summaryrefslogtreecommitdiff
path: root/lisp/emacs-lisp/avl-tree.el
diff options
context:
space:
mode:
Diffstat (limited to 'lisp/emacs-lisp/avl-tree.el')
-rw-r--r--lisp/emacs-lisp/avl-tree.el717
1 files changed, 457 insertions, 260 deletions
diff --git a/lisp/emacs-lisp/avl-tree.el b/lisp/emacs-lisp/avl-tree.el
index 63774bc229f..e8b7a1f9a8b 100644
--- a/lisp/emacs-lisp/avl-tree.el
+++ b/lisp/emacs-lisp/avl-tree.el
@@ -1,13 +1,14 @@
;;; avl-tree.el --- balanced binary trees, AVL-trees
-;; Copyright (C) 1995, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
+;; Copyright (C) 1995, 2007-2011 Free Software Foundation, Inc.
;; Author: Per Cederqvist <ceder@lysator.liu.se>
-;; Inge Wallin <inge@lysator.liu.se>
-;; Thomas Bellman <bellman@lysator.liu.se>
+;; Inge Wallin <inge@lysator.liu.se>
+;; Thomas Bellman <bellman@lysator.liu.se>
+;; Toby Cubitt <toby-predictive@dr-qubit.org>
;; Maintainer: FSF
;; Created: 10 May 1991
-;; Keywords: extensions, data structures
+;; Keywords: extensions, data structures, AVL, tree
;; This file is part of GNU Emacs.
@@ -26,14 +27,24 @@
;;; Commentary:
-;; An AVL tree is a nearly-perfect balanced binary tree. A tree consists of
-;; two elements, the root node and the compare function. The actual tree
-;; has a dummy node as its root with the real root in the left pointer.
+;; An AVL tree is a self-balancing binary tree. As such, inserting,
+;; deleting, and retrieving data from an AVL tree containing n elements
+;; is O(log n). It is somewhat more rigidly balanced than other
+;; self-balancing binary trees (such as red-black trees and AA trees),
+;; making insertion slighty slower, deletion somewhat slower, and
+;; retrieval somewhat faster (the asymptotic scaling is of course the
+;; same for all types). Thus it may be a good choice when the tree will
+;; be relatively static, i.e. data will be retrieved more often than
+;; they are modified.
+;;
+;; Internally, a tree consists of two elements, the root node and the
+;; comparison function. The actual tree has a dummy node as its root
+;; with the real root in the left pointer, which allows the root node to
+;; be treated on a par with all other nodes.
;;
;; Each node of the tree consists of one data element, one left
-;; sub-tree and one right sub-tree. Each node also has a balance
-;; count, which is the difference in depth of the left and right
-;; sub-trees.
+;; sub-tree, one right sub-tree, and a balance count. The latter is the
+;; difference in depth of the left and right sub-trees.
;;
;; The functions with names of the form "avl-tree--" are intended for
;; internal use only.
@@ -42,43 +53,21 @@
(eval-when-compile (require 'cl))
-;; ================================================================
-;;; Functions and macros handling an AVL tree node.
-(defstruct (avl-tree--node
- ;; We force a representation without tag so it matches the
- ;; pre-defstruct representation. Also we use the underlying
- ;; representation in the implementation of avl-tree--node-branch.
- (:type vector)
- (:constructor nil)
- (:constructor avl-tree--node-create (left right data balance))
- (:copier nil))
- left right data balance)
-(defalias 'avl-tree--node-branch 'aref
- ;; This implementation is efficient but breaks the defstruct abstraction.
- ;; An alternative could be
- ;; (funcall (aref [avl-tree-left avl-tree-right avl-tree-data] branch) node)
- "Get value of a branch of a node.
+;; ================================================================
+;;; Internal functions and macros for use in the AVL tree package
-NODE is the node, and BRANCH is the branch.
-0 for left pointer, 1 for right pointer and 2 for the data.\"
-\(fn node branch)")
-;; The funcall/aref trick doesn't work for the setf method, unless we try
-;; and access the underlying setter function, but this wouldn't be
-;; portable either.
-(defsetf avl-tree--node-branch aset)
-
-;; ================================================================
-;;; Internal functions for use in the AVL tree package
+;; ----------------------------------------------------------------
+;; Functions and macros handling an AVL tree.
(defstruct (avl-tree-
;; A tagged list is the pre-defstruct representation.
