diff options
Diffstat (limited to 'lisp/emacs-lisp/avl-tree.el')
-rw-r--r-- | lisp/emacs-lisp/avl-tree.el | 472 |
1 files changed, 472 insertions, 0 deletions
diff --git a/lisp/emacs-lisp/avl-tree.el b/lisp/emacs-lisp/avl-tree.el new file mode 100644 index 00000000000..b8cf8362386 --- /dev/null +++ b/lisp/emacs-lisp/avl-tree.el @@ -0,0 +1,472 @@ +;;; avl-tree.el --- balanced binary trees, AVL-trees + +;; Copyright (C) 1995, 2007 Free Software Foundation, Inc. + +;; Author: Per Cederqvist <ceder@lysator.liu.se> +;; Inge Wallin <inge@lysator.liu.se> +;; Thomas Bellman <bellman@lysator.liu.se> +;; Maintainer: FSF +;; Created: 10 May 1991 +;; Keywords: extensions, data structures + +;; This file is part of GNU Emacs. + +;; GNU Emacs is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 3, or (at your option) +;; any later version. + +;; GNU Emacs is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GNU Emacs; see the file COPYING. If not, write to the +;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +;; Boston, MA 02110-1301, USA. + +;;; Commentary: + +;; An AVL tree is a nearly-perfect balanced binary tree. A tree consists of +;; two elements, the root node and the compare function. The actual tree +;; has a dummy node as its root with the real root in the left pointer. +;; +;; Each node of the tree consists of one data element, one left +;; sub-tree and one right sub-tree. Each node also has a balance +;; count, which is the difference in depth of the left and right +;; sub-trees. +;; +;; The functions with names of the form "avl-tree--" are intended for +;; internal use only. + +;;; Code: + +(eval-when-compile (require 'cl)) + +;; ================================================================ +;;; Functions and macros handling an AVL tree node. + +(defstruct (avl-tree--node + ;; We force a representation without tag so it matches the + ;; pre-defstruct representation. Also we use the underlying + ;; representation in the implementation of avl-tree--node-branch. + (:type vector) + (:constructor nil) + (:constructor avl-tree--node-create (left right data balance)) + (:copier nil)) + left right data balance) + +(defalias 'avl-tree--node-branch 'aref + ;; This implementation is efficient but breaks the defstruct abstraction. + ;; An alternative could be + ;; (funcall (aref [avl-tree-left avl-tree-right avl-tree-data] branch) node) + "Get value of a branch of a node. + +NODE is the node, and BRANCH is the branch. +0 for left pointer, 1 for right pointer and 2 for the data.\" +\(fn node branch)") +;; The funcall/aref trick doesn't work for the setf method, unless we try +;; and access the underlying setter function, but this wouldn't be +;; portable either. +(defsetf avl-tree--node-branch aset) + + +;; ================================================================ +;;; Internal functions for use in the AVL tree package + +(defstruct (avl-tree- + ;; A tagged list is the pre-defstruct representation. + ;; (:type list) + :named + (:constructor nil) + (:constructor avl-tree-create (cmpfun)) + (:predicate avl-tree-p) + (:copier nil)) + (dummyroot (avl-tree--node-create nil nil nil 0)) + cmpfun) + +(defmacro avl-tree--root (tree) + ;; Return the root node for an avl-tree. INTERNAL USE ONLY. + `(avl-tree--node-left (avl-tree--dummyroot tree))) +(defsetf avl-tree--root (tree) (node) + `(setf (avl-tree--node-left (avl-tree--dummyroot ,tree)) ,node)) + +;; ---------------------------------------------------------------- +;; Deleting data + +(defun avl-tree--del-balance1 (node branch) + ;; Rebalance a tree and return t if the height of the tree has shrunk. + (let ((br (avl-tree--node-branch node branch)) + p1 