diff options
Diffstat (limited to 'lisp/emacs-lisp/avl-tree.el')
-rw-r--r-- | lisp/emacs-lisp/avl-tree.el | 686 |
1 files changed, 686 insertions, 0 deletions
diff --git a/lisp/emacs-lisp/avl-tree.el b/lisp/emacs-lisp/avl-tree.el new file mode 100644 index 00000000000..8886d84b2d8 --- /dev/null +++ b/lisp/emacs-lisp/avl-tree.el @@ -0,0 +1,686 @@ +;;; avl-tree.el --- balanced binary trees, AVL-trees -*- lexical-binding:t -*- + +;; Copyright (C) 1995, 2007-2022 Free Software Foundation, Inc. + +;; Author: Per Cederqvist <ceder@lysator.liu.se> +;; Inge Wallin <inge@lysator.liu.se> +;; Thomas Bellman <bellman@lysator.liu.se> +;; Toby Cubitt <toby-predictive@dr-qubit.org> +;; Maintainer: emacs-devel@gnu.org +;; Created: 10 May 1991 +;; Keywords: extensions, data structures, AVL, tree + +;; This file is part of GNU Emacs. + +;; GNU Emacs is free software: you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation, either version 3 of the License, or +;; (at your option) any later version. + +;; GNU Emacs is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. + +;;; Commentary: + +;; An AVL tree is a self-balancing binary tree. As such, inserting, +;; deleting, and retrieving data from an AVL tree containing n elements +;; is O(log n). It is somewhat more rigidly balanced than other +;; self-balancing binary trees (such as red-black trees and AA trees), +;; making insertion slightly slower, deletion somewhat slower, and +;; retrieval somewhat faster (the asymptotic scaling is of course the +;; same for all types). Thus it may be a good choice when the tree will +;; be relatively static, i.e. data will be retrieved more often than +;; they are modified. +;; +;; Internally, a tree consists of two elements, the root node and the +;; comparison function. The actual tree has a dummy node as its root +;; with the real root in the left pointer, which allows the root node to +;; be treated on a par with all other nodes. +;; +;; Each node of the tree consists of one data element, one left +;; sub-tree, one right sub-tree, and a balance count. The latter is the +;; difference in depth of the left and right sub-trees. +;; +;; The functions with names of the form "avl-tree--" are intended for +;; internal use only. + +;;; Code: + +(eval-when-compile (require 'cl-lib)) +(require 'generator) + + +;; ================================================================ +;;; Internal functions and macros for use in the AVL tree package + + +;; ---------------------------------------------------------------- +;; Functions and macros handling an AVL tree. + +(cl-defstruct (avl-tree- + ;; A tagged list is the pre-defstruct representation. + ;; (:type list) + :named + (:constructor nil) + (:constructor avl-tree--create (cmpfun)) + (:predicate avl-tree-p) + (:copier nil)) + (dummyroot (avl-tree--node-create nil nil nil 0)) + cmpfun) + +(defmacro avl-tree--root (tree) + "Return the root node for an AVL TREE. INTERNAL USE ONLY." + `(avl-tree--node-left (avl-tree--dummyroot ,tree))) + +;; ---------------------------------------------------------------- +;; Functions and macros handling an AVL tree node. + +(cl-defstruct (avl-tree--node + ;; We force a representation without tag so it matches the + ;; pre-defstruct representation. Also we use the underlying + ;; representation in the implementation of + ;; avl-tree--node-branch. + (:type vector) + (:constructor nil) + (:constructor avl-tree--node-create (left right data balance)) + (:copier nil)) + left right data balance) + + +(defalias 'avl-tree--node-branch #'aref + ;; This implementation is efficient but breaks the defstruct + ;; abstraction. An alternative could be (funcall (aref [avl-tree-left + ;; avl-tree-right avl-tree-data] branch) node) + "Get value of a branch of a node. +NODE is the node, and