diff options
Diffstat (limited to 'src/bignum.c')
-rw-r--r-- | src/bignum.c | 571 |
1 files changed, 571 insertions, 0 deletions
diff --git a/src/bignum.c b/src/bignum.c new file mode 100644 index 00000000000..e4e4d45d686 --- /dev/null +++ b/src/bignum.c @@ -0,0 +1,571 @@ +/* Big numbers for Emacs. + +Copyright 2018-2022 Free Software Foundation, Inc. + +This file is part of GNU Emacs. + +GNU Emacs is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or (at +your option) any later version. + +GNU Emacs is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */ + +#include <config.h> + +#include "bignum.h" + +#include "lisp.h" + +#include <math.h> +#include <stdlib.h> + +/* mpz global temporaries. Making them global saves the trouble of + properly using mpz_init and mpz_clear on temporaries even when + storage is exhausted. Admittedly this is not ideal. An mpz value + in a temporary is made permanent by mpz_swapping it with a bignum's + value. Although typically at most two temporaries are needed, + rounddiv_q and rounding_driver both need four and time_arith needs + five. */ + +mpz_t mpz[5]; + +static void * +xrealloc_for_gmp (void *ptr, size_t ignore, size_t size) +{ + return xrealloc (ptr, size); +} + +static void +xfree_for_gmp (void *ptr, size_t ignore) +{ + xfree (ptr); +} + +void +init_bignum (void) +{ + eassert (mp_bits_per_limb == GMP_NUMB_BITS); + integer_width = 1 << 16; + + /* FIXME: The Info node `(gmp) Custom Allocation' states: "No error + return is allowed from any of these functions, if they return + then they must have performed the specified operation. [...] + There's currently no defined way for the allocation functions to + recover from an error such as out of memory, they must terminate + program execution. A 'longjmp' or throwing a C++ exception will + have undefined results." But xmalloc and xrealloc do call + 'longjmp'. */ + mp_set_memory_functions (xmalloc, xrealloc_for_gmp, xfree_for_gmp); + + for (int i = 0; i < ARRAYELTS (mpz); i++) + mpz_init (mpz[i]); +} + +/* Return the value of the Lisp bignum N, as a double. */ +double +bignum_to_double (Lisp_Object n) +{ + return mpz_get_d_rounded (*xbignum_val (n)); +} + +/* Return D, converted to a Lisp integer. Discard any fraction. + Signal an error if D cannot be converted. */ +Lisp_Object +double_to_integer (double d) +{ + if (!isfinite (d)) + overflow_error (); + mpz_set_d (mpz[0], d); + return make_integer_mpz (); +} + +/* Return a Lisp integer equal to mpz[0], which has BITS bits and which + must not be in fixnum range. Set mpz[0] to a junk value. */ +static Lisp_Object +make_bignum_bits (size_t bits) +{ + /* The documentation says integer-width should be nonnegative, so + comparing it to BITS works even though BITS is unsigned. Treat + integer-width as if it were at least twice the machine integer width, + so that timefns.c can safely use bignums for double-precision + timestamps. */ + if (integer_width < bits && 2 * max (INTMAX_WIDTH, UINTMAX_WIDTH) < bits) + overflow_error (); + + struct Lisp_Bignum *b = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_Bignum, + PVEC_BIGNUM); + mpz_init (b->value); + mpz_swap (b->value, mpz[0]); + return make_lisp_ptr (b, Lisp_Vectorlike); +} + +/* Return a Lisp integer equal to mpz[0], which must not be in fixnum range. + Set mpz[0] to a junk value. */ +static Lisp_Object +make_bignum (void) +{ + return make_bignum_bits (mpz_sizeinbase (mpz[0], 2)); +} + +/* Return a Lisp integer equal to N, which must not be in fixnum range. */ +Lisp_Object +make_bigint (intmax_t n) +{ + eassert (FIXNUM_OVERFLOW_P (n)); + mpz_set_intmax (mpz[0], n); + return make_bignum (); +} +Lisp_Object +make_biguint (uintmax_t n) +{ + eassert (FIXNUM_OVERFLOW_P (n)); + mpz_set_uintmax (mpz[0], n); + return make_bignum (); +} + +/* Return a Lisp integer equal to -N, which must not be in fixnum range. */ +Lisp_Object +make_neg_biguint (uintmax_t n) +{ + eassert (-MOST_NEGATIVE_FIXNUM < n); + mpz_set_uintmax (mpz[0], n); + mpz_neg (mpz[0], mpz[0]); + return make_bignum (); +} + +/* Return a Lisp integer with value taken from mpz[0]. + Set mpz[0] to a junk value. */ +Lisp_Object +make_integer_mpz (void) +{ + size_t bits = mpz_sizeinbase (mpz[0], 2); + + if (bits <= FIXNUM_BITS) + { + EMACS_INT v = 0; + int i = 0, shift = 0; + + do + { + EMACS_INT limb = mpz_getlimbn (mpz[0], i++); + v += limb << shift; + shift += GMP_NUMB_BITS; + } + while (shift < bits); + + if (mpz_sgn (mpz[0]) < 0) + v = -v; + + if (!FIXNUM_OVERFLOW_P (v)) + return make_fixnum (v); + } + + return make_bignum_bits (bits); +} + +/* Set RESULT to V. This code is for when intmax_t is wider than long. */ +void +mpz_set_intmax_slow (mpz_t result, intmax_t v) +{ + int maxlimbs = (INTMAX_WIDTH + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS; + mp_limb_t *limb = mpz_limbs_write (result, maxlimbs); + int n = 0; + uintmax_t u = v; + bool negative = v < 0; + if (negative) + { + uintmax_t two = 2; + u = -u & ((two << (UINTMAX_WIDTH - 1)) - 1); + } + + do + { + limb[n++] = u; + u = GMP_NUMB_BITS < UINTMAX_WIDTH ? u >> GMP_NUMB_BITS : 0; + } + while (u != 0); + + mpz_limbs_finish (result, negative ? -n : n); +} +void +mpz_set_uintmax_slow (mpz_t result, uintmax_t v) +{ + int maxlimbs = (UINTMAX_WIDTH + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS; + mp_limb_t *limb = mpz_limbs_write (result, maxlimbs); + int n = 0; + + do + { + limb[n++] = v; + v = GMP_NUMB_BITS < INTMAX_WIDTH ? v >> GMP_NUMB_BITS : 0; + } + while (v != 0); + + mpz_limbs_finish (result, n); +} + +/* If Z fits into *PI, store its value there and return true. + Return false otherwise. */ +bool +mpz_to_intmax (mpz_t const z, intmax_t *pi) +{ + ptrdiff_t bits = mpz_sizeinbase (z, 2); + bool negative = mpz_sgn (z) < 0; + + if (bits < INTMAX_WIDTH) + { + intmax_t v = 0; + int i = 0, shift = 0; + + do + { + intmax_t limb = mpz_getlimbn (z, i++); + v += limb << shift; + shift += GMP_NUMB_BITS; + } + while (shift < bits); + + *pi = negative ? -v : v; + return true; + } + if (bits == INTMAX_WIDTH && INTMAX_MIN < -INTMAX_MAX && negative + && mpz_scan1 (z, 0) == INTMAX_WIDTH - 1) + { + *pi = INTMAX_MIN; + return true; + } + return false; +} +bool +mpz_to_uintmax (mpz_t const z, uintmax_t *pi) +{ + if (mpz_sgn (z) < 0) + return false; + ptrdiff_t bits = mpz_sizeinbase (z, 2); + if (UINTMAX_WIDTH < bits) + return false; + + uintmax_t v = 0; + int i = 0, shift = 0; + + do + { + uintmax_t limb = mpz_getlimbn (z, i++); + v += limb << shift; + shift += GMP_NUMB_BITS; + } + while (shift < bits); + + *pi = v; + return true; +} + +/* Return the value of the bignum X if it fits, 0 otherwise. + A bignum cannot be zero, so 0 indicates failure reliably. */ +intmax_t +bignum_to_intmax (Lisp_Object x) +{ + intmax_t i; + return mpz_to_intmax (*xbignum_val (x), &i) ? i : 0; +} +uintmax_t +bignum_to_uintmax (Lisp_Object x) +{ + uintmax_t i; + return mpz_to_uintmax (*xbignum_val (x), &i) ? i : 0; +} + + +/* Multiply and exponentiate mpz_t values without aborting due to size + limits. */ + +/* GMP tests for this value and aborts (!) if it is exceeded. + This is as of GMP 6.1.2 (2016); perhaps future versions will differ. */ +enum { GMP_NLIMBS_MAX = min (INT_MAX, ULONG_MAX / GMP_NUMB_BITS) }; + +/* An upper bound on limb counts, needed to prevent libgmp and/or + Emacs from aborting or otherwise misbehaving. This bound applies + to estimates of mpz_t sizes before the mpz_t objects are created, + as opposed to integer-width which operates on mpz_t values after + creation and before conversion to Lisp bignums. */ +enum + { + NLIMBS_LIMIT = min (min (/* libgmp needs to store limb counts. */ + GMP_NLIMBS_MAX, + + /* Size calculations need to work. */ + min (PTRDIFF_MAX, SIZE_MAX) / sizeof (mp_limb_t)), + + /* Emacs puts bit counts into fixnums. */ + MOST_POSITIVE_FIXNUM / GMP_NUMB_BITS) + }; + +/* Like mpz_size, but tell the compiler the result is a nonnegative int. */ + +static int +emacs_mpz_size (mpz_t const op) +{ + mp_size_t size = mpz_size (op); + eassume (0 <= size && size <= INT_MAX); + return size; +} + +/* Wrappers to work around GMP limitations. As of GMP 6.1.2 (2016), + the library code aborts when a number is too large. These wrappers + avoid the problem for functions that can return numbers much larger + than their arguments. For slowly-growing numbers, the integer + width checks in bignum.c should suffice. */ + +void +emacs_mpz_mul (mpz_t rop, mpz_t const op1, mpz_t const op2) +{ + if (NLIMBS_LIMIT - emacs_mpz_size (op1) < emacs_mpz_size (op2)) + overflow_error (); + mpz_mul (rop, op1, op2); +} + +void +emacs_mpz_mul_2exp (mpz_t rop, mpz_t const op1, EMACS_INT op2) +{ + /* Fudge factor derived from GMP 6.1.2, to avoid an abort in + mpz_mul_2exp (look for the '+ 1' in its source code). */ + enum { mul_2exp_extra_limbs = 1 }; + enum { lim = min (NLIMBS_LIMIT, GMP_NLIMBS_MAX - mul_2exp_extra_limbs) }; + + EMACS_INT op2limbs = op2 / GMP_NUMB_BITS; + if (lim - emacs_mpz_size (op1) < op2limbs) + overflow_error (); + mpz_mul_2exp (rop, op1, op2); +} + +void +emacs_mpz_pow_ui (mpz_t rop, mpz_t const base, unsigned long exp) +{ + /* This fudge factor is derived from GMP 6.1.2, to avoid an abort in + mpz_n_pow_ui (look for the '5' in its source code). */ + enum { pow_ui_extra_limbs = 5 }; + enum { lim = min (NLIMBS_LIMIT, GMP_NLIMBS_MAX - pow_ui_extra_limbs) }; + + int nbase = emacs_mpz_size (base), n; + if (INT_MULTIPLY_WRAPV (nbase, exp, &n) || lim < n) + overflow_error (); + mpz_pow_ui (rop, base, exp); +} + + +/* Yield an upper bound on the buffer size needed to contain a C + string representing the NUM in base BASE. This includes any + preceding '-' and the terminating null. */ +static ptrdiff_t +mpz_bufsize (mpz_t const num, int base) +{ + return mpz_sizeinbase (num, base) + 2; +} +ptrdiff_t +bignum_bufsize (Lisp_Object num, int base) +{ + return mpz_bufsize (*xbignum_val (num), base); +} + +/* Convert NUM to a nearest double, as opposed to mpz_get_d which + truncates toward zero. */ +double +mpz_get_d_rounded (mpz_t const num) +{ + ptrdiff_t size = mpz_bufsize (num, 10); + + /* Use mpz_get_d as a shortcut for a bignum so small that rounding + errors cannot occur, which is possible if EMACS_INT (not counting + sign) has fewer bits than a double significand. */ + if (! ((FLT_RADIX == 2 && DBL_MANT_DIG <= FIXNUM_BITS - 1) + || (FLT_RADIX == 16 && DBL_MANT_DIG * 4 <= FIXNUM_BITS - 1)) + && size <= DBL_DIG + 2) + return mpz_get_d (num); + + USE_SAFE_ALLOCA; + char *buf = SAFE_ALLOCA (size); + mpz_get_str (buf, 10, num); + double result = strtod (buf, NULL); + SAFE_FREE (); + return result; +} + +/* Store into BUF (of size SIZE) the value of NUM as a base-BASE string. + If BASE is negative, use upper-case digits in base -BASE. + Return the string's length. + SIZE must equal bignum_bufsize (NUM, abs (BASE)). */ +ptrdiff_t +bignum_to_c_string (char *buf, ptrdiff_t size, Lisp_Object num, int base) +{ + eassert (bignum_bufsize (num, abs (base)) == size); + mpz_get_str (buf, base, *xbignum_val (num)); + ptrdiff_t n = size - 2; + return !buf[n - 1] ? n - 1 : n + !!buf[n]; +} + +/* Convert NUM to a base-BASE Lisp string. + If BASE is negative, use upper-case digits in base -BASE. */ + +Lisp_Object +bignum_to_string (Lisp_Object num, int base) +{ + ptrdiff_t size = bignum_bufsize (num, abs (base)); + USE_SAFE_ALLOCA; + char *str = SAFE_ALLOCA (size); + ptrdiff_t len = bignum_to_c_string (str, size, num, base); + Lisp_Object result = make_unibyte_string (str, len); + SAFE_FREE (); + return result; +} + +/* Create a bignum by scanning NUM, with digits in BASE. + NUM must consist of an optional '-', a nonempty sequence + of base-BASE digits, and a terminating null byte, and + the represented number must not be in fixnum range. */ + +Lisp_Object +make_bignum_str (char const *num, int base) +{ + struct Lisp_Bignum *b = ALLOCATE_PLAIN_PSEUDOVECTOR (struct Lisp_Bignum, + PVEC_BIGNUM); + mpz_init (b->value); + int check = mpz_set_str (b->value, num, base); + eassert (check == 0); + return make_lisp_ptr (b, Lisp_Vectorlike); +} + +/* Check that X is a Lisp integer in the range LO..HI. + Return X's value as an intmax_t. */ + +intmax_t +check_integer_range (Lisp_Object x, intmax_t lo, intmax_t hi) +{ + CHECK_INTEGER (x); + intmax_t i; + if (! (integer_to_intmax (x, &i) && lo <= i && i <= hi)) + args_out_of_range_3 (x, make_int (lo), make_int (hi)); + return i; +} + +/* Check that X is a Lisp integer in the range 0..HI. + Return X's value as an uintmax_t. */ + +uintmax_t +check_uinteger_max (Lisp_Object x, uintmax_t hi) +{ + CHECK_INTEGER (x); + uintmax_t i; + if (! (integer_to_uintmax (x, &i) && i <= hi)) + args_out_of_range_3 (x, make_fixnum (0), make_uint (hi)); + return i; +} + +/* Check that X is a Lisp integer no greater than INT_MAX, + and return its value or zero, whichever is greater. */ + +int +check_int_nonnegative (Lisp_Object x) +{ + CHECK_INTEGER (x); + return NILP (Fnatnump (x)) ? 0 : check_integer_range (x, 0, INT_MAX); +} + +/* Return a random mp_limb_t. */ + +static mp_limb_t +get_random_limb (void) +{ + if (GMP_NUMB_BITS <= ULONG_WIDTH) + return get_random_ulong (); + + /* Work around GCC -Wshift-count-overflow false alarm. */ + int shift = GMP_NUMB_BITS <= ULONG_WIDTH ? 0 : ULONG_WIDTH; + + /* This is in case someone builds GMP with unusual definitions for + MINI_GMP_LIMB_TYPE or _LONG_LONG_LIMB. */ + mp_limb_t r = 0; + for (int i = 0; i < GMP_NUMB_BITS; i += ULONG_WIDTH) + r = (r << shift) | get_random_ulong (); + return r; +} + +/* Return a random mp_limb_t I in the range 0 <= I < LIM. + If LIM is zero, simply return a random mp_limb_t. */ + +static mp_limb_t +get_random_limb_lim (mp_limb_t lim) +{ + /* Return the remainder of a random mp_limb_t R divided by LIM, + except reject the rare case where R is so close to the maximum + mp_limb_t that the remainder isn't random. */ + mp_limb_t difflim = - lim, diff, remainder; + do + { + mp_limb_t r = get_random_limb (); + if (lim == 0) + return r; + remainder = r % lim; + diff = r - remainder; + } + while (difflim < diff); + + return remainder; +} + +/* Return a random Lisp integer I in the range 0 <= I < LIMIT, + where LIMIT is a positive bignum. */ + +Lisp_Object +get_random_bignum (struct Lisp_Bignum const *limit) +{ + mpz_t const *lim = bignum_val (limit); + mp_size_t nlimbs = mpz_size (*lim); + eassume (0 < nlimbs); + mp_limb_t *r_limb = mpz_limbs_write (mpz[0], nlimbs); + mp_limb_t const *lim_limb = mpz_limbs_read (*lim); + mp_limb_t limhi = lim_limb[nlimbs - 1]; + eassert (limhi); + bool edgy; + + do + { + /* Generate the result one limb at a time, most significant first. + Choose the most significant limb RHI randomly from 0..LIMHI, + where LIMHI is the LIM's first limb, except choose from + 0..(LIMHI-1) if there is just one limb. RHI == LIMHI is an + unlucky edge case as later limbs might cause the result to be + exceed or equal LIM; if this happens, it causes another + iteration in the outer loop. */ + + mp_limb_t rhi = get_random_limb_lim (limhi + (1 < nlimbs)); + edgy = rhi == limhi; + r_limb[nlimbs - 1] = rhi; + + for (mp_size_t i = nlimbs - 1; 0 < i--; ) + { + /* get_random_limb_lim (edgy ? limb_lim[i] + 1 : 0) + would be wrong here, as the full mp_limb_t range is + needed in later limbs for the edge case to have the + proper weighting. */ + mp_limb_t ri = get_random_limb (); + if (edgy) + { + if (lim_limb[i] < ri) + break; + edgy = lim_limb[i] == ri; + } + r_limb[i] = ri; + } + } + while (edgy); + + mpz_limbs_finish (mpz[0], nlimbs); + return make_integer_mpz (); +} |