diff options
Diffstat (limited to 'lisp/emacs-lisp/cl-seq.el')
-rw-r--r-- | lisp/emacs-lisp/cl-seq.el | 1068 |
1 files changed, 563 insertions, 505 deletions
diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el index 7a79488f1f5..33f14df0291 100644 --- a/lisp/emacs-lisp/cl-seq.el +++ b/lisp/emacs-lisp/cl-seq.el @@ -47,7 +47,7 @@ ;; This is special-cased here so that we can compile ;; this file independent from cl-macs. -(defmacro cl--parsing-keywords (kwords other-keys &rest body) +(defmacro cl--parsing-keywords (keywords other-keys &rest body) (declare (indent 2) (debug (sexp sexp &rest form))) `(let* ,(mapcar (lambda (x) @@ -59,26 +59,22 @@ (setq mem `(and ,mem (setq cl-if ,mem) t))) (list (intern (format "cl-%s" (substring (symbol-name var) 1))) - (if (consp x) `(or ,mem ,(car (cdr x))) mem)))) - kwords) + (if (consp x) `(or ,mem ,(cadr x)) mem)))) + keywords) ,@(append (and (not (eq other-keys t)) - (list - (list 'let '((cl-keys-temp cl-keys)) - (list 'while 'cl-keys-temp - (list 'or (list 'memq '(car cl-keys-temp) - (list 'quote - (mapcar - (lambda (x) - (if (consp x) - (car x) x)) - (append kwords - other-keys)))) - '(car (cdr (memq (quote :allow-other-keys) - cl-keys))) - '(error "Bad keyword argument %s" - (car cl-keys-temp))) - '(setq cl-keys-temp (cdr (cdr cl-keys-temp))))))) + `((let ((cl-keys-temp cl-keys)) + (while cl-keys-temp + (or (memq (car cl-keys-temp) + (quote ,(mapcar + (lambda (x) + (if (consp x) + (car x) x)) + (append keywords other-keys)))) + (cadr (memq :allow-other-keys cl-keys)) + (error "Bad keyword argument %s" + (car cl-keys-temp))) + (setq cl-keys-temp (cddr cl-keys-temp)))))) body))) (defmacro cl--check-key (x) ;Expects `cl-key' in context of generated code. @@ -115,11 +111,12 @@ (defun cl-endp (x) "Return true if X is the empty list; false if it is a cons. Signal an error if X is not a list." + (declare (side-effect-free t)) (cl-check-type x list) (null x)) ;;;###autoload -(defun cl-reduce (cl-func cl-seq &rest cl-keys) +(defun cl-reduce (func seq &rest cl-keys) "Reduce two-argument FUNCTION across SEQ. \nKeywords supported: :start :end :from-end :initial-value :key @@ -144,909 +141,970 @@ the SEQ moving forward, and the order of arguments to the FUNCTION is also reversed. \n(fn FUNCTION SEQ [KEYWORD VALUE]...)" + (declare (important-return-value t)) (cl--parsing-keywords (:from-end (:start 0) :end :initial-value :key) () - (or (listp cl-seq) (setq cl-seq (append cl-seq nil))) - (setq cl-seq (cl-subseq cl-seq cl-start cl-end)) - (if cl-from-end (setq cl-seq (nreverse cl-seq))) - (let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value) - (cl-seq (cl--check-key (pop cl-seq))) - (t (funcall cl-func))))) + (or (listp seq) (setq seq (append seq nil))) + (setq seq (cl-subseq seq cl-start cl-end)) + (if cl-from-end (setq seq (nreverse seq))) + (let ((accum (cond ((memq :initial-value cl-keys) cl-initial-value) + (seq (cl--check-key (pop seq))) + (t (funcall func))))) (if cl-from-end - (while cl-seq - (setq cl-accum (funcall cl-func (cl--check-key (pop cl-seq)) - cl-accum))) - (while cl-seq - (setq cl-accum (funcall cl-func cl-accum - (cl--check-key (pop cl-seq)))))) - cl-accum))) + (while seq + (setq accum (funcall func (cl--check-key (pop seq)) + accum))) + (while seq + (setq accum (funcall func accum + (cl--check-key (pop seq)))))) + accum))) ;;;###autoload -(defun cl-fill (cl-seq cl-item &rest cl-keys) +(defun cl-fill (seq item &rest cl-keys) "Fill the elements of SEQ with ITEM. \nKeywords supported: :start :end \n(fn SEQ ITEM [KEYWORD VALUE]...)" (cl--parsing-keywords ((:start 0) :end) () - (if (listp cl-seq) - (let ((p (nthcdr cl-start cl-seq)) + (if (listp seq) + (let ((p (nthcdr cl-start seq)) (n (and cl-end (- cl-end cl-start)))) - (while (and p (or (null n) (>= (cl-decf n) 0))) - (setcar p cl-item) + (while (and p (or (null n) (>= (decf n) 0))) + (setcar p item) (setq p (cdr p)))) - (or cl-end (setq cl-end (length cl-seq))) - (if (and (= cl-start 0) (= cl-end (length cl-seq))) - (fillarray cl-seq cl-item) + (or cl-end (setq cl-end (length seq))) + (if (and (= cl-start 0) (= cl-end (length seq))) + (fillarray seq item) (while (< cl-start cl-end) - (aset cl-seq cl-start cl-item) + (aset seq cl-start item) (setq cl-start (1+ cl-start))))) - cl-seq)) + seq)) ;;;###autoload -(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-replace (seq1 seq2 &rest cl-keys) "Replace the elements of SEQ1 with the elements of SEQ2. SEQ1 is destructively modified, then returned. \nKeywords supported: :start1 :end1 :start2 :end2 \n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" (cl--parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) () - (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1)) + (if (and (eq seq1 seq2) (<= cl-start2 cl-start1)) (or (= cl-start1 cl-start2) - (let* ((cl-len (length cl-seq1)) - (cl-n (min (- (or cl-end1 cl-len) cl-start1) - (- (or cl-end2 cl-len) cl-start2)))) - (while (>= (setq cl-n (1- cl-n)) 0) - (setf (elt cl-seq1 (+ cl-start1 cl-n)) - (elt cl-seq2 (+ cl-start2 cl-n)))))) - (if (listp cl-seq1) - (let ((cl-p1 (nthcdr cl-start1 cl-seq1)) - (cl-n1 (and cl-end1 (- cl-end1 cl-start1)))) - (if (listp cl-seq2) - (let ((cl-p2 (nthcdr cl-start2 cl-seq2)) - (cl-n (cond ((and cl-n1 cl-end2) - (min cl-n1 (- cl-end2 cl-start2))) - ((and cl-n1 (null cl-end2)) cl-n1) - ((and (null cl-n1) cl-end2) (- cl-end2 cl-start2))))) - (while (and cl-p1 cl-p2 (or (null cl-n) (>= (cl-decf cl-n) 0))) - (setcar cl-p1 (car cl-p2)) - (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))) - (setq cl-end2 (if (null cl-n1) - (or cl-end2 (length cl-seq2)) - (min (or cl-end2 (length cl-seq2)) - (+ cl-start2 cl-n1)))) - (while (and cl-p1 (< cl-start2 cl-end2)) - (setcar cl-p1 (aref cl-seq2 cl-start2)) - (setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2))))) - (setq cl-end1 (min (or cl-end1 (length cl-seq1)) - (+ cl-start1 (- (or cl-end2 (length cl-seq2)) + (let* ((len (length seq1)) + (n (min (- (or cl-end1 len) cl-start1) + (- (or cl-end2 len) cl-start2)))) + (while (>= (setq n (1- n)) 0) + (setf (elt seq1 (+ cl-start1 n)) + (elt seq2 (+ cl-start2 n)))))) + (if (listp seq1) + (let ((p1 (nthcdr cl-start1 seq1)) + (n1 (and cl-end1 (- cl-end1 cl-start1)))) + (if (listp seq2) + (let ((p2 (nthcdr cl-start2 seq2)) + (n (cond ((and n1 cl-end2) + (min n1 (- cl-end2 cl-start2))) + ((and n1 (null cl-end2)) n1) + ((and (null n1) cl-end2) (- cl-end2 cl-start2))))) + (while (and p1 p2 (or (null n) (>= (decf n) 0))) + (setcar p1 (car p2)) + (setq p1 (cdr p1) p2 (cdr p2)))) + (setq cl-end2 (if (null n1) + (or cl-end2 (length seq2)) + (min (or cl-end2 (length seq2)) + (+ cl-start2 n1)))) + (while (and p1 (< cl-start2 cl-end2)) + (setcar p1 (aref seq2 cl-start2)) + (setq p1 (cdr p1) cl-start2 (1+ cl-start2))))) + (setq cl-end1 (min (or cl-end1 (length seq1)) + (+ cl-start1 (- (or cl-end2 (length seq2)) cl-start2)))) - (if (listp cl-seq2) - (let ((cl-p2 (nthcdr cl-start2 cl-seq2))) + (if (listp seq2) + (let ((p2 (nthcdr cl-start2 seq2))) (while (< cl-start1 cl-end1) - (aset cl-seq1 cl-start1 (car cl-p2)) - (setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1)))) + (aset seq1 cl-start1 (car p2)) + (setq p2 (cdr p2) cl-start1 (1+ cl-start1)))) (while (< cl-start1 cl-end1) - (aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2)) + (aset seq1 cl-start1 (aref seq2 cl-start2)) (setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1)))))) - cl-seq1)) + seq1)) ;;;###autoload -(defun cl-remove (cl-item cl-seq &rest cl-keys) +(defun cl-remove (item seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end - (:start 0) :end) () - (let ((len (length cl-seq))) + (declare (important-return-value t)) + (cl--parsing-keywords ( :test :test-not :key :if :if-not :count :from-end + (:start 0) :end) () + (let ((len (length seq))) (if (<= (or cl-count (setq cl-count len)) 0) - cl-seq - (if (or (nlistp cl-seq) (and cl-from-end (< cl-count (/ len 2)))) - (let ((cl-i (cl--position cl-item cl-seq cl-start cl-end - cl-from-end))) - (if cl-i - (let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil) - (append (if cl-from-end - (list :end (1+ cl-i)) - (list :start cl-i)) - cl-keys)))) - (if (listp cl-seq) cl-res - (if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))) - cl-seq)) + seq + (if (or (nlistp seq) (and cl-from-end (< cl-count (/ len 2)))) + (let ((i (cl--position item seq cl-start cl-end + cl-from-end))) + (if i + (let ((res (apply #'cl-delete item (append seq nil) + (append (if cl-from-end + (list :end (1+ i)) + (list :start i)) + cl-keys)))) + (if (listp seq) res + (if (stringp seq) (concat res) (vconcat res)))) + seq)) (setq cl-end (- (or cl-end len) cl-start)) - (if (= cl-start 0) - (while (and cl-seq (> cl-end 0) - (cl--check-test cl-item (car cl-seq)) - (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) - (> (setq cl-count (1- cl-count)) 0)))) - (if (and (> cl-count 0) (> cl-end 0)) - (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq) - (setq cl-end (1- cl-end)) (cdr cl-seq)))) - (while (and cl-p (> cl-end 0) - (not (cl--check-test cl-item (car cl-p)))) - (setq cl-p (cdr cl-p) cl-end (1- cl-end))) - (if (and cl-p (> cl-end 0)) - (nconc (cl-ldiff cl-seq cl-p) - (if (= cl-count 1) (cdr cl-p) - (and (cdr cl-p) - (apply 'cl-delete cl-item - (copy-sequence (cdr cl-p)) - :start 0 :end (1- cl-end) - :count (1- cl-count) cl-keys)))) - cl-seq)) - cl-seq)))))) + (if (= cl-start 0) + (while (and seq (> cl-end 0) + (cl--check-test item (car seq)) + (setq cl-end (1- cl-end) seq (cdr seq)) + (> (setq cl-count (1- cl-count)) 0)))) + (if (and (> cl-count 0) (> cl-end 0)) + (let ((p (if (> cl-start 0) (nthcdr cl-start seq) + (setq cl-end (1- cl-end)) (cdr seq)))) + (while (and p (> cl-end 0) + (not (cl--check-test item (car p)))) + (setq p (cdr p) cl-end (1- cl-end))) + (if (and p (> cl-end 0)) + (nconc (cl-ldiff seq p) + (if (= cl-count 1) (cdr p) + (and (cdr p) + (apply #'cl-delete item + (copy-sequence (cdr p)) + :start 0 :end (1- cl-end) + :count (1- cl-count) cl-keys)))) + seq)) + seq)))))) ;;;###autoload -(defun cl-remove-if (cl-pred cl-list &rest cl-keys) +(defun cl-remove-if (pred list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-remove nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-remove nil list :if pred cl-keys)) ;;;###autoload -(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-remove-if-not (pred list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-remove nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-remove nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-delete (cl-item cl-seq &rest cl-keys) +(defun cl-delete (item seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end - (:start 0) :end) () - (let ((len (length cl-seq))) + (declare (important-return-value t)) + (cl--parsing-keywords ( :test :test-not :key :if :if-not :count :from-end + (:start 0) :end) () + (let ((len (length seq))) (if (<= (or cl-count (setq cl-count len)) 0) - cl-seq - (if (listp cl-seq) - (if (and cl-from-end (< cl-count (/ len 2))) - (let (cl-i) - (while (and (>= (setq cl-count (1- cl-count)) 0) - (setq cl-i (cl--position cl-item cl-seq cl-start - cl-end cl-from-end))) - (if (= cl-i 0) (setq cl-seq (cdr cl-seq)) - (let ((cl-tail (nthcdr (1- cl-i) cl-seq))) - (setcdr cl-tail (cdr (cdr cl-tail))))) - (setq cl-end cl-i)) - cl-seq) - (setq cl-end (- (or cl-end len) cl-start)) - (if (= cl-start 0) - (progn - (while (and cl-seq - (> cl-end 0) - (cl--check-test cl-item (car cl-seq)) - (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) - (> (setq cl-count (1- cl-count)) 0))) - (setq cl-end (1- cl-end))) - (setq cl-start (1- cl-start))) - (if (and (> cl-count 0) (> cl-end 0)) - (let ((cl-p (nthcdr cl-start cl-seq))) - (while (and (cdr cl-p) (> cl-end 0)) - (if (cl--check-test cl-item (car (cdr cl-p))) - (progn - (setcdr cl-p (cdr (cdr cl-p))) - (if (= (setq cl-count (1- cl-count)) 0) - (setq cl-end 1))) - (setq cl-p (cdr cl-p))) - (setq cl-end (1- cl-end))))) - cl-seq) - (apply 'cl-remove cl-item cl-seq cl-keys)))))) + seq + (if (listp seq) + (if (and cl-from-end (< cl-count (/ len 2))) + (let (i) + (while (and (>= (setq cl-count (1- cl-count)) 0) + (setq i (cl--position item seq cl-start + cl-end cl-from-end))) + (if (= i 0) (setq seq (cdr seq)) + (let ((tail (nthcdr (1- i) seq))) + (setcdr tail (cdr (cdr tail))))) + (setq cl-end i)) + seq) + (setq cl-end (- (or cl-end len) cl-start)) + (if (= cl-start 0) + (progn + (while (and seq + (> cl-end 0) + (cl--check-test item (car seq)) + (setq cl-end (1- cl-end) seq (cdr seq)) + (> (setq cl-count (1- cl-count)) 