//! Microsoft Phi model implementation //! //! The Phi series are decoder-only transformers designed for code and language tasks. //! //! Key characteristics: //! - Decoder-only transformer architecture //! - RoPE embeddings //! - Layer normalization //! - QK normalization //! //! - ⚡ [Interactive Wasm Example](https://huggingface.co/spaces/radames/Candle-phi1-phi2-wasm-demo) //! - 🤗 [HF Link](https://huggingface.co/microsoft/phi-2) //! use crate::models::with_tracing::{layer_norm, linear, Embedding, LayerNorm, Linear}; /// Phi model. /// https://huggingface.co/microsoft/phi-2 /// There is an alternative implementation of the phi model in mixformers.rs. /// This corresponds to the model update made with the following commit: /// https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869 use candle::{DType, Device, IndexOp, Module, Result, Tensor, D}; use candle_nn::{Activation, VarBuilder}; use serde::Deserialize; // https://huggingface.co/microsoft/phi-2/blob/main/configuration_phi.py #[derive(Debug, Clone, PartialEq, Deserialize)] pub struct Config { pub(crate) vocab_size: usize, pub(crate) hidden_size: usize, pub(crate) intermediate_size: usize, pub(crate) num_hidden_layers: usize, pub(crate) num_attention_heads: usize, pub(crate) num_key_value_heads: Option, pub(crate) hidden_act: Activation, pub(crate) max_position_embeddings: usize, pub(crate) layer_norm_eps: f64, pub(crate) tie_word_embeddings: bool, pub(crate) rope_theta: f32, pub(crate) partial_rotary_factor: f64, pub(crate) qk_layernorm: bool, } impl Config { fn num_key_value_heads(&self) -> usize { self.num_key_value_heads.unwrap_or(self.num_attention_heads) } fn head_dim(&self) -> usize { self.hidden_size / self.num_attention_heads } } #[derive(Debug, Clone)] struct RotaryEmbedding { dim: usize, sin: Tensor, cos: Tensor, } impl RotaryEmbedding { fn new(cfg: &Config, dev: &Device) -> Result { let dim = (cfg.partial_rotary_factor * cfg.head_dim() as f64) as usize; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / dim as f32)) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?; let t = Tensor::arange(0u32, cfg.max_position_embeddings as u32, dev)? .to_dtype(DType::F32)? .reshape((cfg.max_position_embeddings, 1))?; let freqs = t.matmul(&inv_freq)?; Ok(Self { dim, sin: freqs.sin()?, cos: freqs.cos()?, }) } fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offset: usize) -> Result { let (_b_size, _num_heads, seq_len, _headdim) = xs.dims4()?; let xs_rot = xs.i((.., .., .., ..self.dim))?.contiguous()?; let xs_pass = xs.i((.., .., .., self.dim..))?; let c = self.cos.narrow(0, seqlen_offset, seq_len)?; let s = self.sin.narrow(0, seqlen_offset, seq_len)?; let xs_rot = candle_nn::rotary_emb::rope(&xs_rot, &c, &s)?; Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1) } } #[derive(Debug, Clone)] #[allow(clippy::upper_case_acronyms)] struct MLP { fc1: Linear, fc2: Linear, act: Activation, } impl MLP { fn new(cfg: &Config, vb: VarBuilder) -> Result { let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?; let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?; Ok(Self { fc1, fc2, // This does not match the mixformers implementation where Gelu is used rather than // GeluNew. act: cfg.hidden_act, }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result { xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2) } } #[derive(Clone)] struct Attention { q_proj: Linear, k_proj: Linear, v_proj: Linear, dense: Linear, kv_cache: Option<(Tensor, Tensor)>, q_layernorm: Option, k_layernorm: Option, rotary_emb: RotaryEmbedding, softmax_scale: f64, num_heads: usize, num_kv_heads: usize, head_dim: usize, span: tracing::Span, } fn get_mask(size: usize, device: &Device) -> Result { let mask: Vec<_> = (0..size) .flat_map(|i| (0..size).map(move |j| u8::from(j > i))) .collect(); Tensor::from_slice(&mask, (size, size), device) } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } impl Attention { fn new(cfg: &Config, vb: VarBuilder) -> Result { let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads(); let head_dim = cfg.head_dim(); let q_proj = linear(cfg.hidden_size, num_heads * head_dim, vb.pp("q_proj"))?; let k_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("k_proj"))?; let v_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("v_proj"))?; let dense = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("dense"))?; // Alternative rope scalings are not supported. let rotary_emb = RotaryEmbedding::new(cfg, vb.device())?; let (q_layernorm, k_layernorm) = if cfg.qk_layernorm { let q_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("q_layernorm"))?; let k_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("k_layernorm"))?; (Some(q_layernorm), Some(k_layernorm)) } else { (None, None) }; let softmax_scale = 1f64 / (head_dim as f64).sqrt(); Ok(Self { q_proj, k_proj, v_proj, dense, kv_cache: None, q_layernorm, k_layernorm, rotary_emb, softmax_scale, num_heads, num_kv_heads, head_dim, span: tracing::span!