b1 p2 b2 result) + (cond + ((< (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) 0) + t) + + ((= (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) +1) + nil) + + (t + ;; Rebalance. + (setq p1 (avl-tree--node-right br) + b1 (avl-tree--node-balance p1)) + (if (>= b1 0) + ;; Single RR rotation. + (progn + (setf (avl-tree--node-right br) (avl-tree--node-left p1)) + (setf (avl-tree--node-left p1) br) + (if (= 0 b1) + (progn + (setf (avl-tree--node-balance br) +1) + (setf (avl-tree--node-balance p1) -1) + (setq result nil)) + (setf (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance p1) 0) + (setq result t)) + (setf (avl-tree--node-branch node branch) p1) + result) + + ;; Double RL rotation. + (setq p2 (avl-tree--node-left p1) + b2 (avl-tree--node-balance p2)) + (setf (avl-tree--node-left p1) (avl-tree--node-right p2)) + (setf (avl-tree--node-right p2) p1) + (setf (avl-tree--node-right br) (avl-tree--node-left p2)) + (setf (avl-tree--node-left p2) br) + (setf (avl-tree--node-balance br) (if (> b2 0) -1 0)) + (setf (avl-tree--node-balance p1) (if (< b2 0) +1 0)) + (setf (avl-tree--node-branch node branch) p2) + (setf (avl-tree--node-balance p2) 0) + t))))) + +(defun avl-tree--del-balance2 (node branch) + (let ((br (avl-tree--node-branch node branch)) + p1 b1 p2 b2 result) + (cond + ((> (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) 0) + t) + + ((= (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) -1) + nil) + + (t + ;; Rebalance. + (setq p1 (avl-tree--node-left br) + b1 (avl-tree--node-balance p1)) + (if (<= b1 0) + ;; Single LL rotation. + (progn + (setf (avl-tree--node-left br) (avl-tree--node-right p1)) + (setf (avl-tree--node-right p1) br) + (if (= 0 b1) + (progn + (setf (avl-tree--node-balance br) -1) + (setf (avl-tree--node-balance p1) +1) + (setq result nil)) + (setf (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance p1) 0) + (setq result t)) + (setf (avl-tree--node-branch node branch) p1) + result) + + ;; Double LR rotation. + (setq p2 (avl-tree--node-right p1) + b2 (avl-tree--node-balance p2)) + (setf (avl-tree--node-right p1) (avl-tree--node-left p2)) + (setf (avl-tree--node-left p2) p1) + (setf (avl-tree--node-left br) (avl-tree--node-right p2)) + (setf (avl-tree--node-right p2) br) + (setf (avl-tree--node-balance br) (if (< b2 0) +1 0)) + (setf (avl-tree--node-balance p1) (if (> b2 0) -1 0)) + (setf (avl-tree--node-branch node branch) p2) + (setf (avl-tree--node-balance p2) 0) + t))))) + +(defun avl-tree--do-del-internal (node branch q) + (let ((br (avl-tree--node-branch node branch))) + (if (avl-tree--node-right br) + (if (avl-tree--do-del-internal br +1 q) + (avl-tree--del-balance2 node branch)) + (setf (avl-tree--node-data q) (avl-tree--node-data br)) + (setf (avl-tree--node-branch node branch) + (avl-tree--node-left br)) + t))) + +(defun avl-tree--do-delete (cmpfun root branch data) + ;; Return t if the height of the tree has shrunk. + (let ((br (avl-tree--node-branch root branch))) + (cond + ((null br) + nil) + + ((funcall cmpfun data (avl-tree--node-data br)) + (if (avl-tree--do-delete cmpfun br 0 data) + (avl-tree--del-balance1 root branch))) + + ((funcall cmpfun (avl-tree--node-data br) data) + (if (avl-tree--do-delete cmpfun br 1 data) + (avl-tree--del-balance2 root branch))) + + (t + ;; Found it. Let's delete it. + (cond + ((null (avl-tree--node-right br)) + (setf (avl-tree--node-branch root branch) (avl-tree--node-left br)) + t) + + ((null (avl-tree--node-left br)) + (setf (avl-tree--node-branch root branch) (avl-tree--node-right br)) + t) + + (t + (if (avl-tree--do-del-internal br 0 br) + (avl-tree--del-balance1 root