summaryrefslogtreecommitdiff
path: root/lisp/emacs-lisp/cl-seq.el
diff options
context:
space:
mode:
Diffstat (limited to 'lisp/emacs-lisp/cl-seq.el')
-rw-r--r--lisp/emacs-lisp/cl-seq.el1068
1 files changed, 563 insertions, 505 deletions
diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el
index 7a79488f1f5..33f14df0291 100644
--- a/lisp/emacs-lisp/cl-seq.el
+++ b/lisp/emacs-lisp/cl-seq.el
@@ -47,7 +47,7 @@
;; This is special-cased here so that we can compile
;; this file independent from cl-macs.
-(defmacro cl--parsing-keywords (kwords other-keys &rest body)
+(defmacro cl--parsing-keywords (keywords other-keys &rest body)
(declare (indent 2) (debug (sexp sexp &rest form)))
`(let* ,(mapcar
(lambda (x)
@@ -59,26 +59,22 @@
(setq mem `(and ,mem (setq cl-if ,mem) t)))
(list (intern
(format "cl-%s" (substring (symbol-name var) 1)))
- (if (consp x) `(or ,mem ,(car (cdr x))) mem))))
- kwords)
+ (if (consp x) `(or ,mem ,(cadr x)) mem))))
+ keywords)
,@(append
(and (not (eq other-keys t))
- (list
- (list 'let '((cl-keys-temp cl-keys))
- (list 'while 'cl-keys-temp
- (list 'or (list 'memq '(car cl-keys-temp)
- (list 'quote
- (mapcar
- (lambda (x)
- (if (consp x)
- (car x) x))
- (append kwords
- other-keys))))
- '(car (cdr (memq (quote :allow-other-keys)
- cl-keys)))
- '(error "Bad keyword argument %s"
- (car cl-keys-temp)))
- '(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
+ `((let ((cl-keys-temp cl-keys))
+ (while cl-keys-temp
+ (or (memq (car cl-keys-temp)
+ (quote ,(mapcar
+ (lambda (x)
+ (if (consp x)
+ (car x) x))
+ (append keywords other-keys))))
+ (cadr (memq :allow-other-keys cl-keys))
+ (error "Bad keyword argument %s"
+ (car cl-keys-temp)))
+ (setq cl-keys-temp (cddr cl-keys-temp))))))
body)))
(defmacro cl--check-key (x) ;Expects `cl-key' in context of generated code.
@@ -115,11 +111,12 @@
(defun cl-endp (x)
"Return true if X is the empty list; false if it is a cons.
Signal an error if X is not a list."
+ (declare (side-effect-free t))
(cl-check-type x list)
(null x))
;;;###autoload
-(defun cl-reduce (cl-func cl-seq &rest cl-keys)
+(defun cl-reduce (func seq &rest cl-keys)
"Reduce two-argument FUNCTION across SEQ.
\nKeywords supported: :start :end :from-end :initial-value :key
@@ -144,909 +141,970 @@ the SEQ moving forward, and the order of arguments to the
FUNCTION is also reversed.
\n(fn FUNCTION SEQ [KEYWORD VALUE]...)"
+ (declare (important-return-value t))
(cl--parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
- (or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
- (setq cl-seq (cl-subseq cl-seq cl-start cl-end))
- (if cl-from-end (setq cl-seq (nreverse cl-seq)))
- (let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value)
- (cl-seq (cl--check-key (pop cl-seq)))
- (t (funcall cl-func)))))
+ (or (listp seq) (setq seq (append seq nil)))
+ (setq seq (cl-subseq seq cl-start cl-end))
+ (if cl-from-end (setq seq (nreverse seq)))
+ (let ((accum (cond ((memq :initial-value cl-keys) cl-initial-value)
+ (seq (cl--check-key (pop seq)))
+ (t (funcall func)))))
(if cl-from-end
- (while cl-seq
- (setq cl-accum (funcall cl-func (cl--check-key (pop cl-seq))
- cl-accum)))
- (while cl-seq
- (setq cl-accum (funcall cl-func cl-accum
- (cl--check-key (pop cl-seq))))))
- cl-accum)))
+ (while seq
+ (setq accum (funcall func (cl--check-key (pop seq))
+ accum)))
+ (while seq
+ (setq accum (funcall func accum
+ (cl--check-key (pop seq))))))
+ accum)))
;;;###autoload
-(defun cl-fill (cl-seq cl-item &rest cl-keys)
+(defun cl-fill (seq item &rest cl-keys)
"Fill the elements of SEQ with ITEM.
\nKeywords supported: :start :end
\n(fn SEQ ITEM [KEYWORD VALUE]...)"
(cl--parsing-keywords ((:start 0) :end) ()
- (if (listp cl-seq)
- (let ((p (nthcdr cl-start cl-seq))
+ (if (listp seq)
+ (let ((p (nthcdr cl-start seq))
(n (and cl-end (- cl-end cl-start))))
- (while (and p (or (null n) (>= (cl-decf n) 0)))
- (setcar p cl-item)
+ (while (and p (or (null n) (>= (decf n) 0)))
+ (setcar p item)
(setq p (cdr p))))
- (or cl-end (setq cl-end (length cl-seq)))
- (if (and (= cl-start 0) (= cl-end (length cl-seq)))
- (fillarray cl-seq cl-item)
+ (or cl-end (setq cl-end (length seq)))
+ (if (and (= cl-start 0) (= cl-end (length seq)))
+ (fillarray seq item)
(while (< cl-start cl-end)
- (aset cl-seq cl-start cl-item)
+ (aset seq cl-start item)
(setq cl-start (1+ cl-start)))))
- cl-seq))
+ seq))
;;;###autoload
-(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-replace (seq1 seq2 &rest cl-keys)
"Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.
