//! RWKV v5 model implementation with quantization support. //! //! RWKV v5 is an attention-free language model optimized for efficiency. //! This implementation provides quantization for reduced memory and compute. //! //! Key characteristics: //! - Linear attention mechanism //! - GroupNorm layer normalization //! - Time-mixing layers //! - State-based sequential processing //! - Support for 8-bit quantization //! //! References: //! - [RWKV Model](https://github.com/BlinkDL/RWKV-LM) //! - [RWKV v5 Architecture](https://www.rwkv.com/v5) //! use crate::{ quantized_nn::{layer_norm, linear_no_bias as linear, Embedding, Linear}, quantized_var_builder::VarBuilder, }; use candle::{IndexOp, Result, Tensor}; use candle_nn::{GroupNorm, LayerNorm, Module}; pub use crate::models::rwkv_v5::{Config, State, Tokenizer}; #[derive(Debug, Clone)] struct SelfAttention { key: Linear, receptance: Linear, value: Linear, gate: Linear, output: Linear, ln_x: candle_nn::GroupNorm, time_mix_key: Tensor, time_mix_value: Tensor, time_mix_receptance: Tensor, time_decay: Tensor, time_faaaa: Tensor, time_mix_gate: Tensor, layer_id: usize, n_attn_heads: usize, } impl SelfAttention { fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result { let hidden_size = cfg.hidden_size; let attn_hidden_size = cfg.attention_hidden_size; let key = linear(hidden_size, attn_hidden_size, vb.pp("key"))?; let receptance = linear(hidden_size, attn_hidden_size, vb.pp("receptance"))?; let value = linear(hidden_size, attn_hidden_size, vb.pp("value"))?; let gate = linear(hidden_size, attn_hidden_size, vb.pp("gate"))?; let output = linear(attn_hidden_size, hidden_size, vb.pp("output"))?; let vb_x = vb.pp("ln_x"); let ln_x_weight = vb_x.get(hidden_size, "weight")?.dequantize(vb.device())?; let ln_x_bias = vb_x.get(hidden_size, "bias")?.dequantize(vb.device())?; let ln_x = GroupNorm::new( ln_x_weight, ln_x_bias, hidden_size, hidden_size / cfg.head_size, 1e-5, )?; let time_mix_key = vb .get((1, 1, cfg.hidden_size), "time_mix_key")? .dequantize(vb.device())?; let time_mix_value = vb .get((1, 1, cfg.hidden_size), "time_mix_value")? .dequantize(vb.device())?; let time_mix_receptance = vb .get((1, 1, cfg.hidden_size), "time_mix_receptance")? .dequantize(vb.device())?; let n_attn_heads = cfg.hidden_size / cfg.head_size; let time_decay = vb .get((n_attn_heads, cfg.head_size), "time_decay")? .dequantize(vb.device())?; let time_faaaa = vb .get((n_attn_heads, cfg.head_size), "time_faaaa")? .dequantize(vb.device())?; let time_mix_gate = vb .get((1, 1, cfg.hidden_size), "time_mix_gate")? .dequantize(vb.device())?; Ok(Self { key, value, receptance, gate, output, ln_x, time_mix_key, time_mix_value, time_mix_receptance, time_decay, time_faaaa, time_mix_gate, layer_id, n_attn_heads, }) } pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result { let h = self.time_decay.dim(0)?; let (b, t, s) = xs.dims3()?; let s = s / h; let (receptance, key, value, gate) = { // extract key-value let shifted = state.per_layer[self.layer_id].extract_key_value.clone(); let shifted = if shifted.rank() == 2 { shifted.unsqueeze(1)? } else { shifted }; let key = ((xs * &self.time_mix_key)? + &shifted * (1.0 - &self.time_mix_key)?)?; let value = ((xs * &self.time_mix_value)? + &shifted * (1.0 - &self.time_mix_value)?)?; let receptance = ((xs * &self.time_mix_receptance)? + &shifted * (1.0 - &self.time_mix_receptance)?)?; let gate = ((xs * &self.time_mix_gate)? + &shifted * (1.0 - &self.time_mix_gate)?)?; let key = self.key.forward(&key)?; let value = self.value.forward(&value)?; let receptance = self.receptance.forward(&receptance)?; let gate = candle_nn::ops::silu(&self.gate.forward(&gate)?)?; state.per_layer[self.layer_id].extract_key_value = xs.i((.., t - 1))?; (receptance, key, value, gate) }; // linear attention let mut state_ = state.per_layer[self.layer_id].linear_attention.clone(); let key = key.reshape((b, t, h, s))?.permute((0, 2, 3, 1))?; let value = value.reshape((b, t, h, s))?.transpose(1, 2)?; let receptance = receptance.reshape((b, t, h, s))?.transpose(1, 2)?; let time_decay = self .time_decay .exp()? .neg()? .exp()? .reshape(((), 1, 1))? .reshape((self.n_attn_heads, (), 1))?; let time_faaaa = self.time_faaaa .reshape(((), 1, 1))? .reshape((self.n_attn_heads, (), 1))?; let mut out: Vec = Vec::with_capacity(t); for t_ in 0..t { let rt = receptance.i((.., .., t_..t_ + 