summaryrefslogtreecommitdiff
path: root/lisp/emacs-lisp/cl-seq.el
diff options
context:
space:
mode:
Diffstat (limited to 'lisp/emacs-lisp/cl-seq.el')
-rw-r--r--lisp/emacs-lisp/cl-seq.el513
1 files changed, 255 insertions, 258 deletions
diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el
index f1890fbccf6..b55f1df5ba5 100644
--- a/lisp/emacs-lisp/cl-seq.el
+++ b/lisp/emacs-lisp/cl-seq.el
@@ -1,4 +1,4 @@
-;;; cl-seq.el --- Common Lisp features, part 3
+;;; cl-seq.el --- Common Lisp features, part 3 -*- lexical-binding: t -*-
;; Copyright (C) 1993, 2001-2012 Free Software Foundation, Inc.
@@ -41,109 +41,101 @@
;;; Code:
-(require 'cl)
+(require 'cl-lib)
-;;; Keyword parsing. This is special-cased here so that we can compile
-;;; this file independent from cl-macs.
+;; Keyword parsing.
+;; This is special-cased here so that we can compile
+;; this file independent from cl-macs.
-(defmacro cl-parsing-keywords (kwords other-keys &rest body)
+(defmacro cl--parsing-keywords (kwords other-keys &rest body)
(declare (indent 2) (debug (sexp sexp &rest form)))
- (cons
- 'let*
- (cons (mapcar
- (function
- (lambda (x)
- (let* ((var (if (consp x) (car x) x))
- (mem (list 'car (list 'cdr (list 'memq (list 'quote var)
- 'cl-keys)))))
- (if (eq var :test-not)
- (setq mem (list 'and mem (list 'setq 'cl-test mem) t)))
- (if (eq var :if-not)
- (setq mem (list 'and mem (list 'setq 'cl-if mem) t)))
- (list (intern
- (format "cl-%s" (substring (symbol-name var) 1)))
- (if (consp x) (list 'or mem (car (cdr x))) mem)))))
- kwords)
- (append
- (and (not (eq other-keys t))
- (list
- (list 'let '((cl-keys-temp cl-keys))
- (list 'while 'cl-keys-temp
- (list 'or (list 'memq '(car cl-keys-temp)
- (list 'quote
- (mapcar
- (function
- (lambda (x)
- (if (consp x)
- (car x) x)))
- (append kwords
- other-keys))))
- '(car (cdr (memq (quote :allow-other-keys)
- cl-keys)))
- '(error "Bad keyword argument %s"
- (car cl-keys-temp)))
- '(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
- body))))
-
-(defmacro cl-check-key (x)
+ `(let* ,(mapcar
+ (lambda (x)
+ (let* ((var (if (consp x) (car x) x))
+ (mem `(car (cdr (memq ',var cl-keys)))))
+ (if (eq var :test-not)
+ (setq mem `(and ,mem (setq cl-test ,mem) t)))
+ (if (eq var :if-not)
+ (setq mem `(and ,mem (setq cl-if ,mem) t)))
+ (list (intern
+ (format "cl-%s" (substring (symbol-name var) 1)))
+ (if (consp x) `(or ,mem ,(car (cdr x))) mem))))
+ kwords)
+ ,@(append
+ (and (not (eq other-keys t))
+ (list
+ (list 'let '((cl-keys-temp cl-keys))
+ (list 'while 'cl-keys-temp
+ (list 'or (list 'memq '(car cl-keys-temp)
+ (list 'quote
+ (mapcar
+ (function
+ (lambda (x)
+ (if (consp x)
+ (car x) x)))
+ (append kwords
+ other-keys))))
+ '(car (cdr (memq (quote :allow-other-keys)
+ cl-keys)))
+ '(error "Bad keyword argument %s"
+ (car cl-keys-temp)))
+ '(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
+ body)))
+
+(defmacro cl--check-key (x) ;Expects `cl-key' in context of generated code.
(declare (debug edebug-forms))
- (list 'if 'cl-key (list 'funcall 'cl-key x) x))
+ `(if cl-key (funcall cl-key ,x) ,x))
-(defmacro cl-check-test-nokey (item x)
+(defmacro cl--check-test-nokey (item x) ;cl-test cl-if cl-test-not cl-if-not.
