use crate::models::with_tracing::{linear, linear_no_bias, Linear, RmsNorm}; use candle::{DType, Device, Module, Result, Tensor, D}; use candle_nn::{Activation, VarBuilder}; use std::sync::Arc; #[derive(Debug, Clone, PartialEq, serde::Deserialize)] pub struct Config { pub vocab_size: usize, pub hidden_size: usize, pub intermediate_size: usize, pub num_hidden_layers: usize, pub num_attention_heads: usize, pub num_key_value_heads: usize, pub max_position_embeddings: usize, pub sliding_window: usize, pub max_window_layers: usize, pub tie_word_embeddings: bool, pub rope_theta: f64, pub rms_norm_eps: f64, pub use_sliding_window: bool, pub hidden_act: Activation, pub decoder_sparse_step: usize, pub moe_intermediate_size: usize, pub shared_expert_intermediate_size: usize, pub num_experts_per_tok: usize, pub num_experts: usize, pub norm_topk_prob: bool, } #[derive(Debug, Clone)] struct RotaryEmbedding { sin: Tensor, cos: Tensor, } impl RotaryEmbedding { fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result { let dim = cfg.hidden_size / cfg.num_attention_heads; let max_seq_len = cfg.max_position_embeddings; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; let t = Tensor::arange(0u32, max_seq_len as u32, dev)? .to_dtype(dtype)? .reshape((max_seq_len, 1))?; let freqs = t.matmul(&inv_freq)?; Ok(Self { sin: freqs.sin()?, cos: freqs.cos()?, }) } fn apply_rotary_emb_qkv( &self, q: &Tensor, k: &Tensor, seqlen_offset: usize, ) -> Result<(Tensor, Tensor)> { let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?; let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?; Ok((q_embed, k_embed)) } } #[derive(Debug, Clone)] #[allow(clippy::upper_case_acronyms)] struct MLP { gate_proj: Linear, up_proj: Linear, down_proj: Linear, act_fn: Activation, } impl MLP { fn new(intermediate_sz: usize, cfg: &Config, vb: VarBuilder) -> Result { let hidden_sz = cfg.hidden_size; let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?; let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?; let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?; Ok(Self { gate_proj, up_proj, down_proj, act_fn: cfg.hidden_act, }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result { let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?; let rhs = xs.apply(&self.up_proj)?; (lhs * rhs)?.apply(&self.down_proj) } } #[derive(Debug, Clone)] struct Attention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, num_heads: usize, num_kv_heads: usize, num_kv_groups: usize, head_dim: usize, hidden_size: usize, rotary_emb: Arc, kv_cache: Option<(Tensor, Tensor)>, } impl Attention { fn new(rotary_emb: Arc, cfg: &Config, vb: VarBuilder) -> Result { let hidden_sz = cfg.hidden_size; let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads; let num_kv_groups = num_heads / num_kv_heads; let head_dim = hidden_sz / num_heads; let q_proj = linear(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?; let k_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?; let v_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?; let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, num_heads, num_kv_heads, num_kv_groups, head_dim, hidden_size: hidden_sz, rotary_emb, kv_cache: None, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let (b_sz, q_len, _) = xs.dims3()?; let query_states = self.q_proj.forward(xs)?; let key_states = self.k_proj.forward(xs)?; let value_states = self.v_proj.forward(xs)?; let query_states = query_states .reshape((b_sz, q_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let (query_states, key_states) = self.rotary_emb .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?; let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let key_states = Tensor::cat(&[prev_k, &key_states], 2)?; let value_states = Tensor::cat(&[prev_v, &value_states], 2)?; (key_states, value_states) } }; self.kv_cache = Some((key_states.clone(), value_states.clone())); let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?; let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?; let attn_output = { let scale = 1f64 / f64::sqrt(self.head_dim as f64); let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; let attn_weights = match attention_mask { None => attn_weights, Some(mask) => attn_weights.broadcast_add(mask)?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; attn_weights.matmul(&value_states)? }; attn_output .transpose(1, 2)? .reshape((b_sz, q_len, self.hidden_size))? .apply(&self.o_proj) } fn clear_kv_cache(&mut self) { self.kv_cache = None } } // https://github.com/huggingface/transformers/blob/536ea2aca234fb48c5c69769431d643b0d93b233/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py#L800 #[derive(Debug, Clone)] struct SparseMoeBlock { gate: Linear, experts: Vec, shared_expert: MLP, shared_expert_gate: Linear, norm_topk_prob: bool, num_experts_per_tok: usize, } impl SparseMoeBlock { fn new(cfg: &Config, vb: VarBuilder) -> Result { let gate = linear_no_bias(cfg.hidden_size, cfg.num_experts, vb.pp("gate"))?; let mut experts = Vec::with_capacity(cfg.num_experts); let vb_e = vb.pp("experts"); for idx in 0..cfg.num_experts { let expert = MLP::new(cfg.moe_intermediate_size, cfg, vb_e.pp(idx))?; experts.push(expert) } let shared_expert = MLP::new( cfg.shared_expert_intermediate_size, cfg, vb.pp("shared_expert"), )?; let shared_expert_gate = linear_no_bias(cfg.hidden_size, 1, vb.pp("shared_expert_gate"))?; Ok(Self { gate, experts, shared_expert, shared_expert_gate, norm_topk_prob: cfg.norm_topk_prob, num_experts_per_tok: cfg.num_experts_per_tok, }) } } impl Module for SparseMoeBlock { fn forward(&self, xs: &Tensor) -> Result { let (b_size, seq_len, hidden_dim) = xs.dims3()?; let