = Tensor::new(theta, device)?; let idx_theta = Tensor::arange(0, config.max_position_embeddings as u32, device)? .to_dtype(DType::F32)? .reshape((config.max_position_embeddings, 1))? .matmul(&theta.reshape((1, theta.elem_count()))?)?; let cos = idx_theta.cos()?.to_dtype(dtype)?; let sin = idx_theta.sin()?.to_dtype(dtype)?; Ok(Self { masks: HashMap::new(), use_kv_cache, kvs: vec![None; config.num_hidden_layers], device: device.clone(), cos, sin, }) } fn mask(&mut self, t: usize) -> Result { if let Some(mask) = self.masks.get(&t) { Ok(mask.clone()) } else { let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), &self.device)?; self.masks.insert(t, mask.clone()); Ok(mask) } } } #[derive(Debug, Clone)] struct CausalSelfAttention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, num_attention_heads: usize, num_key_value_heads: usize, head_dim: usize, use_flash_attn: bool, span: tracing::Span, span_rot: tracing::Span, max_position_embeddings: usize, } #[cfg(feature = "flash-attn")] fn flash_attn( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, causal: bool, ) -> Result { candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal) } #[cfg(not(feature = "flash-attn"))] fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result { unimplemented!("compile with '--features flash-attn'") } impl CausalSelfAttention { fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize, cache: &Cache) -> Result { let _enter = self.span_rot.enter(); let (_b_sz, _, seq_len, _hidden_size) = x.dims4()?; let cos = cache.cos.narrow(0, index_pos, seq_len)?; let sin = cache.sin.narrow(0, index_pos, seq_len)?; candle_nn::rotary_emb::rope(x, &cos, &sin) } fn forward( &self, x: &Tensor, index_pos: usize, block_idx: usize, cache: &mut Cache, ) -> Result { let _enter = self.span.enter(); let (b_sz, seq_len, hidden_size) = x.dims3()?; let q = self.q_proj.forward(x)?; let k = self.k_proj.forward(x)?; let v = self.v_proj.forward(x)?; let q = q .reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))? .transpose(1, 2)? .contiguous()?; let k = k .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))? .transpose(1, 2)? .contiguous()?; let mut v = v .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))? .transpose(1, 2)?; let q = self.apply_rotary_emb(&q, index_pos, cache)?; let mut k = self.apply_rotary_emb(&k, index_pos, cache)?; if cache.use_kv_cache { if let Some((cache_k, cache_v)) = &cache.kvs[block_idx] { k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?; v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?; let k_seq_len = k.dims()[1]; if k_seq_len > self.max_position_embeddings { k = k .narrow( D::Minus1, k_seq_len - self.max_position_embeddings, self.max_position_embeddings, )? .contiguous()? } let v_seq_len = v.dims()[1]; if v_seq_len > 2 * self.max_position_embeddings { v = v .narrow( D::Minus1, v_seq_len - self.max_position_embeddings, self.max_position_embeddings, )? .contiguous()? } } cache.kvs[block_idx] = Some((k.clone(), v.clone())) } let k = self.repeat_kv(k)?; let v = self.repeat_kv(v)?; let y = if self.use_flash_attn { // flash-attn expects (b_sz, seq_len, nheads, head_dim) let q = q.transpose(1, 2)?; let k = k.transpose(1, 2)?; let v = v.transpose(1, 2)?; let softmax_scale = 1f32 / (self.head_dim as f32).sqrt(); flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?.transpose(1, 2)? } else { let in_dtype = q.dtype(); let q = q.to_dtype(DType::F32)?; let k = k.to_dtype(DType::F32)?; let v = v.to_dtype(DType::F32)?; let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; let att = if seq_len == 1 { att } else { let mask = cache.mask(seq_len)?.broadcast_as(att.shape())?; masked_fill(&att, &mask, f32::NEG_INFINITY)? }; let att = candle_nn::ops::softmax(&att, D::Minus1)?; // Convert to contiguous as matmul doesn't support strided vs for now. att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)? }; let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?; let y = self.o_proj.forward(&y)?; Ok(y) } fn repeat_kv(&self, x: Tensor) -> Result { crate::utils::repeat_kv(x, self.num_attention_heads / self.num_key_value_heads) } fn load(vb: VarBuilder, cfg: &Config) -> Result { let span = tracing::span!(tracing::Level::TRACE, "attn"); let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot"); let size_in = cfg.hidden_size; let size_q = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_attention_heads; let size_kv = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_key_value_heads; let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?; let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?; let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?; let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, num_attention_heads: cfg.num_attention_heads, num_key_value_heads: cfg.num_key_value_heads, head_dim: cfg.hidden_size / cfg.num_attention_heads, use_flash_attn: cfg.use_flash_attn, span, span_rot, max_position_embeddings: cfg.max_position_embeddings, }) } } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } #[derive(Debug, Clone)] struct Mlp { c_fc1: Linear, c_fc2: Linear, c_proj: Linear, span: tracing::Span, } impl Mlp { fn forward(&self, x: &Tensor) -> Result { let _enter = self.span.enter(); let x = (candle_nn::ops::silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?; self.c_proj.forward(&x) } fn load(vb: VarBuilder, cfg: &Config) -> Result { let span = tracing::span!(tracing::Level::TRACE, "mlp"); let h_size = cfg.hidden_size; let i_size = cfg.intermediate_size; let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?; let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?; let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?; Ok(Self { c_fc1, c_fc2, c_proj, span, }) } } #[derive(Debug, Clone)] struct Block { rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp, span: tracing::Span, } impl Block { fn forward( &self, x: &Tensor, index_pos: usize, block_idx: usize, cache: &mut Cache, ) -> Result { let _enter = self.span.enter(); let residual = x; let x = self.rms_1.forward(x)?; let x = (self.attn.forward(&x, index_pos, block_idx, cache)? + residual)?; let residual = &x; let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?; Ok(x) } fn load(vb: VarBuilder, cfg: &Config) -> Result { let span = tracing::span!(tracing::Level::TRACE, "block"); let attn = CausalSelfAttention::load(vb.pp("self_attn"), cfg)?; let mlp = Mlp::load(vb.pp("mlp"), cfg)?; let rms_1 = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?; let rms_2 = RmsNorm::new( cfg.hidden_size, cfg.rms_norm_eps, vb.pp("post_attention_layernorm"), )?; Ok(Self { rms_1, attn, rms_2, mlp, span, }) } } #[derive(Debug, Clone)] pub struct Granite { wte: Embedding, blocks: Vec, ln_f: RmsNorm, lm_head: Linear, } impl Granite { pub fn forward(&self, x: &Tensor, index_pos: usize, cache: &mut Cache) -> Result { let (_b_sz, seq_len) = x.dims2()?; let mut x = self.wte.forward(x)?; for (block_idx, block) in self.blocks.iter().enumerate() { x = block.forward(&x, index_pos, block_idx, cache)?; } let x = self.ln_f.forward(&x)?; let x = x.i((.., seq_len - 1, ..))?.contiguous()?; let logits = self.lm_head.forward(&x)?; logits.to_dtype(DType::F32) } pub fn load(vb: VarBuilder, cfg: &Config) -> Result { let wte = embedding(cfg.vocab_size, cfg.hidden_size, vb.pp("model.embed_tokens"))?; let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; let ln_f = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("model.norm"))?; let blocks: Vec<_> = (0..cfg.num_hidden_layers) .map(|i| Block::load(vb.pp(format!("model.layers.{i}")), cfg).unwrap()) .collect(); Ok(Self { wte, blocks, ln_f, lm_head, }) } }