(declare (debug edebug-forms))
- (list 'cond
- (list 'cl-test
- (list 'eq (list 'not (list 'funcall 'cl-test item x))
- 'cl-test-not))
- (list 'cl-if
- (list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not))
- (list 't (list 'if (list 'numberp item)
- (list 'equal item x) (list 'eq item x)))))
-
-(defmacro cl-check-test (item x)
+ `(cond
+ (cl-test (eq (not (funcall cl-test ,item ,x))
+ cl-test-not))
+ (cl-if (eq (not (funcall cl-if ,x)) cl-if-not))
+ (t (eql ,item ,x))))
+
+(defmacro cl--check-test (item x) ;all of the above.
(declare (debug edebug-forms))
- (list 'cl-check-test-nokey item (list 'cl-check-key x)))
+ `(cl--check-test-nokey ,item (cl--check-key ,x)))
-(defmacro cl-check-match (x y)
+(defmacro cl--check-match (x y) ;cl-key cl-test cl-test-not
(declare (debug edebug-forms))
- (setq x (list 'cl-check-key x) y (list 'cl-check-key y))
- (list 'if 'cl-test
- (list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not)
- (list 'if (list 'numberp x)
- (list 'equal x y) (list 'eq x y))))
+ (setq x `(cl--check-key ,x) y `(cl--check-key ,y))
+ `(if cl-test
+ (eq (not (funcall cl-test ,x ,y)) cl-test-not)
+ (eql ,x ,y)))
(defvar cl-test) (defvar cl-test-not)
(defvar cl-if) (defvar cl-if-not)
(defvar cl-key)
-
;;;###autoload
-(defun reduce (cl-func cl-seq &rest cl-keys)
+(defun cl-reduce (cl-func cl-seq &rest cl-keys)
"Reduce two-argument FUNCTION across SEQ.
\nKeywords supported: :start :end :from-end :initial-value :key
\n(fn FUNCTION SEQ [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
+ (cl--parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
(or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
- (setq cl-seq (subseq cl-seq cl-start cl-end))
+ (setq cl-seq (cl-subseq cl-seq cl-start cl-end))
(if cl-from-end (setq cl-seq (nreverse cl-seq)))
(let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value)
- (cl-seq (cl-check-key (pop cl-seq)))
+ (cl-seq (cl--check-key (pop cl-seq)))
(t (funcall cl-func)))))
(if cl-from-end
(while cl-seq
- (setq cl-accum (funcall cl-func (cl-check-key (pop cl-seq))
+ (setq cl-accum (funcall cl-func (cl--check-key (pop cl-seq))
cl-accum)))
(while cl-seq
(setq cl-accum (funcall cl-func cl-accum
- (cl-check-key (pop cl-seq))))))
+ (cl--check-key (pop cl-seq))))))
cl-accum)))
;;;###autoload
-(defun fill (seq item &rest cl-keys)
+(defun cl-fill (seq item &rest cl-keys)
"Fill the elements of SEQ with ITEM.
\nKeywords supported: :start :end
\n(fn SEQ ITEM [KEYWORD VALUE]...)"
- (cl-parsing-keywords ((:start 0) :end) ()
+ (cl--parsing-keywords ((:start 0) :end) ()
(if (listp seq)
(let ((p (nthcdr cl-start seq))
(n (if cl-end (- cl-end cl-start) 8000000)))
@@ -159,19 +151,19 @@
seq))
;;;###autoload
-(defun replace (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys)
"Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.
\nKeywords supported: :start1 :end1 :start2 :end2
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
- (cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
+ (cl--parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
(if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
(or (= cl-start1 cl-start2)
(let* ((cl-len (length cl-seq1))
(cl-n (min (- (or cl-end1 cl-len) cl-start1)
(- (or cl-end2 cl-len) cl-start2))))
(while (>= (setq cl-n (1- cl-n)) 0)
- (cl-set-elt cl-seq1 (+ cl-start1 cl-n)
+ (cl--set-elt cl-seq1 (+ cl-start1 cl-n)
(elt cl-seq2 (+ cl-start2 cl-n))))))
(if (listp cl-seq1)
(let ((cl-p1 (nthcdr cl-start1 cl-seq1))
@@ -202,21 +194,21 @@ SEQ1 is destructively modified, then returned.