BRANCH is the branch. +0 for left pointer, 1 for right pointer and 2 for the data. +\n(fn BRANCH NODE)") + + +;; The funcall/aref trick wouldn't work for the setf method, unless we +;; tried to access the underlying setter function, but this wouldn't be +;; portable either. +(gv-define-simple-setter avl-tree--node-branch aset) + + + +;; ---------------------------------------------------------------- +;; Convenience macros + +(defmacro avl-tree--switch-dir (dir) + "Return opposite direction to DIR (0 = left, 1 = right)." + `(- 1 ,dir)) + +(defmacro avl-tree--dir-to-sign (dir) + "Convert direction DIR (0,1) to sign factor (-1,+1)." + `(1- (* 2 ,dir))) + +(defmacro avl-tree--sign-to-dir (dir) + "Convert sign factor in DIR (-x,+x) to direction (0,1)." + `(if (< ,dir 0) 0 1)) + + +;; ---------------------------------------------------------------- +;; Deleting data + +(defun avl-tree--del-balance (node branch dir) + "Rebalance a tree after deleting a NODE. +The deletion was done from the left (DIR=0) or right (DIR=1) sub-tree +of the left (BRANCH=0) or right (BRANCH=1) child of NODE. +Return t if the height of the tree has shrunk." + ;; (or is it vice-versa for BRANCH?) + (let ((br (avl-tree--node-branch node branch)) + ;; opposite direction: 0,1 -> 1,0 + (opp (avl-tree--switch-dir dir)) + ;; direction 0,1 -> sign factor -1,+1 + (sgn (avl-tree--dir-to-sign dir)) + p1 b1 p2 b2) + (cond + ((> (* sgn (avl-tree--node-balance br)) 0) + (setf (avl-tree--node-balance br) 0) + t) + + ((= (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) (- sgn)) + nil) + + (t + ;; Rebalance. + (setq p1 (avl-tree--node-branch br opp) + b1 (avl-tree--node-balance p1)) + (if (<= (* sgn b1) 0) + ;; Single rotation. + (progn + (setf (avl-tree--node-branch br opp) + (avl-tree--node-branch p1 dir) + (avl-tree--node-branch p1 dir) br + (avl-tree--node-branch node branch) p1) + (if (= 0 b1) + (progn + (setf (avl-tree--node-balance br) (- sgn) + (avl-tree--node-balance p1) sgn) + nil) ; height hasn't changed + (setf (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance p1) 0) + t)) ; height has changed + + ;; Double rotation. + (setf p2 (avl-tree--node-branch p1 dir) + b2 (avl-tree--node-balance p2) + (avl-tree--node-branch p1 dir) + (avl-tree--node-branch p2 opp) + (avl-tree--node-branch p2 opp) p1 + (avl-tree--node-branch br opp) + (avl-tree--node-branch p2 dir) + (avl-tree--node-branch p2 dir) br + (avl-tree--node-balance br) + (if (< (* sgn b2) 0) sgn 0) + (avl-tree--node-balance p1) + (if (> (* sgn b2) 0) (- sgn) 0) + (avl-tree--node-branch node branch) p2 + (avl-tree--node-balance p2) 0) + t))))) + +(defun avl-tree--do-del-internal (node branch q) + (let ((br (avl-tree--node-branch node branch))) + (if (avl-tree--node-right br) + (if (avl-tree--do-del-internal br 1 q) + (avl-tree--del-balance node branch 1)) + (setf (avl-tree--node-data q) (avl-tree--node-data br) + (avl-tree--node-branch node branch) + (avl-tree--node-left br)) + t))) + +(defun avl-tree--do-delete (cmpfun root branch data test nilflag) + "Delete DATA from BRANCH of node ROOT. +\(See `avl-tree-delete' for TEST and NILFLAG). + +Return cons cell (SHRUNK . DATA), where SHRUNK is t if the +height of the tree has shrunk and nil otherwise, and DATA is +the related data." + (let ((br (avl-tree--node-branch root branch))) + (cond + ;; DATA not in tree. + ((null br) + (cons nil nilflag)) + + ((funcall cmpfun data (avl-tree--node-data br)) + (let ((ret (avl-tree--do-delete cmpfun br 0 data test nilflag))) + (cons (if (car ret) (avl-tree--del-balance root branch 0)) + (cdr ret)))) + + ((funcall cmpfun (avl-tree--node-data br) data) + (let ((ret (avl-tree--do-delete cmpfun br 1 data test nilflag))) + (cons (if (car ret) (avl-tree--del-balance root branch 1)) + (cdr ret)))) + + (t ; Found