;; (:type list)
:named
(:constructor nil)
- (:constructor avl-tree-create (cmpfun))
+ (:constructor avl-tree--create (cmpfun))
(:predicate avl-tree-p)
(:copier nil))
(dummyroot (avl-tree--node-create nil nil nil 0))
@@ -86,272 +75,304 @@ NODE is the node, and BRANCH is the branch.
(defmacro avl-tree--root (tree)
;; Return the root node for an avl-tree. INTERNAL USE ONLY.
- `(avl-tree--node-left (avl-tree--dummyroot tree)))
+ `(avl-tree--node-left (avl-tree--dummyroot ,tree)))
+
(defsetf avl-tree--root (tree) (node)
`(setf (avl-tree--node-left (avl-tree--dummyroot ,tree)) ,node))
+
+
;; ----------------------------------------------------------------
-;; Deleting data
+;; Functions and macros handling an AVL tree node.
-(defun avl-tree--del-balance1 (node branch)
- ;; Rebalance a tree and return t if the height of the tree has shrunk.
- (let ((br (avl-tree--node-branch node branch))
- p1 b1 p2 b2 result)
- (cond
- ((< (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-balance br) 0)
- t)
+(defstruct (avl-tree--node
+ ;; We force a representation without tag so it matches the
+ ;; pre-defstruct representation. Also we use the underlying
+ ;; representation in the implementation of
+ ;; avl-tree--node-branch.
+ (:type vector)
+ (:constructor nil)
+ (:constructor avl-tree--node-create (left right data balance))
+ (:copier nil))
+ left right data balance)
- ((= (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-balance br) +1)
- nil)
- (t
- ;; Rebalance.
- (setq p1 (avl-tree--node-right br)
- b1 (avl-tree--node-balance p1))
- (if (>= b1 0)
- ;; Single RR rotation.
- (progn
- (setf (avl-tree--node-right br) (avl-tree--node-left p1))
- (setf (avl-tree--node-left p1) br)
- (if (= 0 b1)
- (progn
- (setf (avl-tree--node-balance br) +1)
- (setf (avl-tree--node-balance p1) -1)
- (setq result nil))
- (setf (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-balance p1) 0)
- (setq result t))
- (setf (avl-tree--node-branch node branch) p1)
- result)
-
- ;; Double RL rotation.
- (setq p2 (avl-tree--node-left p1)
- b2 (avl-tree--node-balance p2))
- (setf (avl-tree--node-left p1) (avl-tree--node-right p2))
- (setf (avl-tree--node-right p2) p1)
- (setf (avl-tree--node-right br) (avl-tree--node-left p2))
- (setf (avl-tree--node-left p2) br)
- (setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
- (setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
- (setf (avl-tree--node-branch node branch) p2)
- (setf (avl-tree--node-balance p2) 0)
- t)))))
+(defalias 'avl-tree--node-branch 'aref
+ ;; This implementation is efficient but breaks the defstruct
+ ;; abstraction. An alternative could be (funcall (aref [avl-tree-left
+ ;; avl-tree-right avl-tree-data] branch) node)
+ "Get value of a branch of a node.
+NODE is the node, and BRANCH is the branch.
+0 for left pointer, 1 for right pointer and 2 for the data.")
+
-(defun avl-tree--del-balance2 (node branch)
+;; The funcall/aref trick wouldn't work for the setf method, unless we
+;; tried to access the underlying setter function, but this wouldn't be
+;; portable either.
+(defsetf avl-tree--node-branch aset)
+
+
+
+;; ----------------------------------------------------------------
+;; Convenience macros
+
+(defmacro avl-tree--switch-dir (dir)
+ "Return opposite direction to DIR (0 = left, 1 = right)."
+ `(- 1 ,dir))
+
+(defmacro avl-tree--dir-to-sign (dir)
+ "Convert direction (0,1) to sign factor (-1,+1)."
+ `(1- (* 2 ,dir)))
+
+(defmacro avl-tree--sign-to-dir (dir)
+ "Convert sign factor (-x,+x) to direction (0,1)."
+ `(if (< ,dir 0) 0 1))
+
+
+;; ----------------------------------------------------------------
+;; Deleting data
+
+(defun avl-tree--del-balance (node branch dir)
+ "Rebalance a tree after deleting a node.
+The deletion was done from the left (DIR=0) or right (DIR=1) sub-tree of the
+left (BRANCH=0) or right (BRANCH=1) child of NODE.