cl-seq1))
;;;###autoload
-(defun remove* (cl-item cl-seq &rest cl-keys)
+(defun cl-remove (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
+ (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(if (<= (or cl-count (setq cl-count 8000000)) 0)
cl-seq
(if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000)))
- (let ((cl-i (cl-position cl-item cl-seq cl-start cl-end
- cl-from-end)))
+ (let ((cl-i (cl--position cl-item cl-seq cl-start cl-end
+ cl-from-end)))
(if cl-i
- (let ((cl-res (apply 'delete* cl-item (append cl-seq nil)
+ (let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil)
(append (if cl-from-end
(list :end (1+ cl-i))
(list :start cl-i))
@@ -227,20 +219,20 @@ to avoid corrupting the original SEQ.
(setq cl-end (- (or cl-end 8000000) cl-start))
(if (= cl-start 0)
(while (and cl-seq (> cl-end 0)
- (cl-check-test cl-item (car cl-seq))
+ (cl--check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0))))
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
(setq cl-end (1- cl-end)) (cdr cl-seq))))
(while (and cl-p (> cl-end 0)
- (not (cl-check-test cl-item (car cl-p))))
+ (not (cl--check-test cl-item (car cl-p))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)))
(if (and cl-p (> cl-end 0))
- (nconc (ldiff cl-seq cl-p)
+ (nconc (cl-ldiff cl-seq cl-p)
(if (= cl-count 1) (cdr cl-p)
(and (cdr cl-p)
- (apply 'delete* cl-item
+ (apply 'cl-delete cl-item
(copy-sequence (cdr cl-p))
:start 0 :end (1- cl-end)
:count (1- cl-count) cl-keys))))
@@ -248,30 +240,30 @@ to avoid corrupting the original SEQ.
cl-seq)))))
;;;###autoload
-(defun remove-if (cl-pred cl-list &rest cl-keys)
+(defun cl-remove-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'remove* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-remove nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun remove-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'remove* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-remove nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun delete* (cl-item cl-seq &rest cl-keys)
+(defun cl-delete (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
+ (cl--parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(if (<= (or cl-count (setq cl-count 8000000)) 0)
cl-seq
@@ -279,8 +271,8 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(if (and cl-from-end (< cl-count 4000000))
(let (cl-i)
(while (and (>= (setq cl-count (1- cl-count)) 0)
- (setq cl-i (cl-position cl-item cl-seq cl-start
- cl-end cl-from-end)))
+ (setq cl-i (cl--position cl-item cl-seq cl-start
+ cl-end cl-from-end)))
(if (= cl-i 0) (setq cl-seq (cdr cl-seq))
(let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
(setcdr cl-tail (cdr (cdr cl-tail)))))
@@ -291,7 +283,7 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(progn
(while (and cl-seq
(> cl-end 0)
- (cl-check-test cl-item (car cl-seq))
+ (cl--check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0)))
(setq cl-end (1- cl-end)))
@@ -299,7 +291,7 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (nthcdr cl-start cl-seq)))
(while (and (cdr cl-p) (> cl-end 0))
- (if (cl-check-test cl-item (car (cdr cl-p)))
+ (if (cl--check-test cl-item (car (cdr cl-p)))
(progn
(setcdr cl-p (cdr (cdr cl-p)))
(if (= (setq cl-count (1- cl-count)) 0)
@@ -307,49 +299,49 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end)))))
cl-seq)
- (apply 'remove* cl-item cl-seq cl-keys)))))
+ (apply 'cl-remove cl-item cl-seq cl-keys)))))
;;;###autoload
-(defun delete-if (cl-pred cl-list &rest cl-keys)
+(defun cl-delete-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'delete* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-delete nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun delete-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'delete* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-delete nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun remove-duplicates (cl-seq &rest cl-keys)
+(defun cl-remove-duplicates (cl-seq &rest cl-keys)
"Return a copy of SEQ with all duplicate elements removed.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
- (cl-delete-duplicates cl-seq cl-keys t))
+ (cl--delete-duplicates cl-seq cl-keys t))
;;;###autoload
-(defun delete-duplicates (cl-seq &rest cl-keys)
+(defun cl-delete-duplicates (cl-seq &rest cl-keys)
"Remove all duplicate elements from SEQ (destructively).