1))?.contiguous()?; let kt = key.i((.., .., .., t_..t_ + 1))?.contiguous()?; let vt = value.i((.., .., t_..t_ + 1))?.contiguous()?; let at = kt.matmul(&vt)?; let rhs = (time_faaaa.broadcast_mul(&at)? + &state_)?; let out_ = rt.matmul(&rhs)?.squeeze(2)?; state_ = (&at + time_decay.broadcast_mul(&state_))?; out.push(out_) } let out = Tensor::cat(&out, 1)?.reshape((b * t, h * s, 1))?; let out = out.apply(&self.ln_x)?.reshape((b, t, h * s))?; let out = (out * gate)?.apply(&self.output)?; state.per_layer[self.layer_id].linear_attention = state_; Ok(out) } } #[derive(Debug, Clone)] struct FeedForward { time_mix_key: Tensor, time_mix_receptance: Tensor, key: Linear, receptance: Linear, value: Linear, layer_id: usize, } impl FeedForward { fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result { let int_size = cfg .intermediate_size .unwrap_or(((cfg.hidden_size as f64 * 3.5) as usize) / 32 * 32); let key = linear(cfg.hidden_size, int_size, vb.pp("key"))?; let receptance = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("receptance"))?; let value = linear(int_size, cfg.hidden_size, vb.pp("value"))?; let time_mix_key = vb .get((1, 1, cfg.hidden_size), "time_mix_key")? .dequantize(vb.device())?; let time_mix_receptance = vb .get((1, 1, cfg.hidden_size), "time_mix_receptance")? .dequantize(vb.device())?; Ok(Self { key, receptance, value, time_mix_key, time_mix_receptance, layer_id, }) } fn forward(&self, xs: &Tensor, state: &mut State) -> Result { let shifted = &state.per_layer[self.layer_id].feed_forward; let key = (xs.broadcast_mul(&self.time_mix_key)? + shifted.broadcast_mul(&(1.0 - &self.time_mix_key)?)?)?; let receptance = (xs.broadcast_mul(&self.time_mix_receptance)? + shifted.broadcast_mul(&(1.0 - &self.time_mix_receptance)?)?)?; let key = key.apply(&self.key)?.relu()?.sqr()?; let value = key.apply(&self.value)?; let receptance = candle_nn::ops::sigmoid(&receptance.apply(&self.receptance)?)?; state.per_layer[self.layer_id].feed_forward = xs.i((.., xs.dim(1)? - 1))?; let xs = (receptance * value)?; Ok(xs) } } #[derive(Debug, Clone)] struct Block { pre_ln: Option, ln1: LayerNorm, ln2: LayerNorm, attention: SelfAttention, feed_forward: FeedForward, } impl Block { fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result { let ln1 = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("ln1"))?; let ln2 = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("ln2"))?; let pre_ln = if layer_id == 0 { let ln = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("pre_ln"))?; Some(ln) } else { None }; let attention = SelfAttention::new(layer_id, cfg, vb.pp("attention"))?; let feed_forward = FeedForward::new(layer_id, cfg, vb.pp("feed_forward"))?; Ok(Self { pre_ln, ln1, ln2, attention, feed_forward, }) } fn forward(&self, xs: &Tensor, state: &mut State) -> Result { let xs = match self.pre_ln.as_ref() { None => xs.clone(), Some(pre_ln) => xs.apply(pre_ln)?, }; let attention = self.attention.forward(&xs.apply(&self.ln1)?, state)?; let xs = (xs + attention)?; let feed_forward = self.feed_forward.forward(&xs.apply(&self.ln2)?, state)?; let xs = (xs + feed_forward)?; Ok(xs) } } #[derive(Debug, Clone)] pub struct Model { embeddings: Embedding, blocks: Vec, ln_out: LayerNorm, head: Linear, rescale_every: usize, layers_are_rescaled: bool, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result { let vb_m = vb.pp("rwkv"); let embeddings = Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embeddings"))?; let mut blocks = Vec::with_capacity(cfg.num_hidden_layers); let vb_b = vb_m.pp("blocks"); for block_index in 0..cfg.num_hidden_layers { let block = Block::new(block_index, cfg, vb_b.pp(block_index))?; blocks.push(block) } let ln_out = layer_norm(cfg.hidden_size, 1e-5, vb_m.pp("ln_out"))?; let head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("head"))?; Ok(Self { embeddings, blocks, ln_out, head, rescale_every: cfg.rescale_every, layers_are_rescaled: false, // This seem to only happen for the f16/bf16 dtypes. }) } pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result { let (_b_size, _seq_len) = xs.dims2()?; let mut xs = xs.apply(&self.embeddings)?; for (block_idx, block) in self.blocks.iter().enumerate() { xs = block.forward(&xs, state)?; if self.layers_are_rescaled && (block_idx + 1) % self.rescale_every == 0 { xs = (xs / 2.)? } } let xs = xs.apply(&self.ln_out)?.apply(&self.head)?; state.pos += 1; Ok(xs) } }