//! Qwen2 model implementation with quantization support. //! //! Qwen2 is a chat-optimized language model that supports 8-bit quantization //! for reduced memory usage and faster inference. //! //! Key characteristics: //! - Group Query Attention (GQA) //! - RMSNorm for layer normalization //! - Rotary positional embeddings (RoPE) //! - Support for 8-bit quantization //! //! References: //! - [Model Card](https://huggingface.co/Qwen/Qwen2) //! use crate::{quantized_nn::RmsNorm, utils::repeat_kv}; use candle::{ quantized::{gguf_file, QMatMul}, DType, Device, IndexOp, Result, Tensor, }; use candle_nn::{Embedding, Module}; use std::collections::HashMap; #[derive(Debug, Clone)] struct Mlp { feed_forward_w1: QMatMul, feed_forward_w2: QMatMul, feed_forward_w3: QMatMul, } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result { let w1 = self.feed_forward_w1.forward(xs)?; let w3 = self.feed_forward_w3.forward(xs)?; self.feed_forward_w2 .forward(&(candle_nn::ops::silu(&w1)? * w3)?) } } #[derive(Debug, Clone)] struct LayerWeights { attention_wq: QMatMul, attention_wk: QMatMul, attention_wv: QMatMul, attention_bq: Tensor, attention_bk: Tensor, attention_bv: Tensor, attention_wo: QMatMul, attention_norm: RmsNorm, mlp: Mlp, ffn_norm: RmsNorm, n_head: usize, n_kv_head: usize, head_dim: usize, cos: Tensor, sin: Tensor, neg_inf: Tensor, kv_cache: Option<(Tensor, Tensor)>, span_attn: tracing::Span, span_rot: tracing::Span, span_mlp: tracing::Span, } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result { let shape = mask.shape(); let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?; Ok(m) } impl LayerWeights { fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result { let _enter = self.span_rot.enter(); let (_b_sz, _n_head, seq_len, _n_embd) = x.dims4()?; let cos = self.cos.narrow(0, index_pos, seq_len)?; let sin = self.sin.narrow(0, index_pos, seq_len)?; candle_nn::rotary_emb::rope(&x.contiguous()?, &cos, &sin) } fn forward_attn( &mut self, x: &Tensor, mask: Option<&Tensor>, index_pos: usize, ) -> Result { let _enter = self.span_attn.enter(); let (b_sz, seq_len, n_embd) = x.dims3()?; let q = self.attention_wq.forward(x)?; let k = self.attention_wk.forward(x)?; let v = self.attention_wv.forward(x)?; let q = q.broadcast_add(&self.attention_bq)?; let k = k.broadcast_add(&self.attention_bk)?; let v = v.broadcast_add(&self.attention_bv)?; let q = q .reshape((b_sz, seq_len, self.n_head, self.head_dim))? .transpose(1, 2)? .contiguous()?; let k = k .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))? .transpose(1, 2)? .contiguous()?; let v = v .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))? .transpose(1, 2)? .contiguous()?; // let (q, k) = self // .rotary_embedding // .apply_rotary_emb_qkv(&q, &k, index_pos)?; let q = self.apply_rotary_emb(&q, index_pos)?; let k = self.apply_rotary_emb(&k, index_pos)?; let (k, v) = match &self.kv_cache { None => (k, v), Some((k_cache, v_cache)) => { if index_pos == 0 { (k, v) } else { let k = Tensor::cat(&[k_cache, &k], 2)?; let v = Tensor::cat(&[v_cache, &v], 2)?; (k, v) } } }; self.kv_cache = Some((k.clone(), v.clone())); // Support for MQA, useful for 70B models and mistral. let k = repeat_kv(k, self.n_head / self.n_kv_head)?; let v = repeat_kv(v, self.n_head / self.n_kv_head)?; let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; let att = match mask { None => att, Some(mask) => { let mask = mask.broadcast_as(att.shape())?; masked_fill(&att, &mask, &self.neg_inf)? } }; let att = candle_nn::ops::softmax_last_dim(&att)?; // Convert to contiguous as matmul doesn't support strided vs for now. let y = att.matmul(&v.contiguous()?)?; let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; let y = self.attention_wo.forward(&y)?; Ok(y) } } pub struct ModelWeights { tok_embeddings: Embedding, layers: Vec, norm: RmsNorm, output: QMatMul, masks: HashMap, span: tracing::Span, span_output: tracing::Span, } fn precomput_freqs_cis( head_dim: usize, freq_base: f32, context_length: usize, device: &Device, ) -> Result<(Tensor, Tensor)> { let theta: Vec<_> = (0..head_dim) .step_by(2) .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32)) .collect(); let theta = Tensor::new(theta.as_slice(), device)?; let idx_theta = Tensor::arange(0, context_length as u32, device)? .to_dtype(DType::F32)? .reshape((context_length, 1))? .matmul(&theta.reshape((1, theta.elem_count()))?)?; let cos = idx_theta.cos()?; let sin = idx_theta.sin()?; Ok((cos, sin)) } impl ModelWeights { pub fn from_gguf( ct: gguf_file::Content, reader: &mut R, device: &Device, ) -> Result { let md_get = |s: &str| match ct.metadata.get(s) { None => candle::bail!