+Return t if the height of the tree has shrunk."
+ ;; (or is it vice-versa for BRANCH?)
(let ((br (avl-tree--node-branch node branch))
- p1 b1 p2 b2 result)
+ ;; opposite direction: 0,1 -> 1,0
+ (opp (avl-tree--switch-dir dir))
+ ;; direction 0,1 -> sign factor -1,+1
+ (sgn (avl-tree--dir-to-sign dir))
+ p1 b1 p2 b2)
(cond
- ((> (avl-tree--node-balance br) 0)
+ ((> (* sgn (avl-tree--node-balance br)) 0)
(setf (avl-tree--node-balance br) 0)
t)
((= (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-balance br) -1)
+ (setf (avl-tree--node-balance br) (- sgn))
nil)
(t
;; Rebalance.
- (setq p1 (avl-tree--node-left br)
+ (setq p1 (avl-tree--node-branch br opp)
b1 (avl-tree--node-balance p1))
- (if (<= b1 0)
- ;; Single LL rotation.
+ (if (<= (* sgn b1) 0)
+ ;; Single rotation.
(progn
- (setf (avl-tree--node-left br) (avl-tree--node-right p1))
- (setf (avl-tree--node-right p1) br)
+ (setf (avl-tree--node-branch br opp)
+ (avl-tree--node-branch p1 dir)
+ (avl-tree--node-branch p1 dir) br
+ (avl-tree--node-branch node branch) p1)
(if (= 0 b1)
(progn
- (setf (avl-tree--node-balance br) -1)
- (setf (avl-tree--node-balance p1) +1)
- (setq result nil))
+ (setf (avl-tree--node-balance br) (- sgn)
+ (avl-tree--node-balance p1) sgn)
+ nil) ; height hasn't changed
(setf (avl-tree--node-balance br) 0)
(setf (avl-tree--node-balance p1) 0)
- (setq result t))
- (setf (avl-tree--node-branch node branch) p1)
- result)
-
- ;; Double LR rotation.
- (setq p2 (avl-tree--node-right p1)
- b2 (avl-tree--node-balance p2))
- (setf (avl-tree--node-right p1) (avl-tree--node-left p2))
- (setf (avl-tree--node-left p2) p1)
- (setf (avl-tree--node-left br) (avl-tree--node-right p2))
- (setf (avl-tree--node-right p2) br)
- (setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
- (setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
- (setf (avl-tree--node-branch node branch) p2)
- (setf (avl-tree--node-balance p2) 0)
+ t)) ; height has changed
+
+ ;; Double rotation.
+ (setf p2 (avl-tree--node-branch p1 dir)
+ b2 (avl-tree--node-balance p2)
+ (avl-tree--node-branch p1 dir)
+ (avl-tree--node-branch p2 opp)
+ (avl-tree--node-branch p2 opp) p1
+ (avl-tree--node-branch br opp)
+ (avl-tree--node-branch p2 dir)
+ (avl-tree--node-branch p2 dir) br
+ (avl-tree--node-balance br)
+ (if (< (* sgn b2) 0) sgn 0)
+ (avl-tree--node-balance p1)
+ (if (> (* sgn b2) 0) (- sgn) 0)
+ (avl-tree--node-branch node branch) p2
+ (avl-tree--node-balance p2) 0)
t)))))
(defun avl-tree--do-del-internal (node branch q)
(let ((br (avl-tree--node-branch node branch)))
(if (avl-tree--node-right br)
- (if (avl-tree--do-del-internal br +1 q)
- (avl-tree--del-balance2 node branch))
- (setf (avl-tree--node-data q) (avl-tree--node-data br))
- (setf (avl-tree--node-branch node branch)
- (avl-tree--node-left br))
+ (if (avl-tree--do-del-internal br 1 q)
+ (avl-tree--del-balance node branch 1))
+ (setf (avl-tree--node-data q) (avl-tree--node-data br)
+ (avl-tree--node-branch node branch)
+ (avl-tree--node-left br))
t)))
-(defun avl-tree--do-delete (cmpfun root branch data)
- ;; Return t if the height of the tree has shrunk.
+(defun avl-tree--do-delete (cmpfun root branch data test nilflag)
+ "Delete DATA from BRANCH of node ROOT.
+\(See `avl-tree-delete' for TEST and NILFLAG).
+
+Return cons cell (SHRUNK . DATA), where SHRUNK is t if the
+height of the tree has shrunk and nil otherwise, and DATA is
+the releted data."