0))) + (setq cl-end (1- cl-end))) + (setq cl-start (1- cl-start))) + (if (and (> cl-count 0) (> cl-end 0)) + (let ((p (nthcdr cl-start seq))) + (while (and (cdr p) (> cl-end 0)) + (if (cl--check-test item (car (cdr p))) + (progn + (setcdr p (cdr (cdr p))) + (if (= (setq cl-count (1- cl-count)) 0) + (setq cl-end 1))) + (setq p (cdr p))) + (setq cl-end (1- cl-end))))) + seq) + (apply #'cl-remove item seq cl-keys)))))) ;;;###autoload -(defun cl-delete-if (cl-pred cl-list &rest cl-keys) +(defun cl-delete-if (pred list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-delete nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-delete nil list :if pred cl-keys)) ;;;###autoload -(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-delete-if-not (pred list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-delete nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-delete nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-remove-duplicates (cl-seq &rest cl-keys) +(defun cl-remove-duplicates (seq &rest cl-keys) "Return a copy of SEQ with all duplicate elements removed. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn SEQ [KEYWORD VALUE]...)" - (cl--delete-duplicates cl-seq cl-keys t)) + (declare (important-return-value t)) + (cl--delete-duplicates seq cl-keys t)) ;;;###autoload -(defun cl-delete-duplicates (cl-seq &rest cl-keys) +(defun cl-delete-duplicates (seq &rest cl-keys) "Remove all duplicate elements from SEQ (destructively). \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn SEQ [KEYWORD VALUE]...)" - (cl--delete-duplicates cl-seq cl-keys nil)) + (declare (important-return-value t)) + (cl--delete-duplicates seq cl-keys nil)) -(defun cl--delete-duplicates (cl-seq cl-keys cl-copy) - (if (listp cl-seq) +(defun cl--delete-duplicates (seq cl-keys copy) + (if (listp seq) (cl--parsing-keywords ;; We need to parse :if, otherwise `cl-if' is unbound. (:test :test-not :key (:start 0) :end :from-end :if) () (if cl-from-end - (let ((cl-p (nthcdr cl-start cl-seq)) cl-i) - (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) + (let ((p (nthcdr cl-start seq)) i) + (setq cl-end (- (or cl-end (length seq)) cl-start)) (while (> cl-end 1) - (setq cl-i 0) - (while (setq cl-i (cl--position (cl--check-key (car cl-p)) - (cdr cl-p) cl-i (1- cl-end))) - (if cl-copy (setq cl-seq (copy-sequence cl-seq) - cl-p (nthcdr cl-start cl-seq) cl-copy nil)) - (let ((cl-tail (nthcdr cl-i cl-p))) - (setcdr cl-tail (cdr (cdr cl-tail)))) + (setq i 0) + (while (setq i (cl--position (cl--check-key (car p)) + (cdr p) i (1- cl-end))) + (if copy (setq seq (copy-sequence seq) + p (nthcdr cl-start seq) copy nil)) + (let ((tail (nthcdr i p))) + (setcdr tail (cdr (cdr tail)))) (setq cl-end (1- cl-end))) - (setq cl-p (cdr cl-p) cl-end (1- cl-end) + (setq p (cdr p) cl-end (1- cl-end) cl-start (1+ cl-start))) - cl-seq) - (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) - (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1) - (cl--position (cl--check-key (car cl-seq)) - (cdr cl-seq) 0 (1- cl-end))) - (setq cl-seq (cdr cl-seq) cl-end (1- cl-end))) - (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq) - (setq cl-end (1- cl-end) cl-start 1) cl-seq))) - (while (and (cdr (cdr cl-p)) (> cl-end 1)) - (if (cl--position (cl--check-key (car (cdr cl-p))) - (cdr (cdr cl-p)) 0 (1- cl-end)) + seq) + (setq cl-end (- (or cl-end (length seq)) cl-start)) + (while (and (cdr seq) (= cl-start 0) (> cl-end 1) + (cl--position (cl--check-key (car seq)) + (cdr seq) 0 (1- cl-end))) + (setq seq (cdr seq) cl-end (1- cl-end))) + (let ((p (if (> cl-start 0) (nthcdr (1- cl-start) seq) + (setq cl-end (1- cl-end) cl-start 1) seq))) + (while (and (cdr (cdr p)) (> cl-end 1)) + (if (cl--position (cl--check-key (car (cdr p))) + (cdr (cdr p)) 0 (1- cl-end)) (progn - (if cl-copy (setq cl-seq (copy-sequence cl-seq) - cl-p (nthcdr (1- cl-start) cl-seq) - cl-copy nil)) - (setcdr cl-p (cdr (cdr cl-p)))) - (setq cl-p (cdr cl-p))) + (if copy (setq seq (copy-sequence seq) + p (nthcdr (1- cl-start) seq) + copy nil)) + (setcdr p (cdr (cdr p)))) + (setq p (cdr p))) (setq cl-end (1- cl-end) cl-start (1+ cl-start))) - cl-seq))) - (let ((cl-res (cl--delete-duplicates (append cl-seq nil) cl-keys nil))) - (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))) + seq))) + (let ((res (cl--delete-duplicates (append seq nil) cl-keys nil))) + (if (stringp seq) (concat res) (vconcat res))))) ;;;###autoload -(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys) +(defun cl-substitute (new old seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn NEW OLD SEQ [KEYWORD VALUE]...)" - (cl--parsing-keywords (:test :test-not :key :if :if-not :count - (:start 0) :end :from-end) () - (if (or (eq cl-old cl-new) + (declare (important-return-value t)) + (cl--parsing-keywords ( :test :test-not :key :if :if-not :count + (:start 0) :end :from-end) () + (if (or (eq old new) (<= (or cl-count (setq cl-from-end nil - cl-count (length cl-seq))) 0)) - cl-seq - (let ((cl-i (cl--position cl-old cl-seq cl-start cl-end))) - (if (not cl-i) - cl-seq - (setq cl-seq (copy-sequence cl-seq)) + cl-count (length seq))) 0)) + seq + (let ((i (cl--position old seq cl-start cl-end))) + (if (not i) + seq + (setq seq (copy-sequence seq)) (unless cl-from-end - (setf (elt cl-seq cl-i) cl-new) - (cl-incf cl-i) - (cl-decf cl-count)) - (apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count - :start cl-i cl-keys)))))) + (setf (elt seq i) new) + (incf i) + (decf cl-count)) + (apply #'cl-nsubstitute new old seq :count cl-count + :start i cl-keys)))))) ;;;###autoload -(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-substitute-if (new pred seq &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-substitute new nil seq :if pred cl-keys)) ;;;###autoload -(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-substitute-if-not (new pred seq &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-substitute new nil seq :if-not pred cl-keys)) ;;;###autoload -(defun cl-nsubstitute (cl-new cl-old seq &rest cl-keys) +(defun cl-nsubstitute (new old seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :test :test-not :key :count :start :end :from-end \n(fn NEW OLD SEQ [KEYWORD VALUE]...)" - (cl--parsing-keywords (:test :test-not :key :if :if-not :count - (:start 