\nKeywords supported: :start1 :end1 :start2 :end2
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
(cl--parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
- (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
+ (if (and (eq seq1 seq2) (<= cl-start2 cl-start1))
(or (= cl-start1 cl-start2)
- (let* ((cl-len (length cl-seq1))
- (cl-n (min (- (or cl-end1 cl-len) cl-start1)
- (- (or cl-end2 cl-len) cl-start2))))
- (while (>= (setq cl-n (1- cl-n)) 0)
- (setf (elt cl-seq1 (+ cl-start1 cl-n))
- (elt cl-seq2 (+ cl-start2 cl-n))))))
- (if (listp cl-seq1)
- (let ((cl-p1 (nthcdr cl-start1 cl-seq1))
- (cl-n1 (and cl-end1 (- cl-end1 cl-start1))))
- (if (listp cl-seq2)
- (let ((cl-p2 (nthcdr cl-start2 cl-seq2))
- (cl-n (cond ((and cl-n1 cl-end2)
- (min cl-n1 (- cl-end2 cl-start2)))
- ((and cl-n1 (null cl-end2)) cl-n1)
- ((and (null cl-n1) cl-end2) (- cl-end2 cl-start2)))))
- (while (and cl-p1 cl-p2 (or (null cl-n) (>= (cl-decf cl-n) 0)))
- (setcar cl-p1 (car cl-p2))
- (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))))
- (setq cl-end2 (if (null cl-n1)
- (or cl-end2 (length cl-seq2))
- (min (or cl-end2 (length cl-seq2))
- (+ cl-start2 cl-n1))))
- (while (and cl-p1 (< cl-start2 cl-end2))
- (setcar cl-p1 (aref cl-seq2 cl-start2))
- (setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2)))))
- (setq cl-end1 (min (or cl-end1 (length cl-seq1))
- (+ cl-start1 (- (or cl-end2 (length cl-seq2))
+ (let* ((len (length seq1))
+ (n (min (- (or cl-end1 len) cl-start1)
+ (- (or cl-end2 len) cl-start2))))
+ (while (>= (setq n (1- n)) 0)
+ (setf (elt seq1 (+ cl-start1 n))
+ (elt seq2 (+ cl-start2 n))))))
+ (if (listp seq1)
+ (let ((p1 (nthcdr cl-start1 seq1))
+ (n1 (and cl-end1 (- cl-end1 cl-start1))))
+ (if (listp seq2)
+ (let ((p2 (nthcdr cl-start2 seq2))
+ (n (cond ((and n1 cl-end2)
+ (min n1 (- cl-end2 cl-start2)))
+ ((and n1 (null cl-end2)) n1)
+ ((and (null n1) cl-end2) (- cl-end2 cl-start2)))))
+ (while (and p1 p2 (or (null n) (>= (decf n) 0)))
+ (setcar p1 (car p2))
+ (setq p1 (cdr p1) p2 (cdr p2))))
+ (setq cl-end2 (if (null n1)
+ (or cl-end2 (length seq2))
+ (min (or cl-end2 (length seq2))
+ (+ cl-start2 n1))))
+ (while (and p1 (< cl-start2 cl-end2))
+ (setcar p1 (aref seq2 cl-start2))
+ (setq p1 (cdr p1) cl-start2 (1+ cl-start2)))))
+ (setq cl-end1 (min (or cl-end1 (length seq1))
+ (+ cl-start1 (- (or cl-end2 (length seq2))
cl-start2))))
- (if (listp cl-seq2)
- (let ((cl-p2 (nthcdr cl-start2 cl-seq2)))
+ (if (listp seq2)
+ (let ((p2 (nthcdr cl-start2 seq2)))
(while (< cl-start1 cl-end1)
- (aset cl-seq1 cl-start1 (car cl-p2))
- (setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1))))
+ (aset seq1 cl-start1 (car p2))
+ (setq p2 (cdr p2) cl-start1 (1+ cl-start1))))
(while (< cl-start1 cl-end1)
- (aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2))
+ (aset seq1 cl-start1 (aref seq2 cl-start2))
(setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
- cl-seq1))
+ seq1))
;;;###autoload
-(defun cl-remove (cl-item cl-seq &rest cl-keys)
+(defun cl-remove (item seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
- (:start 0) :end) ()
- (let ((len (length cl-seq)))
+ (declare (important-return-value t))
+ (cl--parsing-keywords ( :test :test-not :key :if :if-not :count :from-end
+ (:start 0) :end) ()
+ (let ((len (length seq)))
(if (<= (or cl-count (setq cl-count len)) 0)
- cl-seq
- (if (or (nlistp cl-seq) (and cl-from-end (< cl-count (/ len 2))))
- (let ((cl-i (cl--position cl-item cl-seq cl-start cl-end
- cl-from-end)))
- (if cl-i
- (let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil)
- (append (if cl-from-end
- (list :end (1+ cl-i))
- (list :start cl-i))
- cl-keys))))
- (if (listp cl-seq) cl-res
- (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))
- cl-seq))
+ seq
+ (if (or (nlistp seq) (and cl-from-end (< cl-count (/ len 2))))
+ (let ((i (cl--position item seq cl-start cl-end
+ cl-from-end)))
+ (if i
+ (let ((res (apply #'cl-delete item (append seq nil)
+ (append (if cl-from-end
+ (list :end (1+ i))
+ (list :start i))
+ cl-keys))))
+ (if (listp seq) res
+ (if (stringp seq) (concat res) (vconcat res))))
+ seq))
(setq cl-end (- (or cl-end len) cl-start))
- (if (= cl-start 0)
- (while (and cl-seq (> cl-end 0)
- (cl--check-test cl-item (car cl-seq))
- (setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
- (> (setq cl-count (1- cl-count)) 0))))
- (if (and (> cl-count 0) (> cl-end 0))
- (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
- (setq cl-end (1- cl-end)) (cdr cl-seq))))
- (while (and cl-p (> cl-end 0)
- (not (cl--check-test cl-item (car cl-p))))
- (setq cl-p (cdr cl-p) cl-end (1- cl-end)))
- (if (and cl-p (> cl-end 0))
- (nconc (cl-ldiff cl-seq cl-p)
- (if (= cl-count 1) (cdr cl-p)
- (and (cdr cl-p)
- (apply 'cl-delete cl-item
- (copy-sequence (cdr cl-p))
- :start 0 :end (1- cl-end)
- :count (1- cl-count) cl-keys))))
- cl-seq))
- cl-seq))))))
+ (if (= cl-start 0)
+ (while (and seq (> cl-end 0)
+ (cl--check-test item (car seq))