(let ((br (avl-tree--node-branch root branch)))
(cond
+ ;; DATA not in tree.
((null br)
- nil)
+ (cons nil nilflag))
((funcall cmpfun data (avl-tree--node-data br))
- (if (avl-tree--do-delete cmpfun br 0 data)
- (avl-tree--del-balance1 root branch)))
+ (let ((ret (avl-tree--do-delete cmpfun br 0 data test nilflag)))
+ (cons (if (car ret) (avl-tree--del-balance root branch 0))
+ (cdr ret))))
((funcall cmpfun (avl-tree--node-data br) data)
- (if (avl-tree--do-delete cmpfun br 1 data)
- (avl-tree--del-balance2 root branch)))
-
- (t
- ;; Found it. Let's delete it.
- (cond
- ((null (avl-tree--node-right br))
- (setf (avl-tree--node-branch root branch) (avl-tree--node-left br))
- t)
+ (let ((ret (avl-tree--do-delete cmpfun br 1 data test nilflag)))
+ (cons (if (car ret) (avl-tree--del-balance root branch 1))
+ (cdr ret))))
+
+ (t ; Found it.
+ ;; if it fails TEST, do nothing
+ (if (and test (not (funcall test (avl-tree--node-data br))))
+ (cons nil nilflag)
+ (cond
+ ((null (avl-tree--node-right br))
+ (setf (avl-tree--node-branch root branch)
+ (avl-tree--node-left br))
+ (cons t (avl-tree--node-data br)))
+
+ ((null (avl-tree--node-left br))
+ (setf (avl-tree--node-branch root branch)
+ (avl-tree--node-right br))
+ (cons t (avl-tree--node-data br)))
+
+ (t
+ (if (avl-tree--do-del-internal br 0 br)
+ (cons (avl-tree--del-balance root branch 0)
+ (avl-tree--node-data br))
+ (cons nil (avl-tree--node-data br))))
+ ))))))
- ((null (avl-tree--node-left br))
- (setf (avl-tree--node-branch root branch) (avl-tree--node-right br))
- t)
- (t
- (if (avl-tree--do-del-internal br 0 br)
- (avl-tree--del-balance1 root branch))))))))
;; ----------------------------------------------------------------
;; Entering data
-(defun avl-tree--enter-balance1 (node branch)
- ;; Rebalance a tree and return t if the height of the tree has grown.
+(defun avl-tree--enter-balance (node branch dir)
+ "Rebalance tree after an insertion
+into the left (DIR=0) or right (DIR=1) sub-tree of the
+left (BRANCH=0) or right (BRANCH=1) child of NODE.
+Return t if the height of the tree has grown."
(let ((br (avl-tree--node-branch node branch))
+ ;; opposite direction: 0,1 -> 1,0
+ (opp (avl-tree--switch-dir dir))
+ ;; direction 0,1 -> sign factor -1,+1
+ (sgn (avl-tree--dir-to-sign dir))
p1 p2 b2 result)
(cond
- ((< (avl-tree--node-balance br) 0)
+ ((< (* sgn (avl-tree--node-balance br)) 0)
(setf (avl-tree--node-balance br) 0)
nil)
((= (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-balance br) +1)
+ (setf (avl-tree--node-balance br) sgn)
t)
(t
;; Tree has grown => Rebalance.
- (setq p1 (avl-tree--node-right br))
- (if (> (avl-tree--node-balance p1) 0)
- ;; Single RR rotation.
+ (setq p1 (avl-tree--node-branch br dir))
+ (if (> (* sgn (avl-tree--node-balance p1)) 0)
+ ;; Single rotation.
(progn
- (setf (avl-tree--node-right br) (avl-tree--node-left p1))
- (setf (avl-tree--node-left p1) br)
+ (setf (avl-tree--node-branch br dir)
+ (avl-tree--node-branch p1 opp))
+ (setf (avl-tree--node-branch p1 opp) br)
(setf (avl-tree--node-balance br) 0)
(setf (avl-tree--node-branch node branch) p1))
- ;; Double RL rotation.
- (setq p2 (avl-tree--node-left p1)
- b2 (avl-tree--node-balance p2))
- (setf (avl-tree--node-left p1) (avl-tree--node-right p2))
- (setf (avl-tree--node-right p2) p1)
- (setf (avl-tree--node-right br) (avl-tree--node-left p2))
- (setf (avl-tree--node-left p2) br)
- (setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
- (setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
- (setf (avl-tree--node-branch node branch) p2))
- (setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
+ ;; Double rotation.