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
- (cl-delete-duplicates cl-seq cl-keys nil))
+ (cl--delete-duplicates cl-seq cl-keys nil))
-(defun cl-delete-duplicates (cl-seq cl-keys cl-copy)
+(defun cl--delete-duplicates (cl-seq cl-keys cl-copy)
(if (listp cl-seq)
- (cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if)
+ (cl--parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if)
()
(if cl-from-end
(let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (> cl-end 1)
(setq cl-i 0)
- (while (setq cl-i (cl-position (cl-check-key (car cl-p))
- (cdr cl-p) cl-i (1- cl-end)))
+ (while (setq cl-i (cl--position (cl--check-key (car cl-p))
+ (cdr cl-p) cl-i (1- cl-end)))
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr cl-start cl-seq) cl-copy nil))
(let ((cl-tail (nthcdr cl-i cl-p)))
@@ -360,14 +352,14 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
cl-seq)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
- (cl-position (cl-check-key (car cl-seq))
- (cdr cl-seq) 0 (1- cl-end)))
+ (cl--position (cl--check-key (car cl-seq))
+ (cdr cl-seq) 0 (1- cl-end)))
(setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
(let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
(setq cl-end (1- cl-end) cl-start 1) cl-seq)))
(while (and (cdr (cdr cl-p)) (> cl-end 1))
- (if (cl-position (cl-check-key (car (cdr cl-p)))
- (cdr (cdr cl-p)) 0 (1- cl-end))
+ (if (cl--position (cl--check-key (car (cdr cl-p)))
+ (cdr (cdr cl-p)) 0 (1- cl-end))
(progn
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr (1- cl-start) cl-seq)
@@ -376,63 +368,63 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end) cl-start (1+ cl-start)))
cl-seq)))
- (let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil)))
+ (let ((cl-res (cl--delete-duplicates (append cl-seq nil) cl-keys nil)))
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
;;;###autoload
-(defun substitute (cl-new cl-old cl-seq &rest cl-keys)
+(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not :count
+ (cl--parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(if (or (eq cl-old cl-new)
(<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0))
cl-seq
- (let ((cl-i (cl-position cl-old cl-seq cl-start cl-end)))
+ (let ((cl-i (cl--position cl-old cl-seq cl-start cl-end)))
(if (not cl-i)
cl-seq
(setq cl-seq (copy-sequence cl-seq))
(or cl-from-end
- (progn (cl-set-elt cl-seq cl-i cl-new)
+ (progn (cl--set-elt cl-seq cl-i cl-new)
(setq cl-i (1+ cl-i) cl-count (1- cl-count))))
- (apply 'nsubstitute cl-new cl-old cl-seq :count cl-count
+ (apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count
:start cl-i cl-keys))))))
;;;###autoload
-(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'substitute cl-new nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'substitute cl-new nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
+(defun cl-nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not :count
+ (cl--parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0)
(if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000)))
(let ((cl-p (nthcdr cl-start cl-seq)))
(setq cl-end (- (or cl-end 8000000) cl-start))
(while (and cl-p (> cl-end 0) (> cl-count 0))
- (if (cl-check-test cl-old (car cl-p))
+ (if (cl--check-test cl-old (car cl-p))
(progn
(setcar cl-p cl-new)
(setq cl-count (1- cl-count))))
@@ -441,12 +433,12 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
(if cl-from-end
(while (and (< cl-start cl-end) (> cl-count 0))
(setq cl-end (1- cl-end))
- (if (cl-check-test cl-old (elt cl-seq cl-end))
+ (if (cl--check-test cl-old (elt cl-seq cl-end))
(progn
- (cl-set-elt cl-seq cl-end cl-new)
+ (cl--set-elt cl-seq cl-end cl-new)
(setq cl-count (1- cl-count)))))
(while (and (< cl-start cl-end) (> cl-count 0))
- (if (cl-check-test cl-old (aref cl-seq cl-start))
+ (if (cl--check-test cl-old (aref cl-seq cl-start))
(progn
(aset cl-seq cl-start cl-new)
(setq cl-count (1- cl-count))))
@@ -454,63 +446,63 @@ This is a destructive function; it reuses the storage of SEQ whenever possible.