+ (setq cl-end (1- cl-end) seq (cdr seq))
+ (> (setq cl-count (1- cl-count)) 0))))
+ (if (and (> cl-count 0) (> cl-end 0))
+ (let ((p (if (> cl-start 0) (nthcdr cl-start seq)
+ (setq cl-end (1- cl-end)) (cdr seq))))
+ (while (and p (> cl-end 0)
+ (not (cl--check-test item (car p))))
+ (setq p (cdr p) cl-end (1- cl-end)))
+ (if (and p (> cl-end 0))
+ (nconc (cl-ldiff seq p)
+ (if (= cl-count 1) (cdr p)
+ (and (cdr p)
+ (apply #'cl-delete item
+ (copy-sequence (cdr p))
+ :start 0 :end (1- cl-end)
+ :count (1- cl-count) cl-keys))))
+ seq))
+ seq))))))
;;;###autoload
-(defun cl-remove-if (cl-pred cl-list &rest cl-keys)
+(defun cl-remove-if (pred list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-remove nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-remove nil list :if pred cl-keys))
;;;###autoload
-(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-remove-if-not (pred list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-remove nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-remove nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-delete (cl-item cl-seq &rest cl-keys)
+(defun cl-delete (item seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
- (:start 0) :end) ()
- (let ((len (length cl-seq)))
+ (declare (important-return-value t))
+ (cl--parsing-keywords ( :test :test-not :key :if :if-not :count :from-end
+ (:start 0) :end) ()
+ (let ((len (length seq)))
(if (<= (or cl-count (setq cl-count len)) 0)
- cl-seq
- (if (listp cl-seq)
- (if (and cl-from-end (< cl-count (/ len 2)))
- (let (cl-i)
- (while (and (>= (setq cl-count (1- cl-count)) 0)
- (setq cl-i (cl--position cl-item cl-seq cl-start
- cl-end cl-from-end)))
- (if (= cl-i 0) (setq cl-seq (cdr cl-seq))
- (let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
- (setcdr cl-tail (cdr (cdr cl-tail)))))
- (setq cl-end cl-i))
- cl-seq)
- (setq cl-end (- (or cl-end len) cl-start))
- (if (= cl-start 0)
- (progn
- (while (and cl-seq
- (> cl-end 0)
- (cl--check-test cl-item (car cl-seq))
- (setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
- (> (setq cl-count (1- cl-count)) 0)))
- (setq cl-end (1- cl-end)))
- (setq cl-start (1- cl-start)))
- (if (and (> cl-count 0) (> cl-end 0))
- (let ((cl-p (nthcdr cl-start cl-seq)))
- (while (and (cdr cl-p) (> cl-end 0))
- (if (cl--check-test cl-item (car (cdr cl-p)))
- (progn
- (setcdr cl-p (cdr (cdr cl-p)))
- (if (= (setq cl-count (1- cl-count)) 0)
- (setq cl-end 1)))
- (setq cl-p (cdr cl-p)))
- (setq cl-end (1- cl-end)))))
- cl-seq)
- (apply 'cl-remove cl-item cl-seq cl-keys))))))
+ seq
+ (if (listp seq)
+ (if (and cl-from-end (< cl-count (/ len 2)))
+ (let (i)
+ (while (and (>= (setq cl-count (1- cl-count)) 0)
+ (setq i (cl--position item seq cl-start
+ cl-end cl-from-end)))
+ (if (= i 0) (setq seq (cdr seq))
+ (let ((tail (nthcdr (1- i) seq)))
+ (setcdr tail (cdr (cdr tail)))))
+ (setq cl-end i))
+ seq)
+ (setq cl-end (- (or cl-end len) cl-start))
+ (if (= cl-start 0)
+ (progn
+ (while (and seq
+ (> cl-end 0)
+ (cl--check-test item (car seq))
+ (setq cl-end (1- cl-end) seq (cdr seq))
+ (> (setq cl-count (1- cl-count)) 0)))
+ (setq cl-end (1- cl-end)))
+ (setq cl-start (1- cl-start)))
+ (if (and (> cl-count 0) (> cl-end 0))
+ (let ((p (nthcdr cl-start seq)))
+ (while (and (cdr p) (> cl-end 0))
+ (if (cl--check-test item (car (cdr p)))
+ (progn
+ (setcdr p (cdr (cdr p)))
+ (if (= (setq cl-count (1- cl-count)) 0)
+ (setq cl-end 1)))
+ (setq p (cdr p)))
+ (setq cl-end (1- cl-end)))))
+ seq)
+ (apply #'cl-remove item seq cl-keys))))))
;;;###autoload
-(defun cl-delete-if (cl-pred cl-list &rest cl-keys)
+(defun cl-delete-if (pred list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-delete nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-delete nil list :if pred cl-keys))
;;;###autoload
-(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-delete-if-not (pred list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-delete nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-delete nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-remove-duplicates (cl-seq &rest cl-keys)
+(defun cl-remove-duplicates (seq &rest cl-keys)
"Return a copy of SEQ with all duplicate elements removed.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
- (cl--delete-duplicates cl-seq cl-keys t))
+ (declare (important-return-value t))
+ (cl--delete-duplicates seq cl-keys t))
;;;###autoload
-(defun cl-delete-duplicates (cl-seq &rest cl-keys)
+(defun cl-delete-duplicates (seq &rest cl-keys)
"Remove all duplicate elements from SEQ (destructively).
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
- (cl--delete-duplicates cl-seq cl-keys nil))
+ (declare (important-return-value t))
+ (cl--delete-duplicates seq cl-keys nil))
-(defun cl--delete-duplicates (cl-seq cl-keys cl-copy)
- (if (listp cl-seq)
+(defun cl--delete-duplicates (seq cl-keys copy)
+ (if (listp seq)
(cl--parsing-keywords
;; We need to parse :if, otherwise `cl-if' is unbound.