+ (setf p2 (avl-tree--node-branch p1 opp)
+ b2 (avl-tree--node-balance p2)
+ (avl-tree--node-branch p1 opp)
+ (avl-tree--node-branch p2 dir)
+ (avl-tree--node-branch p2 dir) p1
+ (avl-tree--node-branch br dir)
+ (avl-tree--node-branch p2 opp)
+ (avl-tree--node-branch p2 opp) br
+ (avl-tree--node-balance br)
+ (if (> (* sgn b2) 0) (- sgn) 0)
+ (avl-tree--node-balance p1)
+ (if (< (* sgn b2) 0) sgn 0)
+ (avl-tree--node-branch node branch) p2
+ (avl-tree--node-balance
+ (avl-tree--node-branch node branch)) 0))
nil))))
-(defun avl-tree--enter-balance2 (node branch)
- ;; Return t if the tree has grown.
- (let ((br (avl-tree--node-branch node branch))
- p1 p2 b2)
- (cond
- ((> (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-balance br) 0)
- nil)
-
- ((= (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-balance br) -1)
- t)
-
- (t
- ;; Balance was -1 => Rebalance.
- (setq p1 (avl-tree--node-left br))
- (if (< (avl-tree--node-balance p1) 0)
- ;; Single LL rotation.
- (progn
- (setf (avl-tree--node-left br) (avl-tree--node-right p1))
- (setf (avl-tree--node-right p1) br)
- (setf (avl-tree--node-balance br) 0)
- (setf (avl-tree--node-branch node branch) p1))
+(defun avl-tree--do-enter (cmpfun root branch data &optional updatefun)
+ "Enter DATA in BRANCH of ROOT node.
+\(See `avl-tree-enter' for UPDATEFUN).
- ;; Double LR rotation.
- (setq p2 (avl-tree--node-right p1)
- b2 (avl-tree--node-balance p2))
- (setf (avl-tree--node-right p1) (avl-tree--node-left p2))
- (setf (avl-tree--node-left p2) p1)
- (setf (avl-tree--node-left br) (avl-tree--node-right p2))
- (setf (avl-tree--node-right p2) br)
- (setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
- (setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
- (setf (avl-tree--node-branch node branch) p2))
- (setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
- nil))))
-
-(defun avl-tree--do-enter (cmpfun root branch data)
- ;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY.
+Return cons cell (GREW . DATA), where GREW is t if height
+of tree ROOT has grown and nil otherwise, and DATA is the
+inserted data."
(let ((br (avl-tree--node-branch root branch)))
(cond
((null br)
;; Data not in tree, insert it.
(setf (avl-tree--node-branch root branch)
(avl-tree--node-create nil nil data 0))
- t)
+ (cons t data))
((funcall cmpfun data (avl-tree--node-data br))
- (and (avl-tree--do-enter cmpfun br 0 data)
- (avl-tree--enter-balance2 root branch)))
+ (let ((ret (avl-tree--do-enter cmpfun br 0 data updatefun)))
+ (cons (and (car ret) (avl-tree--enter-balance root branch 0))
+ (cdr ret))))
((funcall cmpfun (avl-tree--node-data br) data)
- (and (avl-tree--do-enter cmpfun br 1 data)
- (avl-tree--enter-balance1 root branch)))
+ (let ((ret (avl-tree--do-enter cmpfun br 1 data updatefun)))
+ (cons (and (car ret) (avl-tree--enter-balance root branch 1))
+ (cdr ret))))
+ ;; Data already in tree, update it.
(t
- (setf (avl-tree--node-data br) data)
- nil))))
+ (let ((newdata
+ (if updatefun
+ (funcall updatefun data (avl-tree--node-data br))
+ data)))
+ (if (or (funcall cmpfun newdata data)
+ (funcall cmpfun data newdata))
+ (error "avl-tree-enter:\
+ updated data does not match existing data"))
+ (setf (avl-tree--node-data br) newdata)
+ (cons nil newdata)) ; return value
+ ))))
;; ----------------------------------------------------------------
-(defun avl-tree--mapc (map-function root)
- ;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
- ;; The function is applied in-order.
- ;;
- ;; Note: MAP-FUNCTION is applied to the node and not to the data itself.
- ;; INTERNAL USE ONLY.