0) :end :from-end) () - (let* ((cl-seq (if (stringp seq) (string-to-vector seq) seq)) - (len (length cl-seq))) - (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count len)) 0) - (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count (/ len 2)))) - (let ((cl-p (nthcdr cl-start cl-seq))) - (setq cl-end (- (or cl-end len) cl-start)) - (while (and cl-p (> cl-end 0) (> cl-count 0)) - (if (cl--check-test cl-old (car cl-p)) - (progn - (setcar cl-p cl-new) - (setq cl-count (1- cl-count)))) - (setq cl-p (cdr cl-p) cl-end (1- cl-end)))) + (declare (important-return-value t)) + (cl--parsing-keywords ( :test :test-not :key :if :if-not :count + (:start 0) :end :from-end) () + (let* ((seq (if (stringp seq) (string-to-vector seq) seq)) + (len (length seq))) + (or (eq old new) (<= (or cl-count (setq cl-count len)) 0) + (if (and (listp seq) (or (not cl-from-end) (> cl-count (/ len 2)))) + (let ((p (nthcdr cl-start seq))) + (setq cl-end (- (or cl-end len) cl-start)) + (while (and p (> cl-end 0) (> cl-count 0)) + (if (cl--check-test old (car p)) + (progn + (setcar p new) + (setq cl-count (1- cl-count)))) + (setq p (cdr p) cl-end (1- cl-end)))) (or cl-end (setq cl-end len)) - (if cl-from-end - (while (and (< cl-start cl-end) (> cl-count 0)) - (setq cl-end (1- cl-end)) - (if (cl--check-test cl-old (elt cl-seq cl-end)) - (progn - (setf (elt cl-seq cl-end) cl-new) - (setq cl-count (1- cl-count))))) - (while (and (< cl-start cl-end) (> cl-count 0)) - (if (cl--check-test cl-old (aref cl-seq cl-start)) - (progn - (aset cl-seq cl-start cl-new) - (setq cl-count (1- cl-count)))) - (setq cl-start (1+ cl-start)))))) - (if (stringp seq) (concat cl-seq) cl-seq)))) + (if cl-from-end + (while (and (< cl-start cl-end) (> cl-count 0)) + (setq cl-end (1- cl-end)) + (if (cl--check-test old (elt seq cl-end)) + (progn + (setf (elt seq cl-end) new) + (setq cl-count (1- cl-count))))) + (while (and (< cl-start cl-end) (> cl-count 0)) + (if (cl--check-test old (aref seq cl-start)) + (progn + (aset seq cl-start new) + (setq cl-count (1- cl-count)))) + (setq cl-start (1+ cl-start)))))) + (if (stringp seq) (concat seq) seq)))) ;;;###autoload -(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-nsubstitute-if (new pred list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-nsubstitute new nil list :if pred cl-keys)) ;;;###autoload -(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-nsubstitute-if-not (new pred list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-nsubstitute new nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-find (cl-item cl-seq &rest cl-keys) +(defun cl-find (item seq &rest cl-keys) "Find the first occurrence of ITEM in SEQ. Return the matching ITEM, or nil if not found. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys))) - (and cl-pos (elt cl-seq cl-pos)))) + (declare (important-return-value t)) + (let ((pos (apply #'cl-position item seq cl-keys))) + (and pos (elt seq pos)))) ;;;###autoload -(defun cl-find-if (cl-pred cl-list &rest cl-keys) +(defun cl-find-if (pred list &rest cl-keys) "Find the first item satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-find nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-find nil list :if pred cl-keys)) ;;;###autoload -(defun cl-find-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-find-if-not (pred list &rest cl-keys) "Find the first item not satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-find nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-find nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-position (cl-item cl-seq &rest cl-keys) +(defun cl-position (item seq &rest cl-keys) "Find the first occurrence of ITEM in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (cl--parsing-keywords (:test :test-not :key :if :if-not - (:start 0) :end :from-end) () - (cl--position cl-item cl-seq cl-start cl-end cl-from-end))) - -(defun cl--position (cl-item cl-seq cl-start &optional cl-end cl-from-end) - (if (listp cl-seq) - (let ((cl-p (nthcdr cl-start cl-seq)) - cl-res) - (while (and cl-p (or (null cl-end) (< cl-start cl-end)) (or (null cl-res) cl-from-end)) - (if (cl--check-test cl-item (car cl-p)) - (setq cl-res cl-start)) - (setq cl-p (cdr cl-p) cl-start (1+ cl-start))) - cl-res) - (or cl-end (setq cl-end (length cl-seq))) - (if cl-from-end + (declare (important-return-value t)) + (cl--parsing-keywords ( :test :test-not :key :if :if-not + (:start 0) :end :from-end) () + (cl--position item seq cl-start cl-end cl-from-end))) + +(defun cl--position (item seq start &optional end from-end) + (if (listp seq) + (let ((p (nthcdr start seq)) + res) + (while (and p (or (null end) (< start end)) (or (null res) from-end)) + (if (cl--check-test item (car p)) + (setq res start)) + (setq p (cdr p) start (1+ start))) + res) + (or end (setq end (length seq))) + (if from-end (progn - (while (and (>= (setq cl-end (1- cl-end)) cl-start) - (not (cl--check-test cl-item (aref cl-seq cl-end))))) - (and (>= cl-end cl-start) cl-end)) - (while (and (< cl-start cl-end) - (not (cl--check-test cl-item (aref cl-seq cl-start)))) - (setq cl-start (1+ cl-start))) - (and (< cl-start cl-end) cl-start)))) + (while (and (>= (setq end (1- end)) start) + (not (cl--check-test item (aref seq end))))) + (and (>= end start) end)) + (while (and (< start end) + (not (cl--check-test item (aref seq start)))) + (setq start (1+ start))) + (and (< start end) start)))) ;;;###autoload -(defun cl-position-if (cl-pred cl-list &rest cl-keys) +(defun cl-position-if (pred list &rest cl-keys) "Find the first item satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-position nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-position nil list :if pred cl-keys)) ;;;###autoload -(defun cl-position-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-position-if-not (pred list &rest cl-keys) "Find the first item not satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-position nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-position nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-count (cl-item cl-seq &rest cl-keys) +(defun cl-count (item seq &rest cl-keys) "Count the number of occurrences of ITEM in SEQ. \nKeywords supported: :test :test-not :key :start :end \n(fn ITEM SEQ [KEYWORD VALUE]...)" + (declare (important-return-value t)) (cl--parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) () - (let ((cl-count 0) cl-x) - (or cl-end (setq cl-end (length cl-seq))) - (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq))) + (let ((count 0) x) + (or cl-end (setq cl-end (length seq))) + (if (consp seq) (setq seq (nthcdr cl-start seq))) (while (< cl-start cl-end) - (setq cl-x (if (consp cl-seq) (pop cl-seq) (aref cl-seq cl-start))) - (if (cl--check-test cl-item cl-x) (setq cl-count (1+ cl-count))) + (setq x (if (consp seq) (pop seq) (aref seq cl-start))) + (if (cl--check-test item x) (incf count)) (setq cl-start (1+ cl-start))) - cl-count))) + count))) ;;;###autoload -(defun cl-count-if (cl-pred cl-list &rest cl-keys) +(defun cl-count-if (pred list &rest cl-keys) "Count the number of items satisfying PREDICATE in SEQ. \nKeywords supported: :key :start :end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-count nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-count nil list :if pred cl-keys)) ;;;###autoload -(defun cl-count-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-count-if-not (pred list &rest cl-keys) "Count the number of items not satisfying PREDICATE in SEQ. \nKeywords supported: :key :start :end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'cl-count nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-count nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-mismatch (seq1 seq2 &rest cl-keys) "Compare SEQ1 with SEQ2, return index of first mismatching element. Return nil if the sequences match. If one sequence is a prefix of the other, the return value indicates the end of the shorter sequence. \nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end \n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" - (cl--parsing-keywords (:test :test-not :key :from-end - (:start1 0) :end1 (:start2 0) :end2) () - (or cl-end1 (setq cl-end1 (length cl-seq1))) - (or cl-end2 (setq cl-end2 (length cl-seq2))) + (declare (important-return-value t)) + (cl--parsing-keywords ( :test :test-not :key :from-end + (:start1 0) :end1 (:start2 0) :end2) () + (or cl-end1 (setq cl-end1 (length seq1))) + (or cl-end2 (setq cl-end2 (length seq2))) (if cl-from-end (progn (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) - (cl--check-match (elt cl-seq1 (1- cl-end1)) - (elt cl-seq2 (1- cl-end2)))) + (cl--check-match (elt seq1 (1- cl-end1)) + (elt seq2 (1- cl-end2)))) (setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2))) (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2)) (1- cl-end1))) - (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1))) - (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2)))) + (let ((p1 (and (listp seq1) (nthcdr cl-start1 seq1))) + (p2 (and (listp seq2) (nthcdr cl-start2 seq2)))) (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) - (cl--check-match (if cl-p1 (car cl-p1) - (aref cl-seq1 cl-start1)) - (if cl-p2 (car cl-p2) - (aref cl-seq2 cl-start2)))) - (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2) + (cl--check-match (if p1 (car p1) + (aref seq1 cl-start1)) + (if p2 (car p2) + (aref seq2 cl-start2)))) + (setq p1 (cdr p1) p2 (cdr p2) cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2))) (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2)) cl-start1))))) ;;;###autoload -(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-search (seq1 seq2 &rest cl-keys) "Search for SEQ1 as a subsequence of SEQ2. Return the index of the leftmost element of the first match found; return nil if there are no matches. \nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end \n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" - (cl--parsing-keywords (:test :test-not :key :from-end - (:start1 0) :end1 (:start2 0) :end2) () - (or cl-end1 (setq cl-end1 (length cl-seq1))) - (or cl-end2 (setq cl-end2 (length cl-seq2))) + (declare (important-return-value t)) + (cl--parsing-keywords ( :test :test-not :key :from-end + (:start1 0) :end1 (:start2 0) :end2) () + (or cl-end1 (setq cl-end1 (length seq1))) + (or cl-end2 (setq cl-end2 (length seq2))) (if (>= cl-start1 cl-end1) (if cl-from-end cl-end2 cl-start2) - (let* ((cl-len (- cl-end1 cl-start1)) - (cl-first (cl--check-key (elt cl-seq1 cl-start1))) - (cl-if nil) cl-pos) - (setq cl-end2 (- cl-end2 (1- cl-len))) + (let* ((len (- cl-end1 cl-start1)) + (first (cl--check-key (elt seq1 cl-start1))) + (cl-if nil) pos) + (setq cl-end2 (- cl-end2 (1- len))) (while (and (< cl-start2 cl-end2) - (setq cl-pos (cl--position cl-first cl-seq2 - cl-start2 cl-end2 cl-from-end)) - (apply 'cl-mismatch cl-seq1 cl-seq2 + (setq pos (cl--position first seq2 + cl-start2 cl-end2 cl-from-end)) + (apply #'cl-mismatch seq1 seq2 :start1 (1+ cl-start1) :end1 cl-end1 - :start2 (1+ cl-pos) :end2 (+ cl-pos cl-len) + :start2 (1+ pos) :end2 (+ pos len) :from-end nil cl-keys)) - (if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos)))) - (and (< cl-start2 cl-end2) cl-pos))))) + (if cl-from-end (setq cl-end2 pos) (setq cl-start2 (1+ pos)))) + (and (< cl-start2 cl-end2) pos))))) ;;;###autoload -(defun cl-sort (cl-seq cl-pred &rest cl-keys) +(defun cl-sort (seq pred &rest cl-keys) "Sort the argument SEQ according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. \nKeywords supported: :key \n(fn SEQ PREDICATE [KEYWORD VALUE]...)" - (if (nlistp cl-seq) - (if (stringp cl-seq) - (concat (apply #'cl-sort (vconcat cl-seq) cl-pred cl-keys)) - (cl-replace cl-seq - (apply #'cl-sort (append cl-seq nil) cl-pred cl-keys))) + ;; It's safe to ignore the return value when used on arrays, + ;; but most calls pass lists. + (declare (important-return-value t)) + (if (nlistp seq) + (if (stringp seq) + (concat (apply #'cl-sort (vconcat seq) pred cl-keys)) + (cl-replace seq + (apply #'cl-sort (append seq nil) pred cl-keys))) (cl--parsing-keywords (:key) () (if (memq cl-key '(nil identity)) - (sort cl-seq cl-pred) - (sort cl-seq (lambda (cl-x cl-y) - (funcall cl-pred (funcall cl-key cl-x) - (funcall cl-key cl-y)))))))) + (sort seq pred) + (sort seq (lambda (x y) + (funcall pred (funcall cl-key x) + (funcall cl-key y)))))))) ;;;###autoload -(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys) +(defun cl-stable-sort (seq pred &rest cl-keys) "Sort the argument SEQ stably according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. \nKeywords