(:test :test-not :key (:start 0) :end :from-end :if)
()
(if cl-from-end
- (let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
- (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
+ (let ((p (nthcdr cl-start seq)) i)
+ (setq cl-end (- (or cl-end (length seq)) cl-start))
(while (> cl-end 1)
- (setq cl-i 0)
- (while (setq cl-i (cl--position (cl--check-key (car cl-p))
- (cdr cl-p) cl-i (1- cl-end)))
- (if cl-copy (setq cl-seq (copy-sequence cl-seq)
- cl-p (nthcdr cl-start cl-seq) cl-copy nil))
- (let ((cl-tail (nthcdr cl-i cl-p)))
- (setcdr cl-tail (cdr (cdr cl-tail))))
+ (setq i 0)
+ (while (setq i (cl--position (cl--check-key (car p))
+ (cdr p) i (1- cl-end)))
+ (if copy (setq seq (copy-sequence seq)
+ p (nthcdr cl-start seq) copy nil))
+ (let ((tail (nthcdr i p)))
+ (setcdr tail (cdr (cdr tail))))
(setq cl-end (1- cl-end)))
- (setq cl-p (cdr cl-p) cl-end (1- cl-end)
+ (setq p (cdr p) cl-end (1- cl-end)
cl-start (1+ cl-start)))
- cl-seq)
- (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
- (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
- (cl--position (cl--check-key (car cl-seq))
- (cdr cl-seq) 0 (1- cl-end)))
- (setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
- (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
- (setq cl-end (1- cl-end) cl-start 1) cl-seq)))
- (while (and (cdr (cdr cl-p)) (> cl-end 1))
- (if (cl--position (cl--check-key (car (cdr cl-p)))
- (cdr (cdr cl-p)) 0 (1- cl-end))
+ seq)
+ (setq cl-end (- (or cl-end (length seq)) cl-start))
+ (while (and (cdr seq) (= cl-start 0) (> cl-end 1)
+ (cl--position (cl--check-key (car seq))
+ (cdr seq) 0 (1- cl-end)))
+ (setq seq (cdr seq) cl-end (1- cl-end)))
+ (let ((p (if (> cl-start 0) (nthcdr (1- cl-start) seq)
+ (setq cl-end (1- cl-end) cl-start 1) seq)))
+ (while (and (cdr (cdr p)) (> cl-end 1))
+ (if (cl--position (cl--check-key (car (cdr p)))
+ (cdr (cdr p)) 0 (1- cl-end))
(progn
- (if cl-copy (setq cl-seq (copy-sequence cl-seq)
- cl-p (nthcdr (1- cl-start) cl-seq)
- cl-copy nil))
- (setcdr cl-p (cdr (cdr cl-p))))
- (setq cl-p (cdr cl-p)))
+ (if copy (setq seq (copy-sequence seq)
+ p (nthcdr (1- cl-start) seq)
+ copy nil))
+ (setcdr p (cdr (cdr p))))
+ (setq p (cdr p)))
(setq cl-end (1- cl-end) cl-start (1+ cl-start)))
- cl-seq)))
- (let ((cl-res (cl--delete-duplicates (append cl-seq nil) cl-keys nil)))
- (if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
+ seq)))
+ (let ((res (cl--delete-duplicates (append seq nil) cl-keys nil)))
+ (if (stringp seq) (concat res) (vconcat res)))))
;;;###autoload
-(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys)
+(defun cl-substitute (new old seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
- (cl--parsing-keywords (:test :test-not :key :if :if-not :count
- (:start 0) :end :from-end) ()
- (if (or (eq cl-old cl-new)
+ (declare (important-return-value t))
+ (cl--parsing-keywords ( :test :test-not :key :if :if-not :count
+ (:start 0) :end :from-end) ()
+ (if (or (eq old new)
(<= (or cl-count (setq cl-from-end nil
- cl-count (length cl-seq))) 0))
- cl-seq
- (let ((cl-i (cl--position cl-old cl-seq cl-start cl-end)))
- (if (not cl-i)
- cl-seq
- (setq cl-seq (copy-sequence cl-seq))
+ cl-count (length seq))) 0))
+ seq
+ (let ((i (cl--position old seq cl-start cl-end)))
+ (if (not i)
+ seq
+ (setq seq (copy-sequence seq))
(unless cl-from-end
- (setf (elt cl-seq cl-i) cl-new)
- (cl-incf cl-i)
- (cl-decf cl-count))
- (apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count
- :start cl-i cl-keys))))))
+ (setf (elt seq i) new)
+ (incf i)
+ (decf cl-count))
+ (apply #'cl-nsubstitute new old seq :count cl-count
+ :start i cl-keys))))))
;;;###autoload
-(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-substitute-if (new pred seq &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-substitute new nil seq :if pred cl-keys))
;;;###autoload
-(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-substitute-if-not (new pred seq &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-substitute new nil seq :if-not pred cl-keys))
;;;###autoload
-(defun cl-nsubstitute (cl-new cl-old seq &rest cl-keys)
+(defun cl-nsubstitute (new old seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
- (cl--parsing-keywords (:test :test-not :key :if :if-not :count
- (:start 0) :end :from-end) ()
- (let* ((cl-seq (if (stringp seq) (string-to-vector seq) seq))
- (len (length cl-seq)))
- (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count len)) 0)
- (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count (/ len 2))))
- (let ((cl-p (nthcdr cl-start cl-seq)))
- (setq cl-end (- (or cl-end len) cl-start))
- (while (and cl-p (> cl-end 0) (> cl-count 0))
- (if (cl--check-test cl-old (car cl-p))
- (progn
- (setcar cl-p cl-new)
- (setq cl-count (1- cl-count))))
- (setq cl-p (cdr cl-p) cl-end (1- cl-end))))
+ (declare (important-return-value t))
+ (cl--parsing-keywords ( :test :test-not :key :if :if-not :count
+ (:start 0) :end :from-end) ()
+ (let* ((seq (if (stringp seq) (string-to-vector seq) seq))
+ (len (length seq)))
+ (or (eq old new) (<= (or cl-count (setq cl-count len)) 0)
+ (if (and (listp seq) (or (not cl-from-end) (> cl-count (/ len 2))))
+ (let ((p (nthcdr cl-start seq)))
+ (setq cl-end (- (or cl-end len) cl-start))
+ (while (and p (> cl-end 0) (> cl-count 0))
+ (if (cl--check-test old (car p))
+ (progn
+ (setcar p new)
+ (setq cl-count (1- cl-count))))
+ (setq p (cdr p) cl-end (1- cl-end))))
(or cl-end (setq cl-end len))
- (if cl-from-end
- (while (and (< cl-start cl-end) (> cl-count 0))
- (setq cl-end (1- cl-end))
- (if (cl--check-test cl-old (elt cl-seq cl-end))
- (progn
- (setf (elt cl-seq cl-end) cl-new)
- (setq cl-count (1- cl-count)))))
- (while (and (< cl-start cl-end) (> cl-count 0))
- (if (cl--check-test cl-old (aref cl-seq cl-start))
- (progn
- (aset cl-seq cl-start cl-new)
- (setq cl-count (1- cl-count))))
- (setq cl-start (1+ cl-start))))))
- (if (stringp seq) (concat cl-seq) cl-seq))))
+ (if cl-from-end
+ (while (and (< cl-start cl-end) (> cl-count 0))
+ (setq cl-end (1- cl-end))
+ (if (cl--check-test old (elt seq cl-end))
+ (progn
+ (setf (elt seq cl-end) new)
+ (setq cl-count (1- cl-count)))))
+ (while (and (< cl-start cl-end) (> cl-count 0))
+ (if (cl--check-test old (aref seq cl-start))
+ (progn
+ (aset seq cl-start new)
+ (setq cl-count (1- cl-count))))
+ (setq cl-start (1+ cl-start))))))
+ (if (stringp seq) (concat seq) seq))))
;;;###autoload
-(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-nsubstitute-if (new pred list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-nsubstitute new nil list :if pred cl-keys))
;;;###autoload
-(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-nsubstitute-if-not (new pred list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-nsubstitute new nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-find (cl-item cl-seq &rest cl-keys)
+(defun cl-find (item seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys)))
- (and cl-pos (elt cl-seq cl-pos))))
+ (declare (important-return-value t))
+ (let ((pos (apply #'cl-position item seq cl-keys)))
+ (and pos (elt seq pos))))
;;;###autoload
-(defun cl-find-if (cl-pred cl-list &rest cl-keys)
+(defun cl-find-if (pred list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-find nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-find nil list :if pred cl-keys))
;;;###autoload