xs = xs.reshape(((), hidden_dim))?; let router_logits = xs.apply(&self.gate)?; let routing_weights = candle_nn::ops::softmax_last_dim(&router_logits)?; // In order to extract topk, we extract the data from the tensor and manipulate it // directly. Maybe we will want to use some custom ops instead at some point. let experts_per_tok = routing_weights .arg_sort_last_dim(false)? .narrow(D::Minus1, 0, self.num_experts_per_tok)? .contiguous()?; let routing_weights = routing_weights.gather(&experts_per_tok, D::Minus1)?; // routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) // top_x contains the row indexes to evaluate for each expert. let routing_weights = routing_weights.to_dtype(DType::F32)?.to_vec2::()?; let experts_per_tok = experts_per_tok.to_vec2::()?; let mut top_x = vec![vec![]; self.experts.len()]; let mut selected_experts = vec![vec![]; self.experts.len()]; for (row_idx, (rw, expert_idxs)) in routing_weights .iter() .zip(experts_per_tok.iter()) .enumerate() { let sum_rw = rw.iter().sum::(); for (&rw, &expert_idx) in rw.iter().zip(expert_idxs.iter()) { top_x[expert_idx as usize].push(row_idx as u32); let rw = if self.norm_topk_prob { rw / sum_rw } else { rw }; selected_experts[expert_idx as usize].push(rw) } } let mut ys = xs.zeros_like()?; for (expert_idx, expert_layer) in self.experts.iter().enumerate() { let top_x = &top_x[expert_idx]; if top_x.is_empty() { continue; } let top_x = Tensor::new(top_x.as_slice(), xs.device())?; let selected_experts = Tensor::new(selected_experts[expert_idx].as_slice(), xs.device())? .reshape(((), 1))? .to_dtype(xs.dtype())?; // Index the correct hidden states and compute the expert hidden state for // the current expert. We need to make sure to multiply the output hidden // states by `routing_weights` on the corresponding tokens (top-1 and top-2) let current_state = xs.index_select(&top_x, 0)?.reshape(((), hidden_dim))?; // current_hidden_states = expert_layer(current_state, routing_weights[top_x_list, idx_list, None]) let current_hidden_states = expert_layer.forward(¤t_state)?; let current_hidden_states = current_hidden_states.broadcast_mul(&selected_experts)?; ys = ys.index_add(&top_x, ¤t_hidden_states, 0)?; } let shared_expert_output = xs.apply(&self.shared_expert)?; let shared_expert_output = shared_expert_output.broadcast_mul(&candle_nn::ops::sigmoid( &xs.apply(&self.shared_expert_gate)?, )?)?; let ys = (ys + shared_expert_output)?; let ys = ys.reshape((b_size, seq_len, hidden_dim))?; Ok(ys) } } #[derive(Debug, Clone)] enum MlpOrMoeBlock { Mlp(MLP), MoeBlock(SparseMoeBlock), } impl Module for MlpOrMoeBlock { fn forward(&self, xs: &Tensor) -> Result { match self { Self::MoeBlock(m) => m.forward(xs), Self::Mlp(m) => m.forward(xs), } } } #[derive(Debug, Clone)] struct DecoderLayer { self_attn: Attention, mlp: MlpOrMoeBlock, input_layernorm: RmsNorm, post_attention_layernorm: RmsNorm, } impl DecoderLayer { fn new( layer_idx: usize, rotary_emb: Arc, cfg: &Config, vb: VarBuilder, ) -> Result { let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?; let mlp = if cfg.num_experts > 0 && (layer_idx + 1) % cfg.decoder_sparse_step == 0 { MlpOrMoeBlock::MoeBlock(SparseMoeBlock::new(cfg, vb.pp("mlp"))?) } else { MlpOrMoeBlock::Mlp(MLP::new(cfg.intermediate_size, cfg, vb.pp("mlp"))?) }; let input_layernorm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?; let post_attention_layernorm = RmsNorm::new( cfg.hidden_size, cfg.rms_norm_eps, vb.pp("post_attention_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, post_attention_layernorm, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let residual = xs; let xs = self.input_layernorm.forward(xs)?; let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?; let xs = (xs + residual)?; let residual = &xs; let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; residual + xs } fn clear_kv_cache(&mut self) { self.self_attn.clear_kv_cache() } } #[derive(Debug, Clone)] pub struct Model { embed_tokens: candle_nn::Embedding, layers: Vec, norm: RmsNorm, lm_head: Linear, sliding_window: usize, device: Device, dtype: DType, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result { let vb_m = vb.pp("model"); let embed_tokens = candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_l = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(layer_idx, rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?; let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; Ok(Self { embed_tokens, layers, norm, lm_head, sliding_window: cfg.sliding_window, device: vb.device().clone(), dtype: vb.dtype(), }) } fn prepare_decoder_attention_mask( &self, b_size: usize, tgt_len: usize, seqlen_offset: usize, ) -> Result { // Sliding window mask? let mask: Vec<_> = (0..tgt_len) .flat_map(|i| { (0..tgt_len).map(move |j| { if i < j || j + self.sliding_window < i { f32::NEG_INFINITY } else { 0. } }) }) .collect(); let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?; let mask = if seqlen_offset > 0 { let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?; Tensor::cat(&[&mask0, &mask], D::Minus1)? } else { mask }; mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))? .to_dtype(self.dtype) } pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result { let (b_size, seq_len) = input_ids.dims2()?; let attention_mask = if seq_len <= 1 { None } else { let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?; Some(mask) }; let mut xs = self.embed_tokens.forward(input_ids)?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm)? .apply(&self.lm_head) } pub fn clear_kv_cache(&mut self) { for layer in self.layers.iter_mut() { layer.clear_kv_cache() } } }