supported: :key \n(fn SEQ PREDICATE [KEYWORD VALUE]...)" - (apply 'cl-sort cl-seq cl-pred cl-keys)) + ;; It's safe to ignore the return value when used on arrays, + ;; but most calls pass lists. + (declare (important-return-value t)) + (apply #'cl-sort seq pred cl-keys)) ;;;###autoload -(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys) +(defun cl-merge (type seq1 seq2 pred &rest cl-keys) "Destructively merge the two sequences to produce a new sequence. TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument sequences, and PREDICATE is a `less-than' predicate on the elements. \nKeywords supported: :key \n(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" - (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil))) - (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil))) + (declare (important-return-value t)) + (or (listp seq1) (setq seq1 (append seq1 nil))) + (or (listp seq2) (setq seq2 (append seq2 nil))) (cl--parsing-keywords (:key) () - (let ((cl-res nil)) - (while (and cl-seq1 cl-seq2) - (if (funcall cl-pred (cl--check-key (car cl-seq2)) - (cl--check-key (car cl-seq1))) - (push (pop cl-seq2) cl-res) - (push (pop cl-seq1) cl-res))) - (cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type)))) + (let ((res nil)) + (while (and seq1 seq2) + (if (funcall pred (cl--check-key (car seq2)) + (cl--check-key (car seq1))) + (push (pop seq2) res) + (push (pop seq1) res))) + (cl-coerce (nconc (nreverse res) seq1 seq2) type)))) ;;;###autoload -(defun cl-member (cl-item cl-list &rest cl-keys) +(defun cl-member (item list &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the sublist of LIST whose car is ITEM. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" - (declare (compiler-macro cl--compiler-macro-member)) + (declare (important-return-value t) + (compiler-macro cl--compiler-macro-member)) (if cl-keys (cl--parsing-keywords (:test :test-not :key :if :if-not) () - (while (and cl-list (not (cl--check-test cl-item (car cl-list)))) - (setq cl-list (cdr cl-list))) - cl-list) - (memql cl-item cl-list))) + (while (and list (not (cl--check-test item (car list)))) + (setq list (cdr list))) + list) + (memql item list))) (autoload 'cl--compiler-macro-member "cl-macs") ;;;###autoload -(defun cl-member-if (cl-pred cl-list &rest cl-keys) +(defun cl-member-if (pred list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'cl-member nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-member nil list :if pred cl-keys)) ;;;###autoload -(defun cl-member-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-member-if-not (pred list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'cl-member nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-member nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl--adjoin (cl-item cl-list &rest cl-keys) +(defun cl--adjoin (item list &rest cl-keys) (if (cl--parsing-keywords (:key) t - (apply 'cl-member (cl--check-key cl-item) cl-list cl-keys)) - cl-list - (cons cl-item cl-list))) + (apply #'cl-member (cl--check-key item) list cl-keys)) + list + (cons item list))) ;;;###autoload -(defun cl-assoc (cl-item cl-alist &rest cl-keys) +(defun cl-assoc (item alist &rest cl-keys) "Find the first item whose car matches ITEM in LIST. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" - (declare (compiler-macro cl--compiler-macro-assoc)) + (declare (important-return-value t) + (compiler-macro cl--compiler-macro-assoc)) (if cl-keys (cl--parsing-keywords (:test :test-not :key :if :if-not) () - (while (and cl-alist - (or (not (consp (car cl-alist))) - (not (cl--check-test cl-item (car (car cl-alist)))))) - (setq cl-alist (cdr cl-alist))) - (and cl-alist (car cl-alist))) - (if (and (numberp cl-item) (not (fixnump cl-item))) - (assoc cl-item cl-alist) - (assq cl-item cl-alist)))) + (while (and alist + (or (not (consp (car alist))) + (not (cl--check-test item (car (car alist)))))) + (setq alist (cdr alist))) + (and alist (car alist))) + (if (and (numberp item) (not (fixnump item))) + (assoc item alist) + (assq item alist)))) (autoload 'cl--compiler-macro-assoc "cl-macs") ;;;###autoload -(defun cl-assoc-if (cl-pred cl-list &rest cl-keys) +(defun cl-assoc-if (pred list &rest cl-keys) "Find the first item whose car satisfies PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'cl-assoc nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-assoc nil list :if pred cl-keys)) ;;;###autoload -(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-assoc-if-not (pred list &rest cl-keys) "Find the first item whose car does not satisfy PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-assoc nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-rassoc (cl-item cl-alist &rest cl-keys) +(defun cl-rassoc (item alist &rest cl-keys) "Find the first item whose cdr matches ITEM in LIST. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" - (if (or cl-keys (numberp cl-item)) + (declare (important-return-value t)) + (if (or cl-keys (numberp item)) (cl--parsing-keywords (:test :test-not :key :if :if-not) () - (while (and cl-alist - (or (not (consp (car cl-alist))) - (not (cl--check-test cl-item (cdr (car cl-alist)))))) - (setq cl-alist (cdr cl-alist))) - (and cl-alist (car cl-alist))) - (rassq cl-item cl-alist))) + (while (and alist + (or (not (consp (car alist))) + (not (cl--check-test item (cdr (car alist)))))) + (setq alist (cdr alist))) + (and alist (car alist))) + (rassq item alist))) ;;;###autoload -(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys) +(defun cl-rassoc-if (pred list &rest cl-keys) "Find the first item whose cdr satisfies PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'cl-rassoc nil cl-list :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-rassoc nil list :if pred cl-keys)) ;;;###autoload -(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-rassoc-if-not (pred list &rest cl-keys) "Find the first item whose cdr does not satisfy PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-rassoc nil list :if-not pred cl-keys)) ;;;###autoload -(defun cl-union (cl-list1 cl-list2 &rest cl-keys) +(defun cl-union (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The resulting list contains all items that appear in either LIST1 or LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) - ((and (not cl-keys) (equal cl-list1 cl-list2)) cl-list1) + (declare (important-return-value t)) + (cond ((null list1) list2) ((null list2) list1) + ((and (not cl-keys) (equal list1 list2)) list1) (t - (or (>= (length cl-list1) (length cl-list2)) - (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) - (while cl-list2 - (if (or cl-keys (numberp (car cl-list2))) - (setq cl-list1 - (apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys)) - (or (memq (car cl-list2) cl-list1) - (push (car cl-list2) cl-list1))) - (pop cl-list2)) - cl-list1))) + (or (>= (length list1) (length list2)) + (setq list1 (prog1 list2 (setq list2 list1)))) + (while list2 + (if (or cl-keys (numberp (car list2))) + (setq list1 + (apply #'cl-adjoin (car list2) list1 cl-keys)) + (or (memq (car list2) list1) + (push (car list2) list1))) + (pop list2)) + list1))) ;;;###autoload -(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nunion (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The resulting list contains all items that appear in either LIST1 or LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) - (t (apply 'cl-union cl-list1 cl-list2 cl-keys)))) + (declare (important-return-value t)) + (cond ((null list1) list2) ((null list2) list1) + (t (apply #'cl-union list1 list2 cl-keys)))) ;;;###autoload -(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys) +(defun cl-intersection (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The resulting list contains all items that appear in both LIST1 and LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (and cl-list1 cl-list2 - (if (equal cl-list1 cl-list2) cl-list1 + (declare (important-return-value t)) + (and list1 list2 + (if (equal list1 list2) list1 (cl--parsing-keywords (:key) (:test :test-not) - (let ((cl-res nil)) - (or (>= (length cl-list1) (length cl-list2)) - (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) - (while cl-list2 - (if (if (or cl-keys (numberp (car cl-list2))) - (apply 'cl-member (cl--check-key (car cl-list2)) - cl-list1 cl-keys) - (memq (car cl-list2) cl-list1)) - (push (car cl-list2) cl-res)) - (pop cl-list2)) - cl-res))))) + (let ((res nil)) + (or (>= (length list1) (length list2)) + (setq list1 (prog1 list2 (setq list2 list1)))) + (while list2 + (if (if (or cl-keys (numberp (car list2))) + (apply #'cl-member (cl--check-key (car list2)) + list1 cl-keys) + (memq (car list2) list1)) + (push (car list2) res)) + (pop list2)) + res))))) ;;;###autoload -(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nintersection (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The resulting list contains all items that appear in both LIST1 and LIST2. -This is a destructive function; it reuses the storage of LIST1 and LIST2 -whenever possible. +This is a destructive function; it reuses the storage of LIST1 (but not +LIST2) whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys))) + (declare (important-return-value t)) + (and list1 list2 (apply #'cl-intersection list1 list2 cl-keys))) ;;;###autoload -(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys) +(defun cl-set-difference (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The resulting list contains all items that appear in LIST1 but not LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (if (or (null cl-list1) (null cl-list2)) cl-list1 + (declare (important-return-value t)) + (if (or (null list1) (null list2)) list1 (cl--parsing-keywords (:key) (:test :test-not) - (let ((cl-res nil)) - (while cl-list1 - (or (if (or cl-keys (numberp (car cl-list1))) - (apply 'cl-member (cl--check-key (car cl-list1)) - cl-list2 cl-keys) - (memq (car cl-list1) cl-list2)) - (push (car cl-list1) cl-res)) - (pop cl-list1)) - (nreverse cl-res))))) + (let ((res nil)) + (while list1 + (or (if (or cl-keys (numberp (car list1))) + (apply #'cl-member (cl--check-key (car list1)) + list2 cl-keys) + (memq (car list1) list2)) + (push (car list1) res)) + (pop list1)) + (nreverse res))))) ;;;###autoload -(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nset-difference (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The resulting list contains all items that appear in LIST1 but not LIST2. -This is a destructive function; it reuses the storage of LIST1 and LIST2 -whenever possible. +This is a destructive function; it reuses the storage of LIST1 (but not +LIST2) whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (if (or (null cl-list1) (null cl-list2)) cl-list1 - (apply 'cl-set-difference cl-list1 cl-list2 cl-keys))) + (declare (important-return-value t)) + (if (or (null list1) (null list2)) list1 + (apply #'cl-set-difference list1 list2 cl-keys))) ;;;###autoload -(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys) +(defun cl-set-exclusive-or (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The resulting list contains all items appearing in exactly one of LIST1, LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) - ((equal cl-list1 cl-list2) nil) - (t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys) - (apply 'cl-set-difference cl-list2 cl-list1 cl-keys))))) + (declare (important-return-value t)) + (cond ((null list1) list2) ((null list2) list1) + ((equal list1 list2) nil) + (t (append (apply #'cl-set-difference list1 list2 cl-keys) + (apply #'cl-set-difference list2 list1 cl-keys))))) ;;;###autoload -(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nset-exclusive-or (list1 list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The resulting list contains all items appearing in exactly one of LIST1, LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) - ((equal cl-list1 cl-list2) nil) - (t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys) - (apply 'cl-nset-difference cl-list2 cl-list1 cl-keys))))) + (declare (important-return-value t)) + (cond ((null list1) list2) ((null list2) list1) + ((equal list1 list2) nil) + (t (nconc (apply #'cl-nset-difference list1 list2 cl-keys) + (apply #'cl-nset-difference list2 list1 cl-keys))))) ;;;###autoload -(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys) +(defun cl-subsetp (list1 list2 &rest cl-keys) "Return true if LIST1 is a subset of LIST2. I.e., if every element of LIST1 also appears in LIST2. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (cond ((null cl-list1) t) ((null cl-list2) nil) - ((equal cl-list1 cl-list2) t) + (declare (important-return-value t)) + (cond ((null list1) t) ((null list2) nil) + ((equal list1 list2) t) (t (cl--parsing-keywords (:key) (:test :test-not) - (while (and cl-list1 - (apply 'cl-member (cl--check-key (car cl-list1)) - cl-list2 cl-keys)) - (pop cl-list1)) - (null cl-list1))))) + (while (and list1 + (apply #'cl-member (cl--check-key (car list1)) + list2 cl-keys)) + (pop list1)) + (null list1))))) ;;;###autoload -(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-subst-if (new pred tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all matching elements replaced by NEW. \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-sublis (list (cons nil new)) tree :if pred cl-keys)) ;;;###autoload -(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-subst-if-not (new pred tree &rest cl-keys) "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all non-matching elements replaced by NEW. \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-sublis (list (cons nil new)) tree :if-not pred cl-keys)) ;;;###autoload -(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys) +(defun cl-nsubst (new old tree &rest cl-keys) "Substitute NEW for OLD everywhere in TREE (destructively). Any element of TREE which is `eql' to OLD is changed to NEW (via a call to `setcar'). \nKeywords supported: :test :test-not :key \n(fn NEW OLD TREE [KEYWORD VALUE]...)" - (apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys)) + (declare (important-return-value t)) + (apply #'cl-nsublis (list (cons old new)) tree cl-keys)) ;;;###autoload -(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-nsubst-if (new pred tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-nsublis (list (cons nil new)) tree :if pred cl-keys)) ;;;###autoload -(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-nsubst-if-not (new pred tree &rest cl-keys) "Substitute NEW for elements not matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) + (declare (important-return-value t)) + (apply #'cl-nsublis (list (cons nil new)) tree :if-not pred cl-keys)) (defvar cl--alist) ;;;###autoload -(defun cl-sublis (cl-alist cl-tree &rest cl-keys) +(defun cl-sublis (alist tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (non-destructively). Return a copy of TREE with all matching elements replaced. \nKeywords supported: :test :test-not :key \n(fn ALIST TREE [KEYWORD VALUE]...)" + (declare (important-return-value t)) (cl--parsing-keywords (:test :test-not :key :if :if-not) () - (let ((cl--alist cl-alist)) - (cl--sublis-rec cl-tree)))) - -(defun cl--sublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*. - (let ((cl-temp (cl--check-key cl-tree)) (cl-p cl--alist)) - (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp))) - (setq cl-p (cdr cl-p))) - (if cl-p (cdr (car cl-p)) - (if (consp cl-tree) - (let ((cl-a (cl--sublis-rec (car cl-tree))) - (cl-d (cl--sublis-rec (cdr cl-tree)))) - (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree))) - cl-tree - (cons cl-a cl-d))) - cl-tree)))) + (let ((cl--alist alist)) + (cl--sublis-rec tree)))) + +(defun cl--sublis-rec (tree) ;Uses cl--alist cl-key/test*/if*. + (let ((temp (cl--check-key tree)) + (p cl--alist)) + (while (and p (not (cl--check-test-nokey (car (car p)) temp))) + (setq p (cdr p))) + (if p (cdr (car p)) + (if (consp tree) + (let ((a (cl--sublis-rec (car tree))) + (d (cl--sublis-rec (cdr tree)))) + (if (and (eq a (car tree)) (eq d (cdr tree))) + tree + (cons a d))) + tree)))) ;;;###autoload -(defun cl-nsublis (cl-alist cl-tree &rest cl-keys) +(defun cl-nsublis (alist tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (destructively). Any matching element of TREE is changed via a call to `setcar'. \nKeywords supported: :test :test-not :key \n(fn ALIST TREE [KEYWORD VALUE]...)" + (declare (important-return-value t)) (cl--parsing-keywords (:test :test-not :key :if :if-not) () - (let ((cl-hold (list cl-tree)) - (cl--alist cl-alist)) - (cl--nsublis-rec cl-hold) - (car cl-hold)))) - -(defun cl--nsublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*. - (while (consp cl-tree) - (let ((cl-temp (cl--check-key (car cl-tree))) (cl-p cl--alist)) - (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp))) - (setq cl-p (cdr cl-p))) - (if cl-p (setcar cl-tree (cdr (car cl-p))) - (if (consp (car cl-tree)) (cl--nsublis-rec (car cl-tree)))) - (setq cl-temp (cl--check-key (cdr cl-tree)) cl-p cl--alist) - (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp))) - (setq cl-p (cdr cl-p))) - (if cl-p - (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil)) - (setq cl-tree (cdr cl-tree)))))) + (let ((hold (list tree)) + (cl--alist alist)) + (cl--nsublis-rec hold) + (car hold)))) + +(defun cl--nsublis-rec (tree) ;Uses cl--alist cl-key/test*/if*. + (while (consp tree) + (let ((temp (cl--check-key (car tree))) + (p cl--alist)) + (while (and p (not (cl--check-test-nokey (car (car p)) temp))) + (setq p (cdr p))) + (if p (setcar tree (cdr (car p))) + (if (consp (car tree)) (cl--nsublis-rec (car tree)))) + (setq temp (cl--check-key (cdr tree)) p cl--alist) + (while (and p (not (cl--check-test-nokey (car (car p)) temp))) + (setq p (cdr p))) + (if p + (progn (setcdr tree (cdr (car p))) (setq tree nil)) + (setq tree (cdr tree)))))) ;;;###autoload -(defun cl-tree-equal (cl-x cl-y &rest cl-keys) +(defun cl-tree-equal (x y &rest cl-keys) "Return t if trees TREE1 and TREE2 have `eql' leaves. Atoms are compared by `eql'; cons cells are compared recursively. \nKeywords supported: :test :test-not :key \n(fn TREE1 TREE2 [KEYWORD VALUE]...)" + (declare (important-return-value t)) (cl--parsing-keywords (:test :test-not :key) () - (cl--tree-equal-rec cl-x cl-y))) + (cl--tree-equal-rec x y))) -(defun cl--tree-equal-rec (cl-x cl-y) ;Uses cl-key/test*. - (while (and (consp cl-x) (consp cl-y) - (cl--tree-equal-rec (car cl-x) (car cl-y))) - (setq cl-x (cdr cl-x) cl-y (cdr cl-y))) - (and (not (consp cl-x)) (not (consp cl-y)) (cl--check-match cl-x cl-y))) +(defun cl--tree-equal-rec (x y) ;Uses cl-key/test*. + (while (and (consp x) (consp y) + (cl--tree-equal-rec (car x) (car y))) + (setq x (cdr x) y (cdr y))) + (and (not (consp x)) (not (consp y)) (cl--check-match x y))) (make-obsolete-variable 'cl-seq-load-hook |