-(defun cl-find-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-find-if-not (pred list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-find nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-find nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-position (cl-item cl-seq &rest cl-keys)
+(defun cl-position (item seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (cl--parsing-keywords (:test :test-not :key :if :if-not
- (:start 0) :end :from-end) ()
- (cl--position cl-item cl-seq cl-start cl-end cl-from-end)))
-
-(defun cl--position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
- (if (listp cl-seq)
- (let ((cl-p (nthcdr cl-start cl-seq))
- cl-res)
- (while (and cl-p (or (null cl-end) (< cl-start cl-end)) (or (null cl-res) cl-from-end))
- (if (cl--check-test cl-item (car cl-p))
- (setq cl-res cl-start))
- (setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
- cl-res)
- (or cl-end (setq cl-end (length cl-seq)))
- (if cl-from-end
+ (declare (important-return-value t))
+ (cl--parsing-keywords ( :test :test-not :key :if :if-not
+ (:start 0) :end :from-end) ()
+ (cl--position item seq cl-start cl-end cl-from-end)))
+
+(defun cl--position (item seq start &optional end from-end)
+ (if (listp seq)
+ (let ((p (nthcdr start seq))
+ res)
+ (while (and p (or (null end) (< start end)) (or (null res) from-end))
+ (if (cl--check-test item (car p))
+ (setq res start))
+ (setq p (cdr p) start (1+ start)))
+ res)
+ (or end (setq end (length seq)))
+ (if from-end
(progn
- (while (and (>= (setq cl-end (1- cl-end)) cl-start)
- (not (cl--check-test cl-item (aref cl-seq cl-end)))))
- (and (>= cl-end cl-start) cl-end))
- (while (and (< cl-start cl-end)
- (not (cl--check-test cl-item (aref cl-seq cl-start))))
- (setq cl-start (1+ cl-start)))
- (and (< cl-start cl-end) cl-start))))
+ (while (and (>= (setq end (1- end)) start)
+ (not (cl--check-test item (aref seq end)))))
+ (and (>= end start) end))
+ (while (and (< start end)
+ (not (cl--check-test item (aref seq start))))
+ (setq start (1+ start)))
+ (and (< start end) start))))
;;;###autoload
-(defun cl-position-if (cl-pred cl-list &rest cl-keys)
+(defun cl-position-if (pred list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-position nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-position nil list :if pred cl-keys))
;;;###autoload
-(defun cl-position-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-position-if-not (pred list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-position nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-position nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-count (cl-item cl-seq &rest cl-keys)
+(defun cl-count (item seq &rest cl-keys)
"Count the number of occurrences of ITEM in SEQ.
\nKeywords supported: :test :test-not :key :start :end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
+ (declare (important-return-value t))
(cl--parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
- (let ((cl-count 0) cl-x)
- (or cl-end (setq cl-end (length cl-seq)))
- (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
+ (let ((count 0) x)
+ (or cl-end (setq cl-end (length seq)))
+ (if (consp seq) (setq seq (nthcdr cl-start seq)))
(while (< cl-start cl-end)
- (setq cl-x (if (consp cl-seq) (pop cl-seq) (aref cl-seq cl-start)))
- (if (cl--check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
+ (setq x (if (consp seq) (pop seq) (aref seq cl-start)))
+ (if (cl--check-test item x) (incf count))
(setq cl-start (1+ cl-start)))
- cl-count)))
+ count)))
;;;###autoload
-(defun cl-count-if (cl-pred cl-list &rest cl-keys)
+(defun cl-count-if (pred list &rest cl-keys)
"Count the number of items satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-count nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-count nil list :if pred cl-keys))
;;;###autoload
-(defun cl-count-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-count-if-not (pred list &rest cl-keys)
"Count the number of items not satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'cl-count nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-count nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-mismatch (seq1 seq2 &rest cl-keys)
"Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
- (cl--parsing-keywords (:test :test-not :key :from-end
- (:start1 0) :end1 (:start2 0) :end2) ()
- (or cl-end1 (setq cl-end1 (length cl-seq1)))
- (or cl-end2 (setq cl-end2 (length cl-seq2)))
+ (declare (important-return-value t))
+ (cl--parsing-keywords ( :test :test-not :key :from-end
+ (:start1 0) :end1 (:start2 0) :end2) ()
+ (or cl-end1 (setq cl-end1 (length seq1)))
+ (or cl-end2 (setq cl-end2 (length seq2)))
(if cl-from-end
(progn
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
- (cl--check-match (elt cl-seq1 (1- cl-end1))
- (elt cl-seq2 (1- cl-end2))))
+ (cl--check-match (elt seq1 (1- cl-end1))
+ (elt seq2 (1- cl-end2))))
(setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
(1- cl-end1)))
- (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
- (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
+ (let ((p1 (and (listp seq1) (nthcdr cl-start1 seq1)))
+ (p2 (and (listp seq2) (nthcdr cl-start2 seq2))))
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
- (cl--check-match (if cl-p1 (car cl-p1)
- (aref cl-seq1 cl-start1))
- (if cl-p2 (car cl-p2)
- (aref cl-seq2 cl-start2))))
- (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)
+ (cl--check-match (if p1 (car p1)
+ (aref seq1 cl-start1))
+ (if p2 (car p2)
+ (aref seq2 cl-start2))))
+ (setq p1 (cdr p1) p2 (cdr p2)
cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
cl-start1)))))
;;;###autoload
-(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-search (seq1 seq2 &rest cl-keys)
"Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
- (cl--parsing-keywords (:test :test-not :key :from-end
- (:start1 0) :end1 (:start2 0) :end2) ()
- (or cl-end1 (setq cl-end1 (length cl-seq1)))
- (or cl-end2 (setq cl-end2 (length cl-seq2)))
+ (declare (important-return-value t))
+ (cl--parsing-keywords ( :test :test-not :key :from-end
+ (:start1 0) :end1 (:start2 0) :end2) ()
+ (or cl-end1 (setq cl-end1 (length seq1)))
+ (or cl-end2 (setq cl-end2 (length seq2)))
(if (>= cl-start1 cl-end1)
(if cl-from-end cl-end2 cl-start2)
- (let* ((cl-len (- cl-end1 cl-start1))
- (cl-first (cl--check-key (elt cl-seq1 cl-start1)))
- (cl-if nil) cl-pos)
- (setq cl-end2 (- cl-end2 (1- cl-len)))
+ (let* ((len (- cl-end1 cl-start1))
+ (first (cl--check-key (elt seq1 cl-start1)))
+ (cl-if nil) pos)
+ (setq cl-end2 (- cl-end2 (1- len)))
(while (and (< cl-start2 cl-end2)
- (setq cl-pos (cl--position cl-first cl-seq2
- cl-start2 cl-end2 cl-from-end))
- (apply 'cl-mismatch cl-seq1 cl-seq2
+ (setq pos (cl--position first seq2
+ cl-start2 cl-end2 cl-from-end))
+ (apply #'cl-mismatch seq1 seq2
:start1 (1+ cl-start1) :end1 cl-end1
- :start2 (1+ cl-pos) :end2 (+ cl-pos cl-len)
+ :start2 (1+ pos) :end2 (+ pos len)
:from-end nil cl-keys))
- (if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
- (and (< cl-start2 cl-end2) cl-pos)))))
+ (if cl-from-end (setq cl-end2 pos) (setq cl-start2 (1+ pos))))
+ (and (< cl-start2 cl-end2) pos)))))
;;;###autoload
-(defun cl-sort (cl-seq cl-pred &rest cl-keys)
+(defun cl-sort (seq pred &rest cl-keys)
"Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
- (if (nlistp cl-seq)
- (if (stringp cl-seq)
- (concat (apply #'cl-sort (vconcat cl-seq) cl-pred cl-keys))
- (cl-replace cl-seq
- (apply #'cl-sort (append cl-seq nil) cl-pred cl-keys)))
+ ;; It's safe to ignore the return value when used on arrays,
+ ;; but most calls pass lists.