it. + ;; if it fails TEST, do nothing + (if (and test (not (funcall test (avl-tree--node-data br)))) + (cons nil nilflag) + (cond + ((null (avl-tree--node-right br)) + (setf (avl-tree--node-branch root branch) + (avl-tree--node-left br)) + (cons t (avl-tree--node-data br))) + + ((null (avl-tree--node-left br)) + (setf (avl-tree--node-branch root branch) + (avl-tree--node-right br)) + (cons t (avl-tree--node-data br))) + + (t + (if (avl-tree--do-del-internal br 0 br) + (cons (avl-tree--del-balance root branch 0) + (avl-tree--node-data br)) + (cons nil (avl-tree--node-data br)))) + )))))) + + + +;; ---------------------------------------------------------------- +;; Entering data + +(defun avl-tree--enter-balance (node branch dir) + "Rebalance tree after insertion of NODE. +NODE was inserted into the left (DIR=0) or right (DIR=1) sub-tree +of the left (BRANCH=0) or right (BRANCH=1) child of NODE. +Return t if the height of the tree has grown." + (let ((br (avl-tree--node-branch node branch)) + ;; opposite direction: 0,1 -> 1,0 + (opp (avl-tree--switch-dir dir)) + ;; direction 0,1 -> sign factor -1,+1 + (sgn (avl-tree--dir-to-sign dir)) + p1 p2 b2) + (cond + ((< (* sgn (avl-tree--node-balance br)) 0) + (setf (avl-tree--node-balance br) 0) + nil) + + ((= (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) sgn) + t) + + (t + ;; Tree has grown => Rebalance. + (setq p1 (avl-tree--node-branch br dir)) + (if (> (* sgn (avl-tree--node-balance p1)) 0) + ;; Single rotation. + (progn + (setf (avl-tree--node-branch br dir) + (avl-tree--node-branch p1 opp)) + (setf (avl-tree--node-branch p1 opp) br) + (setf (avl-tree--node-balance br) 0) + (setf (avl-tree--node-branch node branch) p1)) + + ;; Double rotation. + (setf p2 (avl-tree--node-branch p1 opp) + b2 (avl-tree--node-balance p2) + (avl-tree--node-branch p1 opp) + (avl-tree--node-branch p2 dir) + (avl-tree--node-branch p2 dir) p1 + (avl-tree--node-branch br dir) + (avl-tree--node-branch p2 opp) + (avl-tree--node-branch p2 opp) br + (avl-tree--node-balance br) + (if (> (* sgn b2) 0) (- sgn) 0) + (avl-tree--node-balance p1) + (if (< (* sgn b2) 0) sgn 0) + (avl-tree--node-branch node branch) p2)) + (setf (avl-tree--node-balance + (avl-tree--node-branch node branch)) + 0) + nil)))) + +(defun avl-tree--do-enter (cmpfun root branch data &optional updatefun) + "Enter DATA in BRANCH of ROOT node. +\(See `avl-tree-enter' for UPDATEFUN). + +Return cons cell (GREW . DATA), where GREW is t if height +of tree ROOT has grown and nil otherwise, and DATA is the +inserted data." + (let ((br (avl-tree--node-branch root branch))) + (cond + ((null br) + ;; Data not in tree, insert it. + (setf (avl-tree--node-branch root branch) + (avl-tree--node-create nil nil data 0)) + (cons t data)) + + ((funcall cmpfun data (avl-tree--node-data br)) + (let ((ret (avl-tree--do-enter cmpfun br 0 data updatefun))) + (cons (and (car ret) (avl-tree--enter-balance root branch 0)) + (cdr ret)))) + + ((funcall cmpfun (avl-tree--node-data br) data) + (let ((ret (avl-tree--do-enter cmpfun br 1 data updatefun))) + (cons (and (car ret) (avl-tree--enter-balance root branch 1)) + (cdr ret)))) + + ;; Data already in tree, update it. + (t + (let ((newdata + (if updatefun + (funcall updatefun data (avl-tree--node-data br)) + data))) + (if (or (funcall cmpfun newdata data) + (funcall cmpfun data newdata)) + (error "avl-tree-enter: Updated data does not match existing data")) + (setf (avl-tree--node-data br) newdata) + (cons nil newdata)) ; return value + )))) + +(defun avl-tree--check (tree) + "Check the balance of TREE." + (avl-tree--check-node (avl-tree--root tree))) +(defun avl-tree--check-node (node) + (if (null node) 0 + (let ((dl (avl-tree--check-node (avl-tree--node-left node))) + (dr (avl-tree--check-node (avl-tree--node-right