("cannot find {s} in metadata"), Some(v) => Ok(v), }; let head_count = md_get("qwen2.attention.head_count")?.to_u32()? as usize; let head_count_kv = md_get("qwen2.attention.head_count_kv")?.to_u32()? as usize; let embedding_length = md_get("qwen2.embedding_length")?.to_u32()? as usize; let context_length = md_get("qwen2.context_length")?.to_u32()? as usize; let block_count = md_get("qwen2.block_count")?.to_u32()? as usize; let rms_norm_eps = md_get("qwen2.attention.layer_norm_rms_epsilon")?.to_f32()? as f64; let rope_freq_base = md_get("qwen2.rope.freq_base") .and_then(|m| m.to_f32()) .unwrap_or(10000f32); let head_dim = embedding_length / head_count; let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?; let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?; let tok_embeddings = tok_embeddings.dequantize(device)?; let norm = RmsNorm::from_qtensor( ct.tensor(reader, "output_norm.weight", device)?, rms_norm_eps, )?; let output = match ct.tensor(reader, "output.weight", device) { Ok(v) => QMatMul::from_qtensor(v)?, _ => { // use tie_word_embeddings QMatMul::from_qtensor(ct.tensor(reader, "token_embd.weight", device)?)? } }; let (cos, sin) = precomput_freqs_cis(head_dim, rope_freq_base, context_length, device)?; let mut layers = Vec::with_capacity(block_count); for layer_idx in 0..block_count { let prefix = format!("blk.{layer_idx}"); let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"), device)?; let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"), device)?; let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"), device)?; let attention_bq = ct.tensor(reader, &format!("{prefix}.attn_q.bias"), device)?; let attention_bk = ct.tensor(reader, &format!("{prefix}.attn_k.bias"), device)?; let attention_bv = ct.tensor(reader, &format!("{prefix}.attn_v.bias"), device)?; let attention_wo = ct.tensor(reader, &format!("{prefix}.attn_output.weight"), device)?; let mlp = { let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?; let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?; let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?; Mlp { feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?, feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?, feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?, } }; let attention_norm = ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?; let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?; let span_attn = tracing::span!(tracing::Level::TRACE, "attn"); let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot"); let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp"); layers.push(LayerWeights { attention_wq: QMatMul::from_qtensor(attention_wq)?, attention_wk: QMatMul::from_qtensor(attention_wk)?, attention_wv: QMatMul::from_qtensor(attention_wv)?, attention_bq: attention_bq.dequantize(device)?, attention_bk: attention_bk.dequantize(device)?, attention_bv: attention_bv.dequantize(device)?, attention_wo: QMatMul::from_qtensor(attention_wo)?, attention_norm: RmsNorm::from_qtensor(attention_norm, rms_norm_eps)?, cos: cos.clone(), sin: sin.clone(), mlp, ffn_norm: RmsNorm::from_qtensor(ffn_norm, rms_norm_eps)?, n_head: head_count, n_kv_head: head_count_kv, head_dim, neg_inf: neg_inf.clone(), kv_cache: None, span_attn, span_rot, span_mlp, }); } let span = tracing::span!(tracing::Level::TRACE, "model"); let span_output = tracing::span!(tracing::Level::TRACE, "output"); Ok(Self { tok_embeddings: Embedding::new(tok_embeddings, embedding_length), layers, norm, output, masks: HashMap::new(), span, span_output, }) } fn mask(&mut self, t: usize, device: &Device) -> Result { if let Some(mask) = self.masks.get(&t) { Ok(mask.clone()) } else { let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), device)?; self.masks.insert(t, mask.clone()); Ok(mask) } } pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result { let (_b_sz, seq_len) = x.dims2()?; let mask = if seq_len == 1 { None } else { Some(self.mask(seq_len, x.device())?) }; let _enter = self.span.enter(); let mut layer_in = self.tok_embeddings.forward(x)?; for layer in self.layers.iter_mut() { let x = layer_in; let residual = &x; let x = layer.attention_norm.forward(&x)?; let attn = layer.forward_attn(&x, mask.as_ref(), index_pos)?; let x = (attn + residual)?; // MLP let _enter = layer.span_mlp.enter(); let residual = &x; let x = layer.ffn_norm.forward(&x)?; let x = layer.mlp.forward(&x)?; let x = (x + residual)?; layer_in = x } let x = self.norm.forward(&layer_in)?; let x = x.i((.., seq_len - 1, ..))?; let _enter = self.span_output.enter(); self.output.forward(&x) } }