+ (declare (important-return-value t))
+ (if (nlistp seq)
+ (if (stringp seq)
+ (concat (apply #'cl-sort (vconcat seq) pred cl-keys))
+ (cl-replace seq
+ (apply #'cl-sort (append seq nil) pred cl-keys)))
(cl--parsing-keywords (:key) ()
(if (memq cl-key '(nil identity))
- (sort cl-seq cl-pred)
- (sort cl-seq (lambda (cl-x cl-y)
- (funcall cl-pred (funcall cl-key cl-x)
- (funcall cl-key cl-y))))))))
+ (sort seq pred)
+ (sort seq (lambda (x y)
+ (funcall pred (funcall cl-key x)
+ (funcall cl-key y))))))))
;;;###autoload
-(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys)
+(defun cl-stable-sort (seq pred &rest cl-keys)
"Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
- (apply 'cl-sort cl-seq cl-pred cl-keys))
+ ;; It's safe to ignore the return value when used on arrays,
+ ;; but most calls pass lists.
+ (declare (important-return-value t))
+ (apply #'cl-sort seq pred cl-keys))
;;;###autoload
-(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
+(defun cl-merge (type seq1 seq2 pred &rest cl-keys)
"Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.
\nKeywords supported: :key
\n(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)"
- (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
- (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
+ (declare (important-return-value t))
+ (or (listp seq1) (setq seq1 (append seq1 nil)))
+ (or (listp seq2) (setq seq2 (append seq2 nil)))
(cl--parsing-keywords (:key) ()
- (let ((cl-res nil))
- (while (and cl-seq1 cl-seq2)
- (if (funcall cl-pred (cl--check-key (car cl-seq2))
- (cl--check-key (car cl-seq1)))
- (push (pop cl-seq2) cl-res)
- (push (pop cl-seq1) cl-res)))
- (cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
+ (let ((res nil))
+ (while (and seq1 seq2)
+ (if (funcall pred (cl--check-key (car seq2))
+ (cl--check-key (car seq1)))
+ (push (pop seq2) res)
+ (push (pop seq1) res)))
+ (cl-coerce (nconc (nreverse res) seq1 seq2) type))))
;;;###autoload
-(defun cl-member (cl-item cl-list &rest cl-keys)
+(defun cl-member (item list &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
- (declare (compiler-macro cl--compiler-macro-member))
+ (declare (important-return-value t)
+ (compiler-macro cl--compiler-macro-member))
(if cl-keys
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
- (while (and cl-list (not (cl--check-test cl-item (car cl-list))))
- (setq cl-list (cdr cl-list)))
- cl-list)
- (memql cl-item cl-list)))
+ (while (and list (not (cl--check-test item (car list))))
+ (setq list (cdr list)))
+ list)
+ (memql item list)))
(autoload 'cl--compiler-macro-member "cl-macs")
;;;###autoload
-(defun cl-member-if (cl-pred cl-list &rest cl-keys)
+(defun cl-member-if (pred list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'cl-member nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-member nil list :if pred cl-keys))
;;;###autoload
-(defun cl-member-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-member-if-not (pred list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'cl-member nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-member nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl--adjoin (cl-item cl-list &rest cl-keys)
+(defun cl--adjoin (item list &rest cl-keys)
(if (cl--parsing-keywords (:key) t
- (apply 'cl-member (cl--check-key cl-item) cl-list cl-keys))
- cl-list
- (cons cl-item cl-list)))
+ (apply #'cl-member (cl--check-key item) list cl-keys))
+ list
+ (cons item list)))
;;;###autoload
-(defun cl-assoc (cl-item cl-alist &rest cl-keys)
+(defun cl-assoc (item alist &rest cl-keys)
"Find the first item whose car matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
- (declare (compiler-macro cl--compiler-macro-assoc))
+ (declare (important-return-value t)
+ (compiler-macro cl--compiler-macro-assoc))
(if cl-keys
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
- (while (and cl-alist
- (or (not (consp (car cl-alist)))
- (not (cl--check-test cl-item (car (car cl-alist))))))
- (setq cl-alist (cdr cl-alist)))
- (and cl-alist (car cl-alist)))
- (if (and (numberp cl-item) (not (fixnump cl-item)))
- (assoc cl-item cl-alist)
- (assq cl-item cl-alist))))
+ (while (and alist
+ (or (not (consp (car alist)))
+ (not (cl--check-test item (car (car alist))))))
+ (setq alist (cdr alist)))
+ (and alist (car alist)))
+ (if (and (numberp item) (not (fixnump item)))
+ (assoc item alist)
+ (assq item alist))))
(autoload 'cl--compiler-macro-assoc "cl-macs")
;;;###autoload
-(defun cl-assoc-if (cl-pred cl-list &rest cl-keys)
+(defun cl-assoc-if (pred list &rest cl-keys)
"Find the first item whose car satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'cl-assoc nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-assoc nil list :if pred cl-keys))
;;;###autoload
-(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-assoc-if-not (pred list &rest cl-keys)
"Find the first item whose car does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-assoc nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-rassoc (cl-item cl-alist &rest cl-keys)
+(defun cl-rassoc (item alist &rest cl-keys)