node)))) + (cl-assert (= (- dr dl) (avl-tree--node-balance node))) + (1+ (max dl dr))))) + +;; ---------------------------------------------------------------- + + +;;; INTERNAL USE ONLY +(defun avl-tree--mapc (map-function root dir) + "Apply MAP-FUNCTION to all nodes in the tree starting with ROOT. +The function is applied in-order, either ascending (DIR=0) or +descending (DIR=1). + +Note: MAP-FUNCTION is applied to the node and not to the data +itself." + (let ((node root) + (stack nil) + (go-dir t)) + (push nil stack) + (while node + (if (and go-dir + (avl-tree--node-branch node dir)) + ;; Do the DIR subtree first. + (progn + (push node stack) + (setq node (avl-tree--node-branch node dir))) + ;; Apply the function... + (funcall map-function node) + ;; and do the opposite subtree. + (setq node (if (setq go-dir (avl-tree--node-branch + node (avl-tree--switch-dir dir))) + (avl-tree--node-branch + node (avl-tree--switch-dir dir)) + (pop stack))))))) + +;;; INTERNAL USE ONLY +(defun avl-tree--do-copy (root) + "Copy the AVL tree wiath ROOT as root. +This function is highly recursive." + (if (null root) + nil + (avl-tree--node-create + (avl-tree--do-copy (avl-tree--node-left root)) + (avl-tree--do-copy (avl-tree--node-right root)) + (avl-tree--node-data root) + (avl-tree--node-balance root)))) + +(cl-defstruct (avl-tree--stack + (:constructor nil) + (:constructor avl-tree--stack-create + (tree &optional reverse + &aux + (store + (if (avl-tree-empty tree) + nil + (list (avl-tree--root tree)))))) + (:copier nil)) + reverse store) + +(defalias 'avl-tree-stack-p #'avl-tree--stack-p + "Return t if OBJ is an avl-tree-stack, nil otherwise. +\n(fn OBJ)") + +(defun avl-tree--stack-repopulate (stack) + "Recursively push children of STACK onto the front. +This pushes the children of the node at the head of STACK onto +the front of STACK, until a leaf node is reached." + (let ((node (car (avl-tree--stack-store stack))) + (dir (if (avl-tree--stack-reverse stack) 1 0))) + (when node ; check for empty stack + (while (setq node (avl-tree--node-branch node dir)) + (push node (avl-tree--stack-store stack)))))) + + +;; ================================================================ +;;; The public functions which operate on AVL trees. + +;; define public alias for constructors so that we can set docstring +(defalias 'avl-tree-create #'avl-tree--create + "Create an empty AVL tree. +COMPARE-FUNCTION is a function which takes two arguments, A and B, +and returns non-nil if A is less than B, and nil otherwise. +\n(fn COMPARE-FUNCTION)") + +(defalias 'avl-tree-compare-function #'avl-tree--cmpfun + "Return the comparison function for the AVL tree TREE. +\n(fn TREE)") + +(defun avl-tree-empty (tree) + "Return t if AVL TREE is empty, otherwise return nil." + (null (avl-tree--root tree))) + +(defun avl-tree-enter (tree data &optional updatefun) + "Insert DATA into the AVL tree TREE. + +If an element that matches DATA (according to the tree's +comparison function, see `avl-tree-create') already exists in +TREE, it will be replaced by DATA by default. + +If UPDATEFUN is supplied and an element matching DATA already +exists in TREE, UPDATEFUN is called with two arguments: DATA, and +the matching element. Its return value replaces the existing +element. This value *must* itself match DATA (and hence the +pre-existing data), or an error will occur. + +Returns the new data." + (cdr (avl-tree--do-enter (avl-tree--cmpfun tree) + (avl-tree--dummyroot tree) + 0 data updatefun))) + +(defun avl-tree-delete (tree data &optional test nilflag) + "Delete the element matching DATA from the AVL TREE. +Matching uses the comparison function previously specified in +`avl-tree-create' when TREE was created. + +Returns the deleted element, or nil if no matching element was +found. + +Optional argument NILFLAG specifies a value to return instead of +nil if nothing was deleted, so that this case can be +distinguished from the case of a successfully deleted null +element. + +If supplied, TEST specifies a test that a matching element must +pass before it is deleted. If a matching element is found, it is +passed as an argument to TEST, and is deleted only if the return +value is non-nil." + (cdr (avl-tree--do-delete (avl-tree--cmpfun tree) + (avl-tree--dummyroot tree) + 0 data test nilflag))) + + +(defun avl-tree-member (tree data &optional nilflag) + "Return the element in the AVL TREE which matches DATA. +Matching uses the comparison function previously specified in +`avl-tree-create' when TREE was created. + +If there is no such element in the tree, nil is returned. +Optional argument NILFLAG specifies a value to return instead of nil +in this case. This allows non-existent elements to be distinguished +from a null element. (See also `avl-tree-member-p', which does this +for you.)" + (let ((node (avl-tree--root tree)) + (compare-function (avl-tree--cmpfun tree))) + (catch 'found + (while node + (cond + ((funcall compare-function data (avl-tree--node-data node)) + (setq node (avl-tree--node-left node))) + ((funcall compare-function (avl-tree--node-data node) data) + (setq node (avl-tree--node-right node))) + (t (throw 'found (avl-tree--node-data node))))) + nilflag))) + + +(defun avl-tree-member-p (tree data) + "Return t if an element matching DATA exists in the AVL TREE. +Otherwise return nil. Matching uses the comparison function +previously specified in `avl-tree-create' when TREE was created." + (let ((flag '(nil))) + (not (eq (avl-tree-member tree data flag) flag)))) + + +(defun avl-tree-map (fun tree &optional reverse) + "Modify all elements in the AVL TREE by applying function FUN. + +Each element is replaced by the return value of FUN applied to +that element. + +FUN is applied to the elements in ascending order, or descending +order if REVERSE is non-nil." + (avl-tree--mapc + (lambda (node) + (setf (avl-tree--node-data node) + (funcall fun (avl-tree--node-data node)))) + (avl-tree--root tree) + (if reverse 1 0))) + + +(defun avl-tree-mapc (fun tree &optional reverse) + "Apply function FUN to all elements in AVL TREE, for side-effect only. + +FUNCTION is applied to the elements in ascending order, or +descending order if REVERSE is non-nil." + (avl-tree--mapc + (lambda (node) + (funcall fun (avl-tree--node-data node))) + (avl-tree--root tree) + (if reverse 1 0))) + + +(defun avl-tree-mapf + (fun combinator tree &optional reverse) + "Apply FUN to all elements in AVL TREE, combine results using COMBINATOR. + +The FUNCTION is applied and the results are combined in ascending +order, or descending order if REVERSE is non-nil." + (let (avl-tree-mapf--accumulate) + (avl-tree--mapc + (lambda (node) + (setq avl-tree-mapf--accumulate + (funcall combinator + (funcall fun + (avl-tree--node-data node)) + avl-tree-mapf--accumulate))) + (avl-tree--root tree) + (if reverse 0 1)) + (nreverse avl-tree-mapf--accumulate))) + + +(defun avl-tree-mapcar (fun tree &optional reverse) + "Apply FUN to all elements in AVL TREE, and make a list of the results. + +The function is applied and the list constructed in ascending +order, or descending order if REVERSE is non-nil. + +Note that if you don't care about the order in which FUN is +applied, just that the resulting list is in the correct order, +then + + (avl-tree-mapf function \\='cons tree (not reverse)) + +is more efficient." + (nreverse (avl-tree-mapf fun 'cons tree reverse))) + + +(defun avl-tree-first (tree) + "Return the first element in TREE, or nil if TREE is empty." + (let ((node (avl-tree--root tree))) + (when node + (while (avl-tree--node-left node) + (setq