branch)))))))) + +;; ---------------------------------------------------------------- +;; Entering data + +(defun avl-tree--enter-balance1 (node branch) + ;; Rebalance a tree and return t if the height of the tree has grown. + (let ((br (avl-tree--node-branch node branch)) + p1 p2 b2 result) + (cond + ((< (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) 0) + nil) + + ((= (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) +1) + t) + + (t + ;; Tree has grown => Rebalance. + (setq p1 (avl-tree--node-right br)) + (if (> (avl-tree--node-balance p1) 0) + ;; Single RR rotation. + (progn + (setf (avl-tree--node-right br) (avl-tree--node-left p1)) + (setf (avl-tree--node-left p1) br) + (setf (avl-tree--node-balance br) 0) + (setf (avl-tree--node-branch node branch) p1)) + + ;; Double RL rotation. + (setq p2 (avl-tree--node-left p1) + b2 (avl-tree--node-balance p2)) + (setf (avl-tree--node-left p1) (avl-tree--node-right p2)) + (setf (avl-tree--node-right p2) p1) + (setf (avl-tree--node-right br) (avl-tree--node-left p2)) + (setf (avl-tree--node-left p2) br) + (setf (avl-tree--node-balance br) (if (> b2 0) -1 0)) + (setf (avl-tree--node-balance p1) (if (< b2 0) +1 0)) + (setf (avl-tree--node-branch node branch) p2)) + (setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0) + nil)))) + +(defun avl-tree--enter-balance2 (node branch) + ;; Return t if the tree has grown. + (let ((br (avl-tree--node-branch node branch)) + p1 p2 b2) + (cond + ((> (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) 0) + nil) + + ((= (avl-tree--node-balance br) 0) + (setf (avl-tree--node-balance br) -1) + t) + + (t + ;; Balance was -1 => Rebalance. + (setq p1 (avl-tree--node-left br)) + (if (< (avl-tree--node-balance p1) 0) + ;; Single LL rotation. + (progn + (setf (avl-tree--node-left br) (avl-tree--node-right p1)) + (setf (avl-tree--node-right p1) br) + (setf (avl-tree--node-balance br) 0) + (setf (avl-tree--node-branch node branch) p1)) + + ;; Double LR rotation. + (setq p2 (avl-tree--node-right p1) + b2 (avl-tree--node-balance p2)) + (setf (avl-tree--node-right p1) (avl-tree--node-left p2)) + (setf (avl-tree--node-left p2) p1) + (setf (avl-tree--node-left br) (avl-tree--node-right p2)) + (setf (avl-tree--node-right p2) br) + (setf (avl-tree--node-balance br) (if (< b2 0) +1 0)) + (setf (avl-tree--node-balance p1) (if (> b2 0) -1 0)) + (setf (avl-tree--node-branch node branch) p2)) + (setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0) + nil)))) + +(defun avl-tree--do-enter (cmpfun root branch data) + ;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY. + (let ((br (avl-tree--node-branch root branch))) + (cond + ((null br) + ;; Data not in tree, insert it. + (setf (avl-tree--node-branch root branch) + (avl-tree--node-create nil nil data 0)) + t) + + ((funcall cmpfun data (avl-tree--node-data br)) + (and (avl-tree--do-enter cmpfun br 0 data) + (avl-tree--enter-balance2 root branch))) + + ((funcall cmpfun (avl-tree--node-data br) data) + (and (avl-tree--do-enter cmpfun br 1 data) + (avl-tree--enter-balance1 root branch))) + + (t + (setf (avl-tree--node-data br) data) + nil)))) + +;; ---------------------------------------------------------------- + +(defun avl-tree--mapc (map-function root) + ;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT. + ;; The function is applied in-order. + ;; + ;; Note: MAP-FUNCTION is applied to the node and not to the data itself. + ;; INTERNAL USE ONLY. + (let ((node root) + (stack nil) + (go-left t)) + (push nil stack) + (while node + (if (and go-left + (avl-tree--node-left node)) + ;; Do the left subtree first. + (progn + (push node stack) + (setq node (avl-tree--node-left node))) + ;; Apply