+
+;;; INTERNAL USE ONLY
+(defun avl-tree--mapc (map-function root dir)
+ "Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
+The function is applied in-order, either ascending (DIR=0) or
+descending (DIR=1).
+
+Note: MAP-FUNCTION is applied to the node and not to the data
+itself."
(let ((node root)
(stack nil)
- (go-left t))
+ (go-dir t))
(push nil stack)
(while node
- (if (and go-left
- (avl-tree--node-left node))
- ;; Do the left subtree first.
+ (if (and go-dir
+ (avl-tree--node-branch node dir))
+ ;; Do the DIR subtree first.
(progn
(push node stack)
- (setq node (avl-tree--node-left node)))
+ (setq node (avl-tree--node-branch node dir)))
;; Apply the function...
(funcall map-function node)
- ;; and do the right subtree.
- (setq node (if (setq go-left (avl-tree--node-right node))
- (avl-tree--node-right node)
+ ;; and do the opposite subtree.
+ (setq node (if (setq go-dir (avl-tree--node-branch
+ node (avl-tree--switch-dir dir)))
+ (avl-tree--node-branch
+ node (avl-tree--switch-dir dir))
(pop stack)))))))
+;;; INTERNAL USE ONLY
(defun avl-tree--do-copy (root)
- ;; Copy the avl tree with ROOT as root.
- ;; Highly recursive. INTERNAL USE ONLY.
+ "Copy the avl tree with ROOT as root. Highly recursive."
(if (null root)
nil
(avl-tree--node-create
@@ -360,10 +381,40 @@ NODE is the node, and BRANCH is the branch.
(avl-tree--node-data root)
(avl-tree--node-balance root))))
-
+(defstruct (avl-tree--stack
+ (:constructor nil)
+ (:constructor avl-tree--stack-create
+ (tree &optional reverse
+ &aux
+ (store
+ (if (avl-tree-empty tree)
+ nil
+ (list (avl-tree--root tree))))))
+ (:copier nil))
+ reverse store)
+
+(defalias 'avl-tree-stack-p 'avl-tree--stack-p
+ "Return t if argument is an avl-tree-stack, nil otherwise.")
+
+(defun avl-tree--stack-repopulate (stack)
+ ;; Recursively push children of the node at the head of STACK onto the
+ ;; front of the STACK, until a leaf is reached.
+ (let ((node (car (avl-tree--stack-store stack)))
+ (dir (if (avl-tree--stack-reverse stack) 1 0)))
+ (when node ; check for emtpy stack
+ (while (setq node (avl-tree--node-branch node dir))
+ (push node (avl-tree--stack-store stack))))))
+
+
;; ================================================================
;;; The public functions which operate on AVL trees.
+;; define public alias for constructors so that we can set docstring
+(defalias 'avl-tree-create 'avl-tree--create
+ "Create an empty avl tree.
+COMPARE-FUNCTION is a function which takes two arguments, A and B,
+and returns non-nil if A is less than B, and nil otherwise.")
+
(defalias 'avl-tree-compare-function 'avl-tree--cmpfun
"Return the comparison function for the avl tree TREE.
@@ -373,53 +424,142 @@ NODE is the node, and BRANCH is the branch.
"Return t if avl tree TREE is emtpy, otherwise return nil."
(null (avl-tree--root tree)))
-(defun avl-tree-enter (tree data)
- "In the avl tree TREE insert DATA.
-Return DATA."
- (avl-tree--do-enter (avl-tree--cmpfun tree)
- (avl-tree--dummyroot tree)
- 0
- data)
- data)
-
-(defun avl-tree-delete (tree data)
- "From the avl tree TREE, delete DATA.
-Return the element in TREE which matched DATA,
-nil if no element matched."
- (avl-tree--do-delete (avl-tree--cmpfun tree)
- (avl-tree--dummyroot tree)
- 0
- data))
-
-(defun avl-tree-member (tree data)
+(defun avl-tree-enter (tree data &optional updatefun)
+ "Insert DATA into the avl tree TREE.
+
+If an element that matches DATA (according to the tree's
+comparison function, see `avl-tree-create') already exists in
+TREE, it will be replaced by DATA by default.
+
+If UPDATEFUN is supplied and an element matching DATA already
+exists in TREE, UPDATEFUN is called with two arguments: DATA, and
+the matching element. Its return value replaces the existing
+element. This value *must* itself match DATA (and hence the
+pre-existing data), or an error will occur.