"Find the first item whose cdr matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
- (if (or cl-keys (numberp cl-item))
+ (declare (important-return-value t))
+ (if (or cl-keys (numberp item))
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
- (while (and cl-alist
- (or (not (consp (car cl-alist)))
- (not (cl--check-test cl-item (cdr (car cl-alist))))))
- (setq cl-alist (cdr cl-alist)))
- (and cl-alist (car cl-alist)))
- (rassq cl-item cl-alist)))
+ (while (and alist
+ (or (not (consp (car alist)))
+ (not (cl--check-test item (cdr (car alist))))))
+ (setq alist (cdr alist)))
+ (and alist (car alist)))
+ (rassq item alist)))
;;;###autoload
-(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys)
+(defun cl-rassoc-if (pred list &rest cl-keys)
"Find the first item whose cdr satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'cl-rassoc nil cl-list :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-rassoc nil list :if pred cl-keys))
;;;###autoload
-(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-rassoc-if-not (pred list &rest cl-keys)
"Find the first item whose cdr does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-rassoc nil list :if-not pred cl-keys))
;;;###autoload
-(defun cl-union (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-union (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
- ((and (not cl-keys) (equal cl-list1 cl-list2)) cl-list1)
+ (declare (important-return-value t))
+ (cond ((null list1) list2) ((null list2) list1)
+ ((and (not cl-keys) (equal list1 list2)) list1)
(t
- (or (>= (length cl-list1) (length cl-list2))
- (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
- (while cl-list2
- (if (or cl-keys (numberp (car cl-list2)))
- (setq cl-list1
- (apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys))
- (or (memq (car cl-list2) cl-list1)
- (push (car cl-list2) cl-list1)))
- (pop cl-list2))
- cl-list1)))
+ (or (>= (length list1) (length list2))
+ (setq list1 (prog1 list2 (setq list2 list1))))
+ (while list2
+ (if (or cl-keys (numberp (car list2)))
+ (setq list1
+ (apply #'cl-adjoin (car list2) list1 cl-keys))
+ (or (memq (car list2) list1)
+ (push (car list2) list1)))
+ (pop list2))
+ list1)))
;;;###autoload
-(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nunion (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
- (t (apply 'cl-union cl-list1 cl-list2 cl-keys))))
+ (declare (important-return-value t))
+ (cond ((null list1) list2) ((null list2) list1)
+ (t (apply #'cl-union list1 list2 cl-keys))))
;;;###autoload
-(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-intersection (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (and cl-list1 cl-list2
- (if (equal cl-list1 cl-list2) cl-list1
+ (declare (important-return-value t))
+ (and list1 list2
+ (if (equal list1 list2) list1
(cl--parsing-keywords (:key) (:test :test-not)
- (let ((cl-res nil))
- (or (>= (length cl-list1) (length cl-list2))
- (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
- (while cl-list2
- (if (if (or cl-keys (numberp (car cl-list2)))
- (apply 'cl-member (cl--check-key (car cl-list2))
- cl-list1 cl-keys)
- (memq (car cl-list2) cl-list1))
- (push (car cl-list2) cl-res))
- (pop cl-list2))
- cl-res)))))
+ (let ((res nil))
+ (or (>= (length list1) (length list2))
+ (setq list1 (prog1 list2 (setq list2 list1))))
+ (while list2
+ (if (if (or cl-keys (numberp (car list2)))
+ (apply #'cl-member (cl--check-key (car list2))
+ list1 cl-keys)
+ (memq (car list2) list1))
+ (push (car list2) res))
+ (pop list2))
+ res)))))
;;;###autoload
-(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nintersection (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
-This is a destructive function; it reuses the storage of LIST1 and LIST2
-whenever possible.
+This is a destructive function; it reuses the storage of LIST1 (but not
+LIST2) whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys)))
+ (declare (important-return-value t))
+ (and list1 list2 (apply #'cl-intersection list1 list2 cl-keys)))
;;;###autoload
-(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-set-difference (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (if (or (null cl-list1) (null cl-list2)) cl-list1
+ (declare (important-return-value t))
+ (if (or (null list1) (null list2)) list1
(cl--parsing-keywords (:key) (:test :test-not)
- (let ((cl-res nil))
- (while cl-list1
- (or (if (or cl-keys (numberp (car cl-list1)))
- (apply 'cl-member (cl--check-key (car cl-list1))
- cl-list2 cl-keys)
- (memq (car cl-list1) cl-list2))
- (push (car cl-list1) cl-res))
- (pop cl-list1))
- (nreverse cl-res)))))
+ (let ((res nil))
+ (while list1
+ (or (if (or cl-keys (numberp (car list1)))
+ (apply #'cl-member (cl--check-key (car list1))
+ list2 cl-keys)
+ (memq (car list1) list2))
+ (push (car list1) res))
+ (pop list1))
+ (nreverse res)))))
;;;###autoload
-(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nset-difference (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
-This is a destructive function; it reuses the storage of LIST1 and LIST2
-whenever possible.
