//! Microsoft Phi-3 model implementation //! //! See Phi model details at: //! - [Phi-3 Model](https://huggingface.co/microsoft/phi-3) //! //! The Phi series are decoder-only transformers designed for code and language tasks. //! Key characteristics: //! - Decoder-only transformer architecture //! - RoPE embeddings //! - Layer normalization //! - QK normalization //! - Mixed activation functions //! - Improved context window handling //! //! References: //! - [Hugging Face Implementation](https://huggingface.co/microsoft/phi-3) //! - [Alternative Implementation](https://huggingface.co/microsoft/phi-3/tree/main) //! // This implementation is based on: // https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py use crate::models::with_tracing::{linear_no_bias as linear, Linear, RmsNorm}; use candle::{DType, Device, Module, Result, Tensor, D}; use candle_nn::VarBuilder; use std::sync::Arc; // https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/config.json #[derive(Debug, Clone, serde::Deserialize)] pub struct Config { pub vocab_size: usize, pub hidden_act: candle_nn::Activation, pub hidden_size: usize, pub intermediate_size: usize, pub num_hidden_layers: usize, pub num_attention_heads: usize, pub num_key_value_heads: usize, pub rms_norm_eps: f64, pub rope_theta: f64, pub bos_token_id: Option, pub eos_token_id: Option, pub rope_scaling: Option, pub max_position_embeddings: usize, } impl Config { pub fn head_dim(&self) -> usize { self.hidden_size / self.num_attention_heads } } #[derive(Debug, Clone)] pub struct RotaryEmbedding { sin: Tensor, cos: Tensor, } impl RotaryEmbedding { pub fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result { let dim = cfg.head_dim(); let max_seq_len = cfg.max_position_embeddings; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; let t = Tensor::arange(0u32, max_seq_len as u32, dev)? .to_dtype(dtype)? .reshape((max_seq_len, 1))?; let freqs = t.matmul(&inv_freq)?; Ok(Self { sin: freqs.sin()?, cos: freqs.cos()?, }) } pub fn apply_rotary_emb_qkv( &self, q: &Tensor, k: &Tensor, seqlen_offset: usize, ) -> Result<(Tensor, Tensor)> { let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?; let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?; Ok((q_embed, k_embed)) } } #[derive(Debug, Clone)] struct Attention { qkv_proj: Linear, o_proj: Linear, num_heads: usize, num_kv_heads: usize, num_kv_groups: usize, head_dim: usize, rotary_emb: Arc, kv_cache: Option<(Tensor, Tensor)>, } impl Attention { fn new(rotary_emb: Arc, cfg: &Config, vb: VarBuilder) -> Result { let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads; let head_dim = cfg.head_dim(); let op_size = num_heads * head_dim + 2 * num_kv_heads * head_dim; let qkv_proj = linear(cfg.hidden_size, op_size, vb.pp("qkv_proj"))?; let o_proj = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("o_proj"))?; Ok(Self { qkv_proj, o_proj, rotary_emb, kv_cache: None, num_heads, num_kv_heads, num_kv_groups: num_heads / num_kv_heads, head_dim, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let (b_sz, q_len, _) = xs.dims3()?; let qkv = self.qkv_proj.forward(xs)?; let query_pos = self.num_heads * self.head_dim; let query_states = qkv.narrow(D::Minus1, 0, query_pos)?; let key_states = qkv.narrow(D::Minus1, query_pos, self.num_kv_heads * self.head_dim)?; let value_states = qkv.narrow( D::Minus1, query_pos + self.num_kv_heads * self.head_dim, self.num_kv_heads * self.head_dim, )?; let query_states = query_states .reshape((b_sz, q_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let (query_states, key_states) = self.rotary_emb .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?; let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let key_states = Tensor::cat(&[prev_k, &key_states], 2)?; let value_states = Tensor::cat(&[prev_v, &value_states], 2)?; (key_states, value_states) } }; self.kv_cache = Some((key_states.clone(), value_states.clone())); let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?; let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?; let attn_output = { let scale = 1f64 / f64::sqrt(self.head_dim as f64); let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; let attn_weights = match attention_mask { None => attn_weights, Some(mask) => attn_weights.broadcast_add(mask)?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; attn_weights.matmul(&value_states)? }; attn_output .transpose(1, 2)? .reshape((b_sz, q_len, ()))? .apply(&self.o_proj) } fn clear_kv_cache(&mut self) { self.kv_cache = None } } #[derive(Debug, Clone)] struct Mlp { gate_up_proj: Linear, down_proj: Linear, act_fn: candle_nn::Activation, i_size: usize, } impl Mlp { fn new(cfg: &Config, vb: VarBuilder) -> Result { let hidden_size = cfg.hidden_size; let i_size = cfg.intermediate_size; let gate_up_proj = linear(hidden_size, 2 * i_size, vb.pp("gate_up_proj"))?; let down_proj = linear(i_size, hidden_size, vb.pp("down_proj"))?; Ok(Self { gate_up_proj, down_proj, act_fn: cfg.hidden_act, i_size, }) } } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result { let up_states = xs.apply(&self.gate_up_proj)?; let gate = up_states.narrow(D::Minus1, 0, self.i_size)?; let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?; let up_states = (up_states * gate.apply(&self.act_fn))?; up_states.apply(&self.down_proj) } } #[derive(Debug, Clone)] struct DecoderLayer { self_attn: Attention, mlp: Mlp, input_layernorm: RmsNorm, post_attention_layernorm: RmsNorm, } impl DecoderLayer { fn new(rotary_emb: Arc, cfg: &Config, vb: VarBuilder) -> Result { let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?; let mlp = Mlp::new(cfg, vb.pp("mlp"))?; let input_layernorm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?; let post_attention_layernorm = RmsNorm::new( cfg.hidden_size, cfg.rms_norm_eps, vb.pp("post_attention_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, post_attention_layernorm, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let residual = xs; let xs = self.input_layernorm.forward(xs)?; let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?; let xs = (xs + residual)?; let residual = &xs; let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; residual + xs } fn clear_kv_cache(&mut self) { self.self_attn.clear_kv_cache() } } #[derive(Debug, Clone)] pub struct Model { embed_tokens: candle_nn::Embedding, layers: Vec, norm: RmsNorm, lm_head: Linear, device: Device, dtype: DType, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result { let vb_m = vb.pp("model"); let embed_tokens = candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_l = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?; let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; Ok(Self { embed_tokens, layers, norm, lm_head, device: vb.device().clone(), dtype: vb.dtype(), }) } fn prepare_decoder_attention_mask( &self, b_size: usize, tgt_len: usize, seqlen_offset: usize, ) -> Result { let mask: Vec<_> = (0..tgt_len) .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. })) .collect(); let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?; let mask = if seqlen_offset > 0 { let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?; Tensor::cat(&[&mask0, &mask], D::Minus1)? } else { mask }; mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))? .to_dtype(self.dtype) } pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result { let (b_size, seq_len) = input_ids.dims2()?; let attention_mask = if seq_len <= 1 { None } else { let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?; Some(mask) }; let mut xs = self.embed_tokens.forward(input_ids)?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm)? .apply(&self.lm_head) } pub fn clear_kv_cache(&mut self) { for layer in self.layers.iter_mut() { layer.clear_kv_cache() } } }