the function... + (funcall map-function node) + ;; and do the right subtree. + (setq node (if (setq go-left (avl-tree--node-right node)) + (avl-tree--node-right node) + (pop stack))))))) + +(defun avl-tree--do-copy (root) + ;; Copy the avl tree with ROOT as root. + ;; Highly recursive. INTERNAL USE ONLY. + (if (null root) + nil + (avl-tree--node-create + (avl-tree--do-copy (avl-tree--node-left root)) + (avl-tree--do-copy (avl-tree--node-right root)) + (avl-tree--node-data root) + (avl-tree--node-balance root)))) + + +;; ================================================================ +;;; The public functions which operate on AVL trees. + +(defalias 'avl-tree-compare-function 'avl-tree--cmpfun + "Return the comparison function for the avl tree TREE. + +\(fn TREE)") + +(defun avl-tree-empty (tree) + "Return t if avl tree TREE is emtpy, otherwise return nil." + (null (avl-tree--root tree))) + +(defun avl-tree-enter (tree data) + "In the avl tree TREE insert DATA. +Return DATA." + (avl-tree--do-enter (avl-tree--cmpfun tree) + (avl-tree--dummyroot tree) + 0 + data) + data) + +(defun avl-tree-delete (tree data) + "From the avl tree TREE, delete DATA. +Return the element in TREE which matched DATA, +nil if no element matched." + (avl-tree--do-delete (avl-tree--cmpfun tree) + (avl-tree--dummyroot tree) + 0 + data)) + +(defun avl-tree-member (tree data) + "Return the element in the avl tree TREE which matches DATA. +Matching uses the compare function previously specified in +`avl-tree-create' when TREE was created. + +If there is no such element in the tree, the value is nil." + (let ((node (avl-tree--root tree)) + (compare-function (avl-tree--cmpfun tree)) + found) + (while (and node + (not found)) + (cond + ((funcall compare-function data (avl-tree--node-data node)) + (setq node (avl-tree--node-left node))) + ((funcall compare-function (avl-tree--node-data node) data) + (setq node (avl-tree--node-right node))) + (t + (setq found t)))) + (if node + (avl-tree--node-data node) + nil))) + +(defun avl-tree-map (__map-function__ tree) + "Apply __MAP-FUNCTION__ to all elements in the avl tree TREE." + (avl-tree--mapc + (lambda (node) + (setf (avl-tree--node-data node) + (funcall __map-function__ (avl-tree--node-data node)))) + (avl-tree--root tree))) + +(defun avl-tree-first (tree) + "Return the first element in TREE, or nil if TREE is empty." + (let ((node (avl-tree--root tree))) + (when node + (while (avl-tree--node-left node) + (setq node (avl-tree--node-left node))) + (avl-tree--node-data node)))) + +(defun avl-tree-last (tree) + "Return the last element in TREE, or nil if TREE is empty." + (let ((node (avl-tree--root tree))) + (when node + (while (avl-tree--node-right node) + (setq node (avl-tree--node-right node))) + (avl-tree--node-data node)))) + +(defun avl-tree-copy (tree) + "Return a copy of the avl tree TREE." + (let ((new-tree (avl-tree-create (avl-tree--cmpfun tree)))) + (setf (avl-tree--root new-tree) (avl-tree--do-copy (avl-tree--root tree))) + new-tree)) + +(defun avl-tree-flatten (tree) + "Return a sorted list containing all elements of TREE." + (nreverse + (let ((treelist nil)) + (avl-tree--mapc + (lambda (node) (push (avl-tree--node-data node) treelist)) + (avl-tree--root tree)) + treelist))) + +(defun avl-tree-size (tree) + "Return the number of elements in TREE." + (let ((treesize 0)) + (avl-tree--mapc + (lambda (data) (setq treesize (1+ treesize))) + (avl-tree--root tree)) + treesize)) + +(defun avl-tree-clear (tree) + "Clear the avl tree TREE." + (setf (avl-tree--root tree) nil)) + +(provide 'avl-tree) + +;; arch-tag: 47e26701-43c9-4222-bd79-739eac6357a9 +;;; avl-tree.el ends here |