+
+Returns the new data."
+ (cdr (avl-tree--do-enter (avl-tree--cmpfun tree)
+ (avl-tree--dummyroot tree)
+ 0 data updatefun)))
+
+(defun avl-tree-delete (tree data &optional test nilflag)
+ "Delete the element matching DATA from the avl tree TREE.
+Matching uses the comparison function previously specified in
+`avl-tree-create' when TREE was created.
+
+Returns the deleted element, or nil if no matching element was
+found.
+
+Optional argument NILFLAG specifies a value to return instead of
+nil if nothing was deleted, so that this case can be
+distinguished from the case of a successfully deleted null
+element.
+
+If supplied, TEST specifies a test that a matching element must
+pass before it is deleted. If a matching element is found, it is
+passed as an argument to TEST, and is deleted only if the return
+value is non-nil."
+ (cdr (avl-tree--do-delete (avl-tree--cmpfun tree)
+ (avl-tree--dummyroot tree)
+ 0 data test nilflag)))
+
+
+(defun avl-tree-member (tree data &optional nilflag)
"Return the element in the avl tree TREE which matches DATA.
-Matching uses the compare function previously specified in
+Matching uses the comparison function previously specified in
`avl-tree-create' when TREE was created.
-If there is no such element in the tree, the value is nil."
+If there is no such element in the tree, nil is
+returned. Optional argument NILFLAG specifies a value to return
+instead of nil in this case. This allows non-existent elements to
+be distinguished from a null element. (See also
+`avl-tree-member-p', which does this for you.)"
(let ((node (avl-tree--root tree))
- (compare-function (avl-tree--cmpfun tree))
- found)
- (while (and node
- (not found))
- (cond
- ((funcall compare-function data (avl-tree--node-data node))
- (setq node (avl-tree--node-left node)))
- ((funcall compare-function (avl-tree--node-data node) data)
- (setq node (avl-tree--node-right node)))
- (t
- (setq found t))))
- (if node
- (avl-tree--node-data node)
- nil)))
-
-(defun avl-tree-map (__map-function__ tree)
- "Apply __MAP-FUNCTION__ to all elements in the avl tree TREE."
+ (compare-function (avl-tree--cmpfun tree)))
+ (catch 'found
+ (while node
+ (cond
+ ((funcall compare-function data (avl-tree--node-data node))
+ (setq node (avl-tree--node-left node)))
+ ((funcall compare-function (avl-tree--node-data node) data)
+ (setq node (avl-tree--node-right node)))
+ (t (throw 'found (avl-tree--node-data node)))))
+ nilflag)))
+
+
+(defun avl-tree-member-p (tree data)
+ "Return t if an element matching DATA exists in the avl tree TREE,
+otherwise return nil. Matching uses the comparison function
+previously specified in `avl-tree-create' when TREE was created."
+ (let ((flag '(nil)))
+ (not (eq (avl-tree-member tree data flag) flag))))
+
+
+(defun avl-tree-map (__map-function__ tree &optional reverse)
+ "Modify all elements in the avl tree TREE by applying FUNCTION.
+
+Each element is replaced by the return value of FUNCTION applied
+to that element.
+
+FUNCTION is applied to the elements in ascending order, or
+descending order if REVERSE is non-nil."
(avl-tree--mapc
(lambda (node)
(setf (avl-tree--node-data node)
(funcall __map-function__ (avl-tree--node-data node))))
- (avl-tree--root tree)))
+ (avl-tree--root tree)
+ (if reverse 1 0)))
+
+
+(defun avl-tree-mapc (__map-function__ tree &optional reverse)
+ "Apply FUNCTION to all elements in avl tree TREE,
+for side-effect only.
+
+FUNCTION is applied to the elements in ascending order, or
+descending order if REVERSE is non-nil."
+ (avl-tree--mapc
+ (lambda (node)
+ (funcall __map-function__ (avl-tree--node-data node)))
+ (avl-tree--root tree)
+ (if reverse 1 0)))
+
+
+(defun avl-tree-mapf
+ (__map-function__ combinator tree &optional reverse)
+ "Apply FUNCTION to all elements in avl tree TREE,
+and combine the results using COMBINATOR.
+
+The FUNCTION is applied and the results are combined in ascending
+order, or descending order if REVERSE is non-nil."
