//! StarCoder model implementation with quantization support. //! //! StarCoder is a large language model optimized for code generation. //! This implementation provides quantization for reduced memory and compute. //! //! Key characteristics: //! - Causal self-attention mechanism //! - Multi-query attention (MQA) //! - LayerNorm for normalization //! - Absolute positional embeddings //! - Support for 8-bit quantization //! //! References: //! - [StarCoder Paper](https://arxiv.org/abs/2305.06161) //! - [Model Card](https://huggingface.co/bigcode/starcoder) //! #![allow(unused)] use candle::{DType, Device, Module, Result, Tensor, D}; use candle_nn::{layer_norm, linear_b, LayerNorm, Linear, VarBuilder}; use std::sync::Arc; #[derive(Debug, Clone, serde::Deserialize)] pub struct Config { vocab_size: usize, hidden_size: usize, intermediate_size: usize, num_hidden_layers: usize, num_attention_heads: usize, num_key_value_heads: usize, hidden_act: candle_nn::Activation, max_position_embeddings: usize, norm_epsilon: f64, rope_theta: f64, use_bias: bool, sliding_window: Option, } #[derive(Debug, Clone)] struct RotaryEmbedding { sin: Tensor, cos: Tensor, } fn rotate_half(xs: &Tensor) -> Result { let last_dim = xs.dim(D::Minus1)?; let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?; let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?; Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1) } impl RotaryEmbedding { fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result { let dim = cfg.hidden_size / cfg.num_attention_heads; let max_seq_len = cfg.max_position_embeddings; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; let t = Tensor::arange(0u32, max_seq_len as u32, dev)? .to_dtype(dtype)? .reshape((max_seq_len, 1))?; let freqs = t.matmul(&inv_freq)?; let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?; Ok(Self { sin: freqs.sin()?, cos: freqs.cos()?, }) } fn apply_rotary_emb_qkv( &self, q: &Tensor, k: &Tensor, seqlen_offset: usize, ) -> Result<(Tensor, Tensor)> { let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim) let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim) let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?; let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?; Ok((q_embed, k_embed)) } } #[derive(Debug, Clone)] #[allow(clippy::upper_case_acronyms)] struct MLP { c_fc: Linear, c_proj: Linear, act: candle_nn::Activation, } impl MLP { fn new(cfg: &Config, vb: VarBuilder) -> Result { let (h_size, i_size) = (cfg.hidden_size, cfg.intermediate_size); let c_fc = linear_b(h_size, i_size, cfg.use_bias, vb.pp("c_fc"))?; let c_proj = linear_b(i_size, h_size, cfg.use_bias, vb.pp("c_proj"))?; Ok(Self { c_fc, c_proj, act: cfg.hidden_act, }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result { xs.apply(&self.c_fc)?.apply(&self.act)?.apply(&self.c_proj) } } #[derive(Debug, Clone)] struct Attention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, num_heads: usize, num_kv_heads: usize, num_kv_groups: usize, head_dim: usize, hidden_size: usize, rotary_emb: Arc, kv_cache: Option<(Tensor, Tensor)>, } impl Attention { fn new(rotary_emb: Arc, cfg: &Config, vb: VarBuilder) -> Result { let hidden_sz = cfg.hidden_size; let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads; let num_kv_groups = num_heads / num_kv_heads; let head_dim = hidden_sz / num_heads; let b = cfg.use_bias; let q_proj = linear_b(hidden_sz, num_heads * head_dim, b, vb.pp("q_proj"))?; let k_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("k_proj"))?; let v_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("v_proj"))?; let o_proj = linear_b(num_heads * head_dim, hidden_sz, b, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, num_heads, num_kv_heads, num_kv_groups, head_dim, hidden_size: hidden_sz, rotary_emb, kv_cache: None, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let (b_sz, q_len, _) = xs.dims3()?; let query_states = self.q_proj.forward(xs)?; let key_states = self.k_proj.forward(xs)?; let value_states = self.v_proj.forward(xs)?; let query_states = query_states .reshape((b_sz, q_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let (query_states, key_states) = self.rotary_emb .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?; let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let key_states = Tensor::cat(&[prev_k, &key_states], 2)?; let value_states = Tensor::cat(&[prev_v, &value_states], 2)?; (key_states, value_states) } }; self.kv_cache = Some((key_states.clone(), value_states.clone())); let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?; let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?; let scale = 1f64 / f64::sqrt(self.head_dim as f64); let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; let attn_weights = match attention_mask { None => attn_weights, Some(mask) => attn_weights.broadcast_add(mask)?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; let attn_output = attn_weights.matmul(&value_states)?; attn_output .transpose(1, 2)? .reshape((b_sz, q_len, self.hidden_size))? .apply(&self.o_proj) } fn clear_kv_cache(&mut self) { self.kv_cache = None } } #[derive(Debug, Clone)] struct DecoderLayer { self_attn: Attention, mlp: MLP, input_layernorm: LayerNorm, post_attention_layernorm: LayerNorm, } impl DecoderLayer { fn new(rotary_emb: Arc, cfg: &Config, vb: VarBuilder) -> Result { let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?; let input_layernorm = layer_norm(cfg.hidden_size, cfg.norm_epsilon, vb.pp("input_layernorm"))?; let post_attention_layernorm = layer_norm( cfg.hidden_size, cfg.norm_epsilon, vb.pp("post_attention_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, post_attention_layernorm, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result { let residual = xs; let xs = self.input_layernorm.forward(xs)?; let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?; let xs = (xs + residual)?; let residual = &xs; let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; residual + xs } fn clear_kv_cache(&mut self) { self.self_attn.clear_kv_cache() } } #[derive(Debug, Clone)] pub struct Model { embed_tokens: candle_nn::Embedding, layers: Vec, norm: LayerNorm, lm_head: Linear, sliding_window: Option, device: Device, dtype: DType, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result { let vb_m = vb.pp("model"); let embed_tokens = candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_l = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm = layer_norm(cfg.hidden_size, cfg.norm_epsilon, vb_m.pp("norm"))?; let lm_head = candle_nn::Linear::new(embed_tokens.embeddings().clone(), None); Ok(Self { embed_tokens, layers, norm, lm_head, sliding_window: cfg.sliding_window, device: vb.device().clone(), dtype: vb.dtype(), }) } fn prepare_decoder_attention_mask( &self, b_size: usize, tgt_len: usize, seqlen_offset: usize, ) -> Result { let sliding_window = self.sliding_window.unwrap_or(tgt_len + 42); let mask: Vec<_> = (0..tgt_len) .flat_map(|i| { (0..tgt_len).map(move |j| { if i < j || j + sliding_window < i { f32::NEG_INFINITY } else { 0. } }) }) .collect(); let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?; let mask = if seqlen_offset > 0 { let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?; Tensor::cat(&[&mask0, &mask], D::Minus1)? } else { mask }; mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))? .to_dtype(self.dtype) } pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result { let (b_size, seq_len) = input_ids.dims2()?; let attention_mask = if seq_len <= 1 { None } else { let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?; Some(mask) }; let mut xs = self.embed_tokens.forward(input_ids)?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm)? .apply(&self.lm_head) } pub fn clear_kv_cache(&mut self) { for layer in self.layers.iter_mut() { layer.clear_kv_cache() } } }