cl-seq))
;;;###autoload
-(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
+(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun find (cl-item cl-seq &rest cl-keys)
+(defun cl-find (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (let ((cl-pos (apply 'position cl-item cl-seq cl-keys)))
+ (let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys)))
(and cl-pos (elt cl-seq cl-pos))))
;;;###autoload
-(defun find-if (cl-pred cl-list &rest cl-keys)
+(defun cl-find-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'find nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-find nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun find-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-find-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'find nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-find nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun position (cl-item cl-seq &rest cl-keys)
+(defun cl-position (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not
+ (cl--parsing-keywords (:test :test-not :key :if :if-not
(:start 0) :end :from-end) ()
- (cl-position cl-item cl-seq cl-start cl-end cl-from-end)))
+ (cl--position cl-item cl-seq cl-start cl-end cl-from-end)))
-(defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
+(defun cl--position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
(if (listp cl-seq)
(let ((cl-p (nthcdr cl-start cl-seq)))
(or cl-end (setq cl-end 8000000))
(let ((cl-res nil))
(while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end))
- (if (cl-check-test cl-item (car cl-p))
+ (if (cl--check-test cl-item (car cl-p))
(setq cl-res cl-start))
(setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
cl-res))
@@ -518,73 +510,73 @@ Return the index of the matching item, or nil if not found.
(if cl-from-end
(progn
(while (and (>= (setq cl-end (1- cl-end)) cl-start)
- (not (cl-check-test cl-item (aref cl-seq cl-end)))))
+ (not (cl--check-test cl-item (aref cl-seq cl-end)))))
(and (>= cl-end cl-start) cl-end))
(while (and (< cl-start cl-end)
- (not (cl-check-test cl-item (aref cl-seq cl-start))))
+ (not (cl--check-test cl-item (aref cl-seq cl-start))))
(setq cl-start (1+ cl-start)))
(and (< cl-start cl-end) cl-start))))
;;;###autoload
-(defun position-if (cl-pred cl-list &rest cl-keys)
+(defun cl-position-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'position nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-position nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun position-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-position-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'position nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-position nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun count (cl-item cl-seq &rest cl-keys)
+(defun cl-count (cl-item cl-seq &rest cl-keys)
"Count the number of occurrences of ITEM in SEQ.
\nKeywords supported: :test :test-not :key :start :end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
+ (cl--parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
(let ((cl-count 0) cl-x)
(or cl-end (setq cl-end (length cl-seq)))
(if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
(while (< cl-start cl-end)
(setq cl-x (if (consp cl-seq) (pop cl-seq) (aref cl-seq cl-start)))
- (if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
+ (if (cl--check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
(setq cl-start (1+ cl-start)))
cl-count)))
;;;###autoload
-(defun count-if (cl-pred cl-list &rest cl-keys)
+(defun cl-count-if (cl-pred cl-list &rest cl-keys)
"Count the number of items satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'count nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-count nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun count-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-count-if-not (cl-pred cl-list &rest cl-keys)
"Count the number of items not satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
- (apply 'count nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-count nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys)
"Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :from-end
+ (cl--parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if cl-from-end
(progn
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
- (cl-check-match (elt cl-seq1 (1- cl-end1))
+ (cl--check-match (elt cl-seq1 (1- cl-end1))
(elt cl-seq2 (1- cl-end2))))
(setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
@@ -592,7 +584,7 @@ other, the return value indicates the end of the shorter sequence.
(let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
(cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
- (cl-check-match (if cl-p1 (car cl-p1)
+ (cl--check-match (if cl-p1 (car cl-p1)
(aref cl-seq1 cl-start1))
(if cl-p2 (car cl-p2)
(aref cl-seq2 cl-start2))))
@@ -602,26 +594,26 @@ other, the return value indicates the end of the shorter sequence.
cl-start1)))))
;;;###autoload
-(defun search (cl-seq1 cl-seq2 &rest cl-keys)
+(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys)
"Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :from-end
+ (cl--parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if (>= cl-start1 cl-end1)
(if cl-from-end cl-end2 cl-start2)
(let* ((cl-len (- cl-end1 cl-start1))
- (cl-first (cl-check-key (elt cl-seq1 cl-start1)))
+ (cl-first (cl--check-key (elt cl-seq1 cl-start1)))
(cl-if nil) cl-pos)
(setq cl-end2 (- cl-end2 (1- cl-len)))
(while (and (< cl-start2 cl-end2)
- (setq cl-pos (cl-position cl-first cl-seq2
- cl-start2 cl-end2 cl-from-end))
- (apply 'mismatch cl-seq1 cl-seq2
+ (setq cl-pos (cl--position cl-first cl-seq2
+ cl-start2 cl-end2 cl-from-end))
+ (apply 'cl-mismatch cl-seq1 cl-seq2
:start1 (1+ cl-start1) :end1 cl-end1
:start2 (1+ cl-pos) :end2 (+ cl-pos cl-len)
:from-end nil cl-keys))
@@ -629,14 +621,14 @@ return nil if there are no matches.
(and (< cl-start2 cl-end2) cl-pos)))))
;;;###autoload
-(defun sort* (cl-seq cl-pred &rest cl-keys)
+(defun cl-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
(if (nlistp cl-seq)
- (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys))
- (cl-parsing-keywords (:key) ()
+ (cl-replace cl-seq (apply 'cl-sort (append cl-seq nil) cl-pred cl-keys))
+ (cl--parsing-keywords (:key) ()
(if (memq cl-key '(nil identity))
(sort cl-seq cl-pred)
(sort cl-seq (function (lambda (cl-x cl-y)
@@ -644,15 +636,15 @@ This is a destructive function; it reuses the storage of SEQ if possible.
(funcall cl-key cl-y)))))))))
;;;###autoload
-(defun stable-sort (cl-seq cl-pred &rest cl-keys)
+(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
- (apply 'sort* cl-seq cl-pred cl-keys))
+ (apply 'cl-sort cl-seq cl-pred cl-keys))
;;;###autoload
-(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
+(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
"Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.
@@ -660,115 +652,117 @@ sequences, and PREDICATE is a `less-than' predicate on the elements.
\n(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)"
(or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
(or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
- (cl-parsing-keywords (:key) ()
+ (cl--parsing-keywords (:key) ()
(let ((cl-res nil))
(while (and cl-seq1 cl-seq2)
- (if (funcall cl-pred (cl-check-key (car cl-seq2))
- (cl-check-key (car cl-seq1)))
+ (if (funcall cl-pred (cl--check-key (car cl-seq2))
+ (cl--check-key (car cl-seq1)))
(push (pop cl-seq2) cl-res)
(push (pop cl-seq1) cl-res)))
- (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
+ (cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
-;;; See compiler macro in cl-macs.el
;;;###autoload
-(defun member* (cl-item cl-list &rest cl-keys)
+(defun cl-member (cl-item cl-list &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
+ (declare (compiler-macro cl--compiler-macro-member))
(if cl-keys
- (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
- (while (and cl-list (not (cl-check-test cl-item (car cl-list))))
+ (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
+ (while (and cl-list (not (cl--check-test cl-item (car cl-list))))
(setq cl-list (cdr cl-list)))
cl-list)
(if (and (numberp cl-item) (not (integerp cl-item)))
(member cl-item cl-list)
(memq cl-item cl-list))))
+(autoload 'cl--compiler-macro-member "cl-macs")
;;;###autoload
-(defun member-if (cl-pred cl-list &rest cl-keys)
+(defun cl-member-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'member* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-member nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun member-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-member-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'member* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-member nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun cl-adjoin (cl-item cl-list &rest cl-keys)
- (if (cl-parsing-keywords (:key) t
- (apply 'member* (cl-check-key cl-item) cl-list cl-keys))
+(defun cl--adjoin (cl-item cl-list &rest cl-keys)
+ (if (cl--parsing-keywords (:key) t
+ (apply 'cl-member (cl--check-key cl-item) cl-list cl-keys))
cl-list
(cons cl-item cl-list)))
-;;; See compiler macro in cl-macs.el
;;;###autoload
-(defun assoc* (cl-item cl-alist &rest cl-keys)
+(defun cl-assoc (cl-item cl-alist &rest cl-keys)
"Find the first item whose car matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
+ (declare (compiler-macro cl--compiler-macro-assoc))
(if cl-keys
- (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
+ (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
- (not (cl-check-test cl-item (car (car cl-alist))))))
+ (not (cl--check-test cl-item (car (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(if (and (numberp cl-item) (not (integerp cl-item)))
(assoc cl-item cl-alist)
(assq cl-item cl-alist))))
+(autoload 'cl--compiler-macro-assoc "cl-macs")
;;;###autoload
-(defun assoc-if (cl-pred cl-list &rest cl-keys)
+(defun cl-assoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose car satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'assoc* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-assoc nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun assoc-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose car does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'assoc* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun rassoc* (cl-item cl-alist &rest cl-keys)
+(defun cl-rassoc (cl-item cl-alist &rest cl-keys)
"Find the first item whose cdr matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
(if (or cl-keys (numberp cl-item))
- (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
+ (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
- (not (cl-check-test cl-item (cdr (car cl-alist))))))
+ (not (cl--check-test cl-item (cdr (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(rassq cl-item cl-alist)))
;;;###autoload
-(defun rassoc-if (cl-pred cl-list &rest cl-keys)
+(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'rassoc* nil cl-list :if cl-pred cl-keys))
+ (apply 'cl-rassoc nil cl-list :if cl-pred cl-keys))
;;;###autoload
-(defun rassoc-if-not (cl-pred cl-list &rest cl-keys)
+(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
- (apply 'rassoc* nil cl-list :if-not cl-pred cl-keys))
+ (apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys))
;;;###autoload
-(defun union (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-union (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -782,14 +776,14 @@ to avoid corrupting the original LIST1 and LIST2.
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (or cl-keys (numberp (car cl-list2)))
- (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys))
+ (setq cl-list1 (apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys))
(or (memq (car cl-list2) cl-list1)
(push (car cl-list2) cl-list1)))
(pop cl-list2))
cl-list1)))
;;;###autoload
-(defun nunion (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The resulting list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
@@ -797,10 +791,10 @@ whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
- (t (apply 'union cl-list1 cl-list2 cl-keys))))
+ (t (apply 'cl-union cl-list1 cl-list2 cl-keys))))
;;;###autoload
-(defun intersection (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -809,13 +803,13 @@ to avoid corrupting the original LIST1 and LIST2.
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(and cl-list1 cl-list2
(if (equal cl-list1 cl-list2) cl-list1
- (cl-parsing-keywords (:key) (:test :test-not)
+ (cl--parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(or (>= (length cl-list1) (length cl-list2))
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (if (or cl-keys (numberp (car cl-list2)))
- (apply 'member* (cl-check-key (car cl-list2))
+ (apply 'cl-member (cl--check-key (car cl-list2))
cl-list1 cl-keys)
(memq (car cl-list2) cl-list1))
(push (car cl-list2) cl-res))
@@ -823,17 +817,17 @@ to avoid corrupting the original LIST1 and LIST2.
cl-res)))))
;;;###autoload
-(defun nintersection (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The resulting list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
- (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys)))
+ (and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys)))
;;;###autoload
-(defun set-difference (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -841,11 +835,11 @@ to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(if (or (null cl-list1) (null cl-list2)) cl-list1
- (cl-parsing-keywords (:key) (:test :test-not)
+ (cl--parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(while cl-list1
(or (if (or cl-keys (numberp (car cl-list1)))
- (apply 'member* (cl-check-key (car cl-list1))
+ (apply 'cl-member (cl--check-key (car cl-list1))
cl-list2 cl-keys)
(memq (car cl-list1) cl-list2))
(push (car cl-list1) cl-res))
@@ -853,7 +847,7 @@ to avoid corrupting the original LIST1 and LIST2.
cl-res))))
;;;###autoload
-(defun nset-difference (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The resulting list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
@@ -861,10 +855,10 @@ whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(if (or (null cl-list1) (null cl-list2)) cl-list1
- (apply 'set-difference cl-list1 cl-list2 cl-keys)))
+ (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)))
;;;###autoload
-(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
@@ -873,11 +867,11 @@ to avoid corrupting the original LIST1 and LIST2.
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
- (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys)
- (apply 'set-difference cl-list2 cl-list1 cl-keys)))))
+ (t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys)
+ (apply 'cl-set-difference cl-list2 cl-list1 cl-keys)))))
;;;###autoload
-(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The resulting list contains all items appearing in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
@@ -886,127 +880,130 @@ whenever possible.
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
- (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys)
- (apply 'nset-difference cl-list2 cl-list1 cl-keys)))))
+ (t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys)
+ (apply 'cl-nset-difference cl-list2 cl-list1 cl-keys)))))
;;;###autoload
-(defun subsetp (cl-list1 cl-list2 &rest cl-keys)
+(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys)
"Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) t) ((null cl-list2) nil)
((equal cl-list1 cl-list2) t)
- (t (cl-parsing-keywords (:key) (:test :test-not)
+ (t (cl--parsing-keywords (:key) (:test :test-not)
(while (and cl-list1
- (apply 'member* (cl-check-key (car cl-list1))
+ (apply 'cl-member (cl--check-key (car cl-list1))
cl-list2 cl-keys))
(pop cl-list1))
(null cl-list1)))))
;;;###autoload
-(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+ (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
;;;###autoload
-(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+ (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
;;;###autoload
-(defun nsubst (cl-new cl-old cl-tree &rest cl-keys)
+(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys)
"Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
\nKeywords supported: :test :test-not :key
\n(fn NEW OLD TREE [KEYWORD VALUE]...)"
- (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
+ (apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
;;;###autoload
-(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+ (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
;;;###autoload
-(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
+(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
- (apply 'nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+ (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+
+(defvar cl--alist)
;;;###autoload
-(defun sublis (cl-alist cl-tree &rest cl-keys)
+(defun cl-sublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
- (cl-sublis-rec cl-tree)))
+ (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
+ (let ((cl--alist cl-alist))
+ (cl--sublis-rec cl-tree))))
-(defvar cl-alist)
-(defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if*
- (let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist))
- (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
+(defun cl--sublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*.
+ (let ((cl-temp (cl--check-key cl-tree)) (cl-p cl--alist))
+ (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (cdr (car cl-p))
(if (consp cl-tree)
- (let ((cl-a (cl-sublis-rec (car cl-tree)))
- (cl-d (cl-sublis-rec (cdr cl-tree))))
+ (let ((cl-a (cl--sublis-rec (car cl-tree)))
+ (cl-d (cl--sublis-rec (cdr cl-tree))))
(if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
cl-tree
(cons cl-a cl-d)))
cl-tree))))
;;;###autoload
-(defun nsublis (cl-alist cl-tree &rest cl-keys)
+(defun cl-nsublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
- (let ((cl-hold (list cl-tree)))
- (cl-nsublis-rec cl-hold)
+ (cl--parsing-keywords (:test :test-not :key :if :if-not) ()
+ (let ((cl-hold (list cl-tree))
+ (cl--alist cl-alist))
+ (cl--nsublis-rec cl-hold)
(car cl-hold))))
-(defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if*
+(defun cl--nsublis-rec (cl-tree) ;Uses cl--alist cl-key/test*/if*.
(while (consp cl-tree)
- (let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist))
- (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
+ (let ((cl-temp (cl--check-key (car cl-tree))) (cl-p cl--alist))
+ (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (setcar cl-tree (cdr (car cl-p)))
- (if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree))))
- (setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist)
- (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
+ (if (consp (car cl-tree)) (cl--nsublis-rec (car cl-tree))))
+ (setq cl-temp (cl--check-key (cdr cl-tree)) cl-p cl--alist)
+ (while (and cl-p (not (cl--check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p
(progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
(setq cl-tree (cdr cl-tree))))))
;;;###autoload
-(defun tree-equal (cl-x cl-y &rest cl-keys)
+(defun cl-tree-equal (cl-x cl-y &rest cl-keys)
"Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
\nKeywords supported: :test :test-not :key
\n(fn TREE1 TREE2 [KEYWORD VALUE]...)"
- (cl-parsing-keywords (:test :test-not :key) ()
- (cl-tree-equal-rec cl-x cl-y)))
+ (cl--parsing-keywords (:test :test-not :key) ()
+ (cl--tree-equal-rec cl-x cl-y)))
-(defun cl-tree-equal-rec (cl-x cl-y)
+(defun cl--tree-equal-rec (cl-x cl-y) ;Uses cl-key/test*.
(while (and (consp cl-x) (consp cl-y)
- (cl-tree-equal-rec (car cl-x) (car cl-y)))
+ (cl--tree-equal-rec (car cl-x) (car cl-y)))
(setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
- (and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y)))
+ (and (not (consp cl-x)) (not (consp cl-y)) (cl--check-match cl-x cl-y)))
(run-hooks 'cl-seq-load-hook)