+ (let (avl-tree-mapf--accumulate)
+ (avl-tree--mapc
+ (lambda (node)
+ (setq avl-tree-mapf--accumulate
+ (funcall combinator
+ (funcall __map-function__
+ (avl-tree--node-data node))
+ avl-tree-mapf--accumulate)))
+ (avl-tree--root tree)
+ (if reverse 0 1))
+ (nreverse avl-tree-mapf--accumulate)))
+
+
+(defun avl-tree-mapcar (__map-function__ tree &optional reverse)
+ "Apply FUNCTION to all elements in avl tree TREE,
+and make a list of the results.
+
+The FUNCTION is applied and the list constructed in ascending
+order, or descending order if REVERSE is non-nil.
+
+Note that if you don't care about the order in which FUNCTION is
+applied, just that the resulting list is in the correct order,
+then
+
+ (avl-tree-mapf function 'cons tree (not reverse))
+
+is more efficient."
+ (nreverse (avl-tree-mapf __map-function__ 'cons tree reverse)))
+
(defun avl-tree-first (tree)
"Return the first element in TREE, or nil if TREE is empty."
@@ -445,26 +585,83 @@ If there is no such element in the tree, the value is nil."
(defun avl-tree-flatten (tree)
"Return a sorted list containing all elements of TREE."
- (nreverse
(let ((treelist nil))
(avl-tree--mapc
(lambda (node) (push (avl-tree--node-data node) treelist))
- (avl-tree--root tree))
- treelist)))
+ (avl-tree--root tree) 1)
+ treelist))
(defun avl-tree-size (tree)
"Return the number of elements in TREE."
(let ((treesize 0))
(avl-tree--mapc
(lambda (data) (setq treesize (1+ treesize)))
- (avl-tree--root tree))
+ (avl-tree--root tree) 0)
treesize))
(defun avl-tree-clear (tree)
"Clear the avl tree TREE."
(setf (avl-tree--root tree) nil))
+
+(defun avl-tree-stack (tree &optional reverse)
+ "Return an object that behaves like a sorted stack
+of all elements of TREE.
+
+If REVERSE is non-nil, the stack is sorted in reverse order.
+\(See also `avl-tree-stack-pop'\).
+
+Note that any modification to TREE *immediately* invalidates all
+avl-tree-stacks created before the modification (in particular,
+calling `avl-tree-stack-pop' will give unpredictable results).
+
+Operations on these objects are significantly more efficient than
+constructing a real stack with `avl-tree-flatten' and using
+standard stack functions. As such, they can be useful in
+implementing efficient algorithms of AVL trees. However, in cases
+where mapping functions `avl-tree-mapc', `avl-tree-mapcar' or
+`avl-tree-mapf' would be sufficient, it is better to use one of
+those instead."
+ (let ((stack (avl-tree--stack-create tree reverse)))
+ (avl-tree--stack-repopulate stack)
+ stack))
+
+
+(defun avl-tree-stack-pop (avl-tree-stack &optional nilflag)
+ "Pop the first element from AVL-TREE-STACK.
+\(See also `avl-tree-stack'\).
+
+Returns nil if the stack is empty, or NILFLAG if specified. (The
+latter allows an empty stack to be distinguished from a null
+element stored in the AVL tree.)"
+ (let (node next)
+ (if (not (setq node (pop (avl-tree--stack-store avl-tree-stack))))
+ nilflag
+ (when (setq next
+ (avl-tree--node-branch
+ node
+ (if (avl-tree--stack-reverse avl-tree-stack) 0 1)))
+ (push next (avl-tree--stack-store avl-tree-stack))
+ (avl-tree--stack-repopulate avl-tree-stack))
+ (avl-tree--node-data node))))
+
+
+(defun avl-tree-stack-first (avl-tree-stack &optional nilflag)
+ "Return the first element of AVL-TREE-STACK, without removing it
+from the stack.
+
+Returns nil if the stack is empty, or NILFLAG if specified. (The
+latter allows an empty stack to be distinguished from a null
+element stored in the AVL tree.)"
+ (or (car (avl-tree--stack-store avl-tree-stack))
+ nilflag))
+
+
+(defun avl-tree-stack-empty-p (avl-tree-stack)
+ "Return t if AVL-TREE-STACK is empty, nil otherwise."
+ (null (avl-tree--stack-store avl-tree-stack)))
+
+
(provide 'avl-tree)
-;; arch-tag: 47e26701-43c9-4222-bd79-739eac6357a9
;;; avl-tree.el ends here