(tracing::Level::TRACE, "attention"), }) } fn repeat_kv(&self, xs: Tensor) -> Result { crate::utils::repeat_kv(xs, self.num_heads / self.num_kv_heads) } fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result { let _enter = self.span.enter(); let (b_size, seq_len, _n_embd) = xs.dims3()?; let query_states = self.q_proj.forward(xs)?; let key_states = self.k_proj.forward(xs)?; let value_states = self.v_proj.forward(xs)?; let query_states = match &self.q_layernorm { None => query_states, Some(ln) => query_states.apply(ln)?, }; let key_states = match &self.k_layernorm { None => key_states, Some(ln) => key_states.apply(ln)?, }; let query_states = query_states .reshape((b_size, seq_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; // Rotary embeddings. let seqlen_offset = match &self.kv_cache { None => 0, Some((prev_k, _)) => prev_k.dim(2)?, }; let query_states = self .rotary_emb .apply_rotary_emb(&query_states, seqlen_offset)?; let key_states = self .rotary_emb .apply_rotary_emb(&key_states, seqlen_offset)?; // KV cache. let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let k = Tensor::cat(&[prev_k, &key_states], 2)?; let v = Tensor::cat(&[prev_v, &value_states], 2)?; (k, v) } }; self.kv_cache = Some((key_states.clone(), value_states.clone())); // Repeat kv. let key_states = self.repeat_kv(key_states)?.contiguous()?; let value_states = self.repeat_kv(value_states)?.contiguous()?; let attn_weights = (query_states .to_dtype(DType::F32)? .contiguous()? .matmul(&key_states.to_dtype(DType::F32)?.t()?)? * self.softmax_scale)?; let attn_weights = match mask { None => attn_weights, Some(mask) => masked_fill( &attn_weights, &mask.broadcast_left((b_size, self.num_heads))?, f32::NEG_INFINITY, )?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?.to_dtype(value_states.dtype())?; let attn_output = attn_weights.matmul(&value_states)?; let attn_output = attn_output .transpose(1, 2)? .reshape((b_size, seq_len, ()))?; attn_output.apply(&self.dense) } fn clear_kv_cache(&mut self) { self.kv_cache = None } } #[derive(Clone)] struct DecoderLayer { self_attn: Attention, mlp: MLP, input_layernorm: LayerNorm, span: tracing::Span, } impl DecoderLayer { fn new(cfg: &Config, vb: VarBuilder) -> Result { let self_attn = Attention::new(cfg, vb.pp("self_attn"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?; let input_layernorm = layer_norm( cfg.hidden_size, cfg.layer_norm_eps, vb.pp("input_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, span: tracing::span!(tracing::Level::TRACE, "block"), }) } fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result { let _enter = self.span.enter(); let residual = xs; let xs = xs.apply(&self.input_layernorm)?; let attn_outputs = self.self_attn.forward(&xs, mask)?; let feed_forward_hidden_states = self.mlp.forward(&xs)?; attn_outputs + feed_forward_hidden_states + residual } fn clear_kv_cache(&mut self) { self.self_attn.clear_kv_cache() } } #[derive(Clone)] pub struct Model { embed_tokens: Embedding, layers: Vec, final_layernorm: LayerNorm, lm_head: Linear, span: tracing::Span, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result { let vb_m = vb.pp("model"); let embed_tokens = Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let final_layernorm = layer_norm( cfg.hidden_size, cfg.layer_norm_eps, vb_m.pp("final_layernorm"), )?; let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_m = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(cfg, vb_m.pp(layer_idx))?; layers.push(layer) } let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; Ok(Self { embed_tokens, layers, final_layernorm, lm_head, span: tracing::span!(tracing::Level::TRACE, "model"), }) } pub fn forward(&mut self, xs: &Tensor) -> Result { let _enter = self.span.enter(); let (_b_size, seq_len) = xs.dims2()?; let mut xs = xs.apply(&self.embed_tokens)?; let mask = if seq_len <= 1 { None } else { Some(get_mask(seq_len, xs.device())?) }; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, mask.as_ref())?; } xs.apply(&self.final_layernorm)? .narrow(1, seq_len - 1, 1)? .apply(&self.lm_head)? .squeeze(1) } pub fn clear_kv_cache(&mut self) { self.layers.iter_mut().for_each(|b| b.clear_kv_cache()) } }