//! Llama2 inference implementation. //! //! See ["LLaMA 2: Open Foundation and Fine-Tuned Chat Models"](https://arxiv.org/abs/2307.09288) //! //! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/lmz/candle-llama2) //! - 💻 llama2.c [GH Link](https://github.com/karpathy/llama2.c) //! use candle::{DType, Device, IndexOp, Result, Tensor, D}; use candle_nn::linear_no_bias as linear; use candle_nn::{embedding, rms_norm, Embedding, Linear, Module, RmsNorm, VarBuilder}; use std::collections::HashMap; #[derive(Debug, Clone)] pub struct Config { pub dim: usize, // transformer dimension pub hidden_dim: usize, // for ffn layers pub n_layers: usize, // number of layers pub n_heads: usize, // number of query heads pub n_kv_heads: usize, // number of key/value heads (can be < query heads because of multiquery) pub vocab_size: usize, // vocabulary size, usually 256 (byte-level) pub seq_len: usize, // max sequence length pub norm_eps: f64, } impl Config { pub fn tiny_260k() -> Self { Self { dim: 64, hidden_dim: 768, n_layers: 5, n_heads: 8, n_kv_heads: 4, vocab_size: 32000, seq_len: 512, norm_eps: 1e-5, } } pub fn tiny_15m() -> Self { Self { dim: 288, hidden_dim: 768, n_layers: 6, n_heads: 6, n_kv_heads: 6, vocab_size: 32000, seq_len: 256, norm_eps: 1e-5, } } pub fn tiny_42m() -> Self { Self { dim: 512, hidden_dim: 768, n_layers: 8, n_heads: 8, n_kv_heads: 8, vocab_size: 32000, seq_len: 1024, norm_eps: 1e-5, } } pub fn tiny_110m() -> Self { Self { dim: 768, hidden_dim: 768, n_layers: 12, n_heads: 12, n_kv_heads: 12, vocab_size: 32000, seq_len: 1024, norm_eps: 1e-5, } } } #[derive(Debug, Clone)] pub struct Cache { masks: HashMap, pub use_kv_cache: bool, pub kvs: Vec>, pub cos: Tensor, pub sin: Tensor, device: Device, } impl Cache { pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result { let n_elem = cfg.dim / cfg.n_heads; let theta: Vec<_> = (0..n_elem) .step_by(2) .map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32)) .collect(); let theta = Tensor::new(theta.as_slice(), vb.device())?; let idx_theta = Tensor::arange(0, cfg.seq_len as u32, vb.device())? .to_dtype(DType::F32)? .reshape((cfg.seq_len, 1))? .matmul(&theta.reshape((1, theta.elem_count()))?)?; let precomputed_cos = idx_theta.cos()?; let precomputed_sin = idx_theta.sin()?; let freq_cis_real = vb .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real") .unwrap_or(precomputed_cos); let freq_cis_imag = vb .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag") .unwrap_or(precomputed_sin); let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; Ok(Self { masks: HashMap::new(), use_kv_cache, kvs: vec![None; cfg.n_layers], cos, sin, device: vb.device().clone(), }) } pub fn mask(&mut self, t: usize) -> Result { if let Some(mask) = self.masks.get(&t) { Ok(mask.clone()) } else { let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), &self.device)?; self.masks.insert(t, mask.clone()); Ok(mask) } } } fn silu(xs: &Tensor) -> Result { xs / (xs.neg()?.exp()? + 1.0)? } #[derive(Debug, Clone)] struct CausalSelfAttention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, n_head: usize, n_key_value_head: usize, head_dim: usize, } impl CausalSelfAttention { fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize, cache: &Cache) -> Result { let (b_sz, seq_len, h, n_embd) = x.dims4()?; let cos = cache.cos.i(index_pos..index_pos + seq_len)?; let sin = cache.sin.i(index_pos..index_pos + seq_len)?; let cos = cos.unsqueeze(1)?; let sin = sin.unsqueeze(1)?; let cos = cos.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?; let sin = sin.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?; let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?; let x0 = x.narrow(D::Minus1, 0, 1)?; let x1 = x.narrow(D::Minus1, 1, 1)?; let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?; let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?; let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?; Ok(rope) } fn forward( &self, x: &Tensor, index_pos: usize, block_idx: usize, cache: &mut Cache, ) -> Result { let (b_sz, seq_len, n_embd) = x.dims3()?; let q = self.q_proj.forward(x)?; let k = self.k_proj.forward(x)?; let v = self.v_proj.forward(x)?; let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?; let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?; let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?; let q = self.apply_rotary_emb(&q, index_pos, cache)?; let mut k = self.apply_rotary_emb(&k, index_pos, cache)?; if cache.use_kv_cache { if let Some((cache_k, cache_v)) = &cache.kvs[block_idx] { k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?; v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?; } cache.kvs[block_idx] = Some((k.clone(), v.clone())) } let k = self.repeat_kv(k)?; let v = self.repeat_kv(v)?; let q = q.transpose(1, 2)?.contiguous()?; let k = k.transpose(1, 2)?.contiguous()?; let v = v.transpose(1, 2)?.contiguous()?; let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; let att = if seq_len <= 1 { att } else { let mask = cache.mask(seq_len)?.broadcast_as(att.shape())?; masked_fill(&att, &mask, f32::NEG_INFINITY)? }; let att = candle_nn::ops::softmax(&att, D::Minus1)?; // Convert to contiguous as matmul doesn't support strided vs for now. let y = att.matmul(&v.contiguous()?)?; let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; let y = self.o_proj.forward(&y)?; Ok(y) } fn repeat_kv(&self, x: Tensor) -> Result { let n_rep = self.n_head / self.n_key_value_head; if n_rep == 1 { Ok(x) } else { let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?; let x = x .unsqueeze(3)? .expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))? .reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?; Ok(x) } } fn load(vb: VarBuilder, cfg: &Config) -> Result { let size_in = cfg.dim; let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads; let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads; let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?; let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?; let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?; let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, n_head: cfg.n_heads, n_key_value_head: cfg.n_kv_heads, head_dim: cfg.dim / cfg.n_heads, }) } } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } #[derive(Debug, Clone)] struct Mlp { c_fc1: Linear, c_fc2: Linear, c_proj: Linear, } impl Mlp { fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self { Self { c_fc1, c_fc2, c_proj, } } fn forward(&self, x: &Tensor) -> Result { let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?; self.c_proj.forward(&x) } fn load(vb: VarBuilder, cfg: &Config) -> Result { let h_size = cfg.dim; let i_size = cfg.hidden_dim; let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?; let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?; let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?; Ok(Self::new(c_fc1, c_fc2, c_proj)) } } #[derive(Debug, Clone)] struct Block { rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp, } impl Block { fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self { Self { rms_1, attn, rms_2, mlp, } } fn forward( &self, x: &Tensor, index_pos: usize, block_idx: usize, cache: &mut Cache, ) -> Result { let residual = x; let x = self.rms_1.forward(x)?; let x = (self.attn.forward(&x, index_pos, block_idx, cache)? + residual)?; let residual = &x; let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?; Ok(x) } fn load(vb: VarBuilder, cfg: &Config) -> Result { let attn = CausalSelfAttention::load(vb.pp("self_attn"), cfg)?; let mlp = Mlp::load(vb.pp("mlp"), cfg)?; let input_layernorm = rms_norm(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?; let post_attention_layernorm = rms_norm(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?; Ok(Self::new( input_layernorm, attn, post_attention_layernorm, mlp, )) } } #[derive(Debug, Clone)] pub struct Llama { wte: Embedding, blocks: Vec, ln_f: RmsNorm, lm_head: Linear, pub config: Config, } impl Llama { pub fn forward(&self, x: &Tensor, index_pos: usize, cache: &mut Cache) -> Result { let (_b_sz, _seq_len) = x.dims2()?; let mut x = self.wte.forward(x)?; for (block_idx, block) in self.blocks.iter().enumerate() { x = block.forward(&x, index_pos, block_idx, cache)?; } let x = self.ln_f.forward(&x)?; let logits = self.lm_head.forward(&x)?; logits.to_dtype(DType::F32) } pub fn load(vb: VarBuilder, cfg: Config) -> Result { let wte = embedding(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?; let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?; let ln_f = rms_norm(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?; let blocks: Vec<_> = (0..cfg.n_layers) .map(|i| Block::load(vb.pp(format!("model.layers.{i}")), &cfg).unwrap()) .collect(); Ok(Self { wte, blocks, ln_f, lm_head, config: cfg, }) } }