+This is a destructive function; it reuses the storage of LIST1 (but not
+LIST2) whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (if (or (null cl-list1) (null cl-list2)) cl-list1
- (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)))
+ (declare (important-return-value t))
+ (if (or (null list1) (null list2)) list1
+ (apply #'cl-set-difference list1 list2 cl-keys)))
;;;###autoload
-(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-set-exclusive-or (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
- ((equal cl-list1 cl-list2) nil)
- (t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)
- (apply 'cl-set-difference cl-list2 cl-list1 cl-keys)))))
+ (declare (important-return-value t))
+ (cond ((null list1) list2) ((null list2) list1)
+ ((equal list1 list2) nil)
+ (t (append (apply #'cl-set-difference list1 list2 cl-keys)
+ (apply #'cl-set-difference list2 list1 cl-keys)))))
;;;###autoload
-(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nset-exclusive-or (list1 list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
- ((equal cl-list1 cl-list2) nil)
- (t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys)
- (apply 'cl-nset-difference cl-list2 cl-list1 cl-keys)))))
+ (declare (important-return-value t))
+ (cond ((null list1) list2) ((null list2) list1)
+ ((equal list1 list2) nil)
+ (t (nconc (apply #'cl-nset-difference list1 list2 cl-keys)
+ (apply #'cl-nset-difference list2 list1 cl-keys)))))
;;;###autoload
-(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-subsetp (list1 list2 &rest cl-keys)
"Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (cond ((null cl-list1) t) ((null cl-list2) nil)
- ((equal cl-list1 cl-list2) t)
+ (declare (important-return-value t))
+ (cond ((null list1) t) ((null list2) nil)
+ ((equal list1 list2) t)
(t (cl--parsing-keywords (:key) (:test :test-not)
- (while (and cl-list1
- (apply 'cl-member (cl--check-key (car cl-list1))
- cl-list2 cl-keys))
- (pop cl-list1))
- (null cl-list1)))))
+ (while (and list1
+ (apply #'cl-member (cl--check-key (car list1))
+ list2 cl-keys))
+ (pop list1))
+ (null list1)))))
;;;###autoload
-(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-subst-if (new pred tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-sublis (list (cons nil new)) tree :if pred cl-keys))
;;;###autoload
-(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-subst-if-not (new pred tree &rest cl-keys)
"Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-sublis (list (cons nil new)) tree :if-not pred cl-keys))
;;;###autoload
-(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys)
+(defun cl-nsubst (new old tree &rest cl-keys)
"Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
\nKeywords supported: :test :test-not :key
\n(fn NEW OLD TREE [KEYWORD VALUE]...)"
- (apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-nsublis (list (cons old new)) tree cl-keys))
;;;###autoload
-(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-nsubst-if (new pred tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-nsublis (list (cons nil new)) tree :if pred cl-keys))
;;;###autoload
-(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-nsubst-if-not (new pred tree &rest cl-keys)
"Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+ (declare (important-return-value t))
+ (apply #'cl-nsublis (list (cons nil new)) tree :if-not pred cl-keys))
(defvar cl--alist)
;;;###autoload
-(defun cl-sublis (cl-alist cl-tree &rest cl-keys)
+(defun cl-sublis (alist tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
+ (declare (important-return-value t))
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
- (let ((cl--alist cl-alist))
- (cl--sublis-rec cl-tree))))
-
-(defun cl--sublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*.
- (let ((cl-temp (cl--check-key cl-tree)) (cl-p cl--alist))
- (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
- (setq cl-p (cdr cl-p)))
- (if cl-p (cdr (car cl-p))
- (if (consp cl-tree)
- (let ((cl-a (cl--sublis-rec (car cl-tree)))
- (cl-d (cl--sublis-rec (cdr cl-tree))))
- (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
- cl-tree
- (cons cl-a cl-d)))
- cl-tree))))
+ (let ((cl--alist alist))
+ (cl--sublis-rec tree))))
+
+(defun cl--sublis-rec (tree) ;Uses cl--alist cl-key/test*/if*.
+ (let ((temp (cl--check-key tree))
+ (p cl--alist))
+ (while (and p (not (cl--check-test-nokey (car (car p)) temp)))
+ (setq p (cdr p)))
+ (if p (cdr (car p))
+ (if (consp tree)
+ (let ((a (cl--sublis-rec (car tree)))
+ (d (cl--sublis-rec (cdr tree))))
+ (if (and (eq a (car tree)) (eq d (cdr tree)))
+ tree
+ (cons a d)))
+ tree))))
;;;###autoload
-(defun cl-nsublis (cl-alist cl-tree &rest cl-keys)
+(defun cl-nsublis (alist tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
+ (declare (important-return-value t))
(cl--parsing-keywords (:test :test-not :key :if :if-not) ()
- (let ((cl-hold (list cl-tree))
- (cl--alist cl-alist))
- (cl--nsublis-rec cl-hold)
- (car cl-hold))))
-
-(defun cl--nsublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*.
- (while (consp cl-tree)
- (let ((cl-temp (cl--check-key (car cl-tree))) (cl-p cl--alist))
- (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
- (setq cl-p (cdr cl-p)))
- (if cl-p (setcar cl-tree (cdr (car cl-p)))
- (if (consp (car cl-tree)) (cl--nsublis-rec (car cl-tree))))
- (setq cl-temp (cl--check-key (cdr cl-tree)) cl-p cl--alist)
- (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
- (setq cl-p (cdr cl-p)))
- (if cl-p
- (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
- (setq cl-tree (cdr cl-tree))))))
+ (let ((hold (list tree))
+ (cl--alist alist))
+ (cl--nsublis-rec hold)
+ (car hold))))
+
+(defun cl--nsublis-rec (tree) ;Uses cl--alist cl-key/test*/if*.
+ (while (consp tree)
+ (let ((temp (cl--check-key (car tree)))
+ (p cl--alist))
+ (while (and p (not (cl--check-test-nokey (car (car p)) temp)))
+ (setq p (cdr p)))
+ (if p (setcar tree (cdr (car p)))
+ (if (consp (car tree)) (cl--nsublis-rec (car tree))))
+ (setq temp (cl--check-key (cdr tree)) p cl--alist)
+ (while (and p (not (cl--check-test-nokey (car (car p)) temp)))
+ (setq p (cdr p)))
+ (if p
+ (progn (setcdr tree (cdr (car p))) (setq tree nil))
+ (setq tree (cdr tree))))))
;;;###autoload
-(defun cl-tree-equal (cl-x cl-y &rest cl-keys)
+(defun cl-tree-equal (x y &rest cl-keys)
"Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
\nKeywords supported: :test :test-not :key
\n(fn TREE1 TREE2 [KEYWORD VALUE]...)"
+ (declare (important-return-value t))
(cl--parsing-keywords (:test :test-not :key) ()
- (cl--tree-equal-rec cl-x cl-y)))
+ (cl--tree-equal-rec x y)))
-(defun cl--tree-equal-rec (cl-x cl-y) ;Uses cl-key/test*.
- (while (and (consp cl-x) (consp cl-y)
- (cl--tree-equal-rec (car cl-x) (car cl-y)))
- (setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
- (and (not (consp cl-x)) (not (consp cl-y)) (cl--check-match cl-x cl-y)))
+(defun cl--tree-equal-rec (x y) ;Uses cl-key/test*.
+ (while (and (consp x) (consp y)
+ (cl--tree-equal-rec (car x) (car y)))
+ (setq x (cdr x) y (cdr y)))
+ (and (not (consp x)) (not (consp y)) (cl--check-match x y)))
(make-obsolete-variable 'cl-seq-load-hook