node (avl-tree--node-left node))) + (avl-tree--node-data node)))) + +(defun avl-tree-last (tree) + "Return the last element in TREE, or nil if TREE is empty." + (let ((node (avl-tree--root tree))) + (when node + (while (avl-tree--node-right node) + (setq node (avl-tree--node-right node))) + (avl-tree--node-data node)))) + +(defun avl-tree-copy (tree) + "Return a copy of the AVL TREE." + (let ((new-tree (avl-tree-create (avl-tree--cmpfun tree)))) + (setf (avl-tree--root new-tree) (avl-tree--do-copy (avl-tree--root tree))) + new-tree)) + +(defun avl-tree-flatten (tree) + "Return a sorted list containing all elements of TREE." + (let ((treelist nil)) + (avl-tree--mapc + (lambda (node) (push (avl-tree--node-data node) treelist)) + (avl-tree--root tree) 1) + treelist)) + +(defun avl-tree-size (tree) + "Return the number of elements in TREE." + (let ((treesize 0)) + (avl-tree--mapc + (lambda (_) (setq treesize (1+ treesize))) + (avl-tree--root tree) 0) + treesize)) + +(defun avl-tree-clear (tree) + "Clear the AVL TREE." + (setf (avl-tree--root tree) nil)) + + +(defun avl-tree-stack (tree &optional reverse) + "Return an object that behaves like a sorted stack of all elements of TREE. + +If REVERSE is non-nil, the stack is sorted in reverse order. +\(See also `avl-tree-stack-pop'). + +Note that any modification to TREE *immediately* invalidates all +avl-tree-stacks created before the modification (in particular, +calling `avl-tree-stack-pop' will give unpredictable results). + +Operations on these objects are significantly more efficient than +constructing a real stack with `avl-tree-flatten' and using +standard stack functions. As such, they can be useful in +implementing efficient algorithms of AVL trees. However, in cases +where mapping functions `avl-tree-mapc', `avl-tree-mapcar' or +`avl-tree-mapf' would be sufficient, it is better to use one of +those instead." + (let ((stack (avl-tree--stack-create tree reverse))) + (avl-tree--stack-repopulate stack) + stack)) + + +(defun avl-tree-stack-pop (avl-tree-stack &optional nilflag) + "Pop the first element from AVL-TREE-STACK. +\(See also `avl-tree-stack'). + +Returns nil if the stack is empty, or NILFLAG if specified. +\(The latter allows an empty stack to be distinguished from +a null element stored in the AVL tree.)" + (let (node next) + (if (not (setq node (pop (avl-tree--stack-store avl-tree-stack)))) + nilflag + (when (setq next + (avl-tree--node-branch + node + (if (avl-tree--stack-reverse avl-tree-stack) 0 1))) + (push next (avl-tree--stack-store avl-tree-stack)) + (avl-tree--stack-repopulate avl-tree-stack)) + (avl-tree--node-data node)))) + + +(defun avl-tree-stack-first (avl-tree-stack &optional nilflag) + "Return the first element of AVL-TREE-STACK, without removing it from stack. + +Returns nil if the stack is empty, or NILFLAG if specified. +\(The latter allows an empty stack to be distinguished from +a null element stored in the AVL tree.)" + (or (car (avl-tree--stack-store avl-tree-stack)) + nilflag)) + + +(defun avl-tree-stack-empty-p (avl-tree-stack) + "Return t if AVL-TREE-STACK is empty, nil otherwise." + (null (avl-tree--stack-store avl-tree-stack))) + + +(iter-defun avl-tree-iter (tree &optional reverse) + "Return an AVL tree iterator object. + +Calling `iter-next' on this object will retrieve the next element +from TREE. If REVERSE is non-nil, elements are returned in +reverse order. + +Note that any modification to TREE *immediately* invalidates all +iterators created from TREE before the modification (in +particular, calling `iter-next' will give unpredictable results)." + (let ((stack (avl-tree-stack tree reverse))) + (while (not (avl-tree-stack-empty-p stack)) + (iter-yield (avl-tree-stack-pop stack))))) + + +(provide 'avl-tree) + +;;; avl-tree.el ends here |