summaryrefslogtreecommitdiff
path: root/lisp/emacs-lisp/cconv.el
blob: 60bc906b60cd2f3bed4a9470a6267dd0c4976b9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
;;; cconv.el --- Closure conversion for statically scoped Emacs lisp. -*- lexical-binding: t -*-

;; Copyright (C) 2011  Free Software Foundation, Inc.

;; Author: Igor Kuzmin <kzuminig@iro.umontreal.ca>
;; Maintainer: FSF
;; Keywords: lisp
;; Package: emacs

;; This file is part of GNU Emacs.

;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.

;;; Commentary:

;; This takes a piece of Elisp code, and eliminates all free variables from
;; lambda expressions.  The user entry points are cconv-closure-convert and
;; cconv-closure-convert-toplevel(for toplevel forms).
;; All macros should be expanded beforehand.
;;
;; Here is a brief explanation how this code works.
;; Firstly, we analyse the tree by calling cconv-analyse-form.
;; This function finds all mutated variables, all functions that are suitable
;; for lambda lifting and all variables captured by closure. It passes the tree
;; once, returning a list of three lists.
;;
;; Then we calculate the intersection of first and third lists returned by
;; cconv-analyse form to find all mutated variables that are captured by
;; closure.

;; Armed with this data, we call cconv-closure-convert-rec, that rewrites the
;; tree recursivly, lifting lambdas where possible, building closures where it
;; is needed and eliminating mutable variables used in closure.
;;
;; We do following replacements :
;; (lambda (v1 ...) ... fv1 fv2 ...) => (lambda (v1 ... fv1 fv2 ) ... fv1 fv2 .)
;; if the function is suitable for lambda lifting (if all calls are known)
;;
;; (lambda (v1 ...) ... fv ...)  =>
;; (curry (lambda (env v1 ...) ... env ...) env)
;; if the function has only 1 free variable
;;
;; and finally
;; (lambda (v1 ...) ... fv1 fv2 ...)  =>
;; (curry (lambda (env v1 ..) .. (aref env 0) (aref env 1) ..) (vector fv1 fv2))
;; if the function has 2 or more free variables.
;;
;; If the function has no free variables, we don't do anything.
;;
;; If a variable is mutated (updated by setq), and it is used in a closure
;; we wrap it's definition with list: (list val) and we also replace
;; var => (car var) wherever this variable is used, and also
;; (setq var value) => (setcar var value) where it is updated.
;;
;; If defun argument is closure mutable, we letbind it and wrap it's
;; definition with list.
;; (defun foo (... mutable-arg ...) ...) =>
;; (defun foo (... m-arg ...) (let ((m-arg (list m-arg))) ...))
;;
;;; Code:

(eval-when-compile (require 'cl))

(defconst cconv-liftwhen 3
  "Try to do lambda lifting if the number of arguments + free variables
is less than this number.")
(defvar cconv-mutated nil
  "List of mutated variables in current form")
(defvar cconv-captured nil
  "List of closure captured variables in current form")
(defvar cconv-captured+mutated nil
  "An intersection between cconv-mutated and cconv-captured lists.")
(defvar cconv-lambda-candidates nil
  "List of candidates for lambda lifting")


(defun cconv-freevars (form &optional fvrs)
  "Find all free variables of given form.
Arguments:
-- FORM is a piece of Elisp code after macroexpansion.
-- FVRS(optional) is a list of variables already found.  Used for recursive tree
traversal

Returns a list of free variables."
  ;; If a leaf in the tree is a symbol, but it is not a global variable, not a
  ;; keyword, not 'nil or 't we consider this leaf as a variable.
  ;; Free variables are the variables that are not declared above in this tree.
  ;; For example free variables of (lambda (a1 a2 ..) body-forms) are
  ;; free variables of body-forms excluding a1, a2 ..
  ;; Free variables of (let ((v1 ..) (v2) ..)) body-forms) are
  ;; free variables of body-forms excluding v1, v2 ...
  ;; and so on.

  ;; A list of free variables already found(FVRS) is passed in parameter
  ;; to try to use cons or push where possible, and to minimize the usage
  ;; of append.

  ;; This function can return duplicates (because we use 'append instead
  ;; of union of two sets - for performance reasons).
  (pcase form
    (`(let ,varsvalues . ,body-forms)   ; let special form
     (let ((fvrs-1 '()))
       (dolist (exp body-forms)
         (setq fvrs-1 (cconv-freevars exp fvrs-1)))
       (dolist (elm varsvalues)
         (setq fvrs-1 (delq (if (consp elm) (car elm) elm) fvrs-1)))
       (setq fvrs (nconc fvrs-1 fvrs))
       (dolist (exp varsvalues)
         (when (consp exp) (setq fvrs (cconv-freevars (cadr exp) fvrs))))
       fvrs))

    (`(let* ,varsvalues . ,body-forms)  ; let* special form
     (let ((vrs '())
           (fvrs-1 '()))
       (dolist (exp varsvalues)
         (if (consp exp)
             (progn
               (setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1))
               (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
               (push (car exp) vrs))
           (progn
             (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
             (push exp vrs))))
       (dolist (exp body-forms)
         (setq fvrs-1 (cconv-freevars exp fvrs-1)))
       (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
       (append fvrs fvrs-1)))

    (`((lambda . ,_) . ,_)             ; first element is lambda expression
     (dolist (exp `((function ,(car form)) . ,(cdr form)))
       (setq fvrs (cconv-freevars exp fvrs))) fvrs)

    (`(cond . ,cond-forms)              ; cond special form
     (dolist (exp1 cond-forms)
       (dolist (exp2 exp1)
         (setq fvrs (cconv-freevars exp2 fvrs)))) fvrs)

    (`(quote . ,_) fvrs)                ; quote form

    (`(function . ((lambda ,vars . ,body-forms)))
     (let ((functