summaryrefslogtreecommitdiff
path: root/src/floatfns.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/floatfns.c')
-rw-r--r--src/floatfns.c230
1 files changed, 137 insertions, 93 deletions
diff --git a/src/floatfns.c b/src/floatfns.c
index 13ecc66fbfa..2d76b97eec7 100644
--- a/src/floatfns.c
+++ b/src/floatfns.c
@@ -42,18 +42,12 @@ along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
#include <config.h>
#include "lisp.h"
+#include "bignum.h"
#include <math.h>
#include <count-leading-zeros.h>
-#ifndef isfinite
-# define isfinite(x) ((x) - (x) == 0)
-#endif
-#ifndef isnan
-# define isnan(x) ((x) != (x))
-#endif
-
/* Check that X is a floating point number. */
static void
@@ -67,7 +61,7 @@ CHECK_FLOAT (Lisp_Object x)
double
extract_float (Lisp_Object num)
{
- CHECK_NUMBER_OR_FLOAT (num);
+ CHECK_NUMBER (num);
return XFLOATINT (num);
}
@@ -185,7 +179,7 @@ If X is zero, both parts (SGNFCAND and EXP) are zero. */)
double f = extract_float (x);
int exponent;
double sgnfcand = frexp (f, &exponent);
- return Fcons (make_float (sgnfcand), make_number (exponent));
+ return Fcons (make_float (sgnfcand), make_fixnum (exponent));
}
DEFUN ("ldexp", Fldexp, Sldexp, 2, 2, 0,
@@ -193,8 +187,8 @@ DEFUN ("ldexp", Fldexp, Sldexp, 2, 2, 0,
EXPONENT must be an integer. */)
(Lisp_Object sgnfcand, Lisp_Object exponent)
{
- CHECK_NUMBER (exponent);
- int e = min (max (INT_MIN, XINT (exponent)), INT_MAX);
+ CHECK_FIXNUM (exponent);
+ int e = min (max (INT_MIN, XFIXNUM (exponent)), INT_MAX);
return make_float (ldexp (extract_float (sgnfcand), e));
}
@@ -211,29 +205,14 @@ DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
doc: /* Return the exponential ARG1 ** ARG2. */)
(Lisp_Object arg1, Lisp_Object arg2)
{
- CHECK_NUMBER_OR_FLOAT (arg1);
- CHECK_NUMBER_OR_FLOAT (arg2);
- if (INTEGERP (arg1) /* common lisp spec */
- && INTEGERP (arg2) /* don't promote, if both are ints, and */
- && XINT (arg2) >= 0) /* we are sure the result is not fractional */
- { /* this can be improved by pre-calculating */
- EMACS_INT y; /* some binary powers of x then accumulating */
- EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */
- Lisp_Object val;
-
- x = XINT (arg1);
- y = XINT (arg2);
- acc = (y & 1 ? x : 1);
-
- while ((y >>= 1) != 0)
- {
- x *= x;
- if (y & 1)
- acc *= x;
- }
- XSETINT (val, acc);
- return val;
- }
+ CHECK_NUMBER (arg1);
+ CHECK_NUMBER (arg2);
+
+ /* Common Lisp spec: don't promote if both are integers, and if the
+ result is not fractional. */
+ if (INTEGERP (arg1) && !NILP (Fnatnump (arg2)))
+ return expt_integer (arg1, arg2);
+
return make_float (pow (XFLOATINT (arg1), XFLOATINT (arg2)));
}
@@ -273,14 +252,28 @@ DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
doc: /* Return the absolute value of ARG. */)
- (register Lisp_Object arg)
+ (Lisp_Object arg)
{
- CHECK_NUMBER_OR_FLOAT (arg);
+ CHECK_NUMBER (arg);
- if (FLOATP (arg))
- arg = make_float (fabs (XFLOAT_DATA (arg)));
- else if (XINT (arg) < 0)
- XSETINT (arg, - XINT (arg));
+ if (FIXNUMP (arg))
+ {
+ if (XFIXNUM (arg) < 0)
+ arg = make_int (-XFIXNUM (arg));
+ }
+ else if (FLOATP (arg))
+ {
+ if (signbit (XFLOAT_DATA (arg)))
+ arg = make_float (- XFLOAT_DATA (arg));
+ }
+ else
+ {
+ if (mpz_sgn (XBIGNUM (arg)->value) < 0)
+ {
+ mpz_neg (mpz[0], XBIGNUM (arg)->value);
+ arg = make_integer_mpz ();
+ }
+ }
return arg;
}
@@ -289,12 +282,9 @@ DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
doc: /* Return the floating point number equal to ARG. */)
(register Lisp_Object arg)
{
- CHECK_NUMBER_OR_FLOAT (arg);
-
- if (INTEGERP (arg))
- return make_float ((double) XINT (arg));
- else /* give 'em the same float back */
- return arg;
+ CHECK_NUMBER (arg);
+ /* If ARG is a float, give 'em the same float back. */
+ return FLOATP (arg) ? arg : make_float (XFLOATINT (arg));
}
static int
@@ -311,7 +301,7 @@ This is the same as the exponent of a float. */)
(Lisp_Object arg)
{
EMACS_INT value;
- CHECK_NUMBER_OR_FLOAT (arg);
+ CHECK_NUMBER (arg);
if (FLOATP (arg))
{
@@ -328,27 +318,42 @@ This is the same as the exponent of a float. */)
else
value = MOST_POSITIVE_FIXNUM;
}
+ else if (BIGNUMP (arg))
+ value = mpz_sizeinbase (XBIGNUM (arg)->value, 2) - 1;
else
{
- EMACS_INT i = eabs (XINT (arg));
+ eassert (FIXNUMP (arg));
+ EMACS_INT i = eabs (XFIXNUM (arg));
value = (i == 0
? MOST_NEGATIVE_FIXNUM
: EMACS_UINT_WIDTH - 1 - ecount_leading_zeros (i));
}
- return make_number (value);
+ return make_fixnum (value);
}
+/* True if A is exactly representable as an integer. */
+
+static bool
+integer_value (Lisp_Object a)
+{
+ if (FLOATP (a))
+ {
+ double d = XFLOAT_DATA (a);
+ return d == floor (d) && isfinite (d);
+ }
+ return true;
+}
/* the rounding functions */
static Lisp_Object
rounding_driver (Lisp_Object arg, Lisp_Object divisor,
double (*double_round) (double),
- EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
- const char *name)
+ void (*int_divide) (mpz_t, mpz_t const, mpz_t const),
+ EMACS_INT (*fixnum_divide) (EMACS_INT, EMACS_INT))
{
- CHECK_NUMBER_OR_FLOAT (arg);
+ CHECK_NUMBER (arg);
double d;
if (NILP (divisor))
@@ -359,18 +364,36 @@ rounding_driver (Lisp_Object arg, Lisp_Object divisor,
}
else
{
- CHECK_NUMBER_OR_FLOAT (divisor);
- if (!FLOATP (arg) && !FLOATP (divisor))
+ CHECK_NUMBER (divisor);
+ if (integer_value (arg) && integer_value (divisor))
{
- if (XINT (divisor) == 0)
- xsignal0 (Qarith_error);
- return make_number (int_round2 (XINT (arg), XINT (divisor)));
+ /* Divide as integers. Converting to double might lose
+ info, even for fixnums; also see the FIXME below. */
+
+ if (FLOATP (arg))
+ arg = double_to_integer (XFLOAT_DATA (arg));
+ if (FLOATP (divisor))
+ divisor = double_to_integer (XFLOAT_DATA (divisor));
+
+ if (FIXNUMP (divisor))
+ {
+ if (XFIXNUM (divisor) == 0)
+ xsignal0 (Qarith_error);
+ if (FIXNUMP (arg))
+ return make_int (fixnum_divide (XFIXNUM (arg),
+ XFIXNUM (divisor)));
+ }
+ int_divide (mpz[0],
+ *bignum_integer (&mpz[0], arg),
+ *bignum_integer (&mpz[1], divisor));
+ return make_integer_mpz ();
}
- double f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
- double f2 = FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor);
+ double f1 = XFLOATINT (arg);
+ double f2 = XFLOATINT (divisor);
if (! IEEE_FLOATING_POINT && f2 == 0)
xsignal0 (Qarith_error);
+ /* FIXME: This division rounds, so the result is double-rounded. */
d = f1 / f2;
}
@@ -383,42 +406,61 @@ rounding_driver (Lisp_Object arg, Lisp_Object divisor,
{
EMACS_INT ir = dr;
if (! FIXNUM_OVERFLOW_P (ir))
- return make_number (ir);
+ return make_fixnum (ir);
}
- xsignal2 (Qrange_error, build_string (name), arg);
+ return double_to_integer (dr);
}
static EMACS_INT
-ceiling2 (EMACS_INT i1, EMACS_INT i2)
+ceiling2 (EMACS_INT n, EMACS_INT d)
{
- return i1 / i2 + ((i1 % i2 != 0) & ((i1 < 0) == (i2 < 0)));
+ return n / d + ((n % d != 0) & ((n < 0) == (d < 0)));
}
static EMACS_INT
-floor2 (EMACS_INT i1, EMACS_INT i2)
+floor2 (EMACS_INT n, EMACS_INT d)
{
- return i1 / i2 - ((i1 % i2 != 0) & ((i1 < 0) != (i2 < 0)));
+ return n / d - ((n % d != 0) & ((n < 0) != (d < 0)));
}
static EMACS_INT
-truncate2 (EMACS_INT i1, EMACS_INT i2)
+truncate2 (EMACS_INT n, EMACS_INT d)
{
- return i1 / i2;
+ return n / d;
}
static EMACS_INT
-round2 (EMACS_INT i1, EMACS_INT i2)
-{
- /* The C language's division operator gives us one remainder R, but
- we want the remainder R1 on the other side of 0 if R1 is closer
- to 0 than R is; because we want to round to even, we also want R1
- if R and R1 are the same distance from 0 and if C's quotient is
- odd. */
- EMACS_INT q = i1 / i2;
- EMACS_INT r = i1 % i2;
+round2 (EMACS_INT n, EMACS_INT d)
+{
+ /* The C language's division operator gives us the remainder R
+ corresponding to truncated division, but we want the remainder R1
+ on the other side of 0 if R1 is closer to 0 than R is; because we
+ want to round to even, we also want R1 if R and R1 are the same
+ distance from 0 and if the truncated quotient is odd. */
+ EMACS_INT q = n / d;
+ EMACS_INT r = n % d;
+ bool neg_d = d < 0;
+ bool neg_r = r < 0;
EMACS_INT abs_r = eabs (r);
- EMACS_INT abs_r1 = eabs (i2) - abs_r;
- return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
+ EMACS_INT abs_r1 = eabs (d) - abs_r;
+ if (abs_r1 < abs_r + (q & 1))
+ q += neg_d == neg_r ? 1 : -1;
+ return q;
+}
+
+static void
+rounddiv_q (mpz_t q, mpz_t const n, mpz_t const d)
+{
+ /* Mimic the source code of round2, using mpz_t instead of EMACS_INT. */
+ mpz_t *r = &mpz[2], *abs_r = r, *abs_r1 = &mpz[3];
+ mpz_tdiv_qr (q, *r, n, d);
+ bool neg_d = mpz_sgn (d) < 0;
+ bool neg_r = mpz_sgn (*r) < 0;
+ mpz_abs (*abs_r, *r);
+ mpz_abs (*abs_r1, d);
+ mpz_sub (*abs_r1, *abs_r1, *abs_r);
+ if (mpz_cmp (*abs_r1, *abs_r) < (mpz_odd_p (q) != 0))
+ (neg_d == neg_r ? mpz_add_ui : mpz_sub_ui) (q, q, 1);
}
/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
@@ -435,11 +477,9 @@ emacs_rint (double d)
}
#endif
-#ifdef HAVE_TRUNC
-#define emacs_trunc trunc
-#else
-static double
-emacs_trunc (double d)
+#ifndef HAVE_TRUNC
+double
+trunc (double d)
{
return (d < 0 ? ceil : floor) (d);
}
@@ -451,7 +491,7 @@ This rounds the value towards +inf.
With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
(Lisp_Object arg, Lisp_Object divisor)
{
- return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
+ return rounding_driver (arg, divisor, ceil, mpz_cdiv_q, ceiling2);
}
DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
@@ -460,7 +500,7 @@ This rounds the value towards -inf.
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
(Lisp_Object arg, Lisp_Object divisor)
{
- return rounding_driver (arg, divisor, floor, floor2, "floor");
+ return rounding_driver (arg, divisor, floor, mpz_fdiv_q, floor2);
}
DEFUN ("round", Fround, Sround, 1, 2, 0,
@@ -473,7 +513,14 @@ your machine. For example, (round 2.5) can return 3 on some
systems, but 2 on others. */)
(Lisp_Object arg, Lisp_Object divisor)
{
- return rounding_driver (arg, divisor, emacs_rint, round2, "round");
+ return rounding_driver (arg, divisor, emacs_rint, rounddiv_q, round2);
+}
+
+/* Since rounding_driver truncates anyway, no need to call 'trunc'. */
+static double
+identity (double x)
+{
+ return x;
}
DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
@@ -482,18 +529,15 @@ Rounds ARG toward zero.
With optional DIVISOR, truncate ARG/DIVISOR. */)
(Lisp_Object arg, Lisp_Object divisor)
{
- return rounding_driver (arg, divisor, emacs_trunc, truncate2,
- "truncate");
+ return rounding_driver (arg, divisor, identity, mpz_tdiv_q, truncate2);
}
Lisp_Object
fmod_float (Lisp_Object x, Lisp_Object y)
{
- double f1, f2;
-
- f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
- f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
+ double f1 = XFLOATINT (x);
+ double f2 = XFLOATINT (y);
f1 = fmod (f1, f2);
@@ -543,7 +587,7 @@ DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
{
CHECK_FLOAT (arg);
double d = XFLOAT_DATA (arg);
- d = emacs_trunc (d);
+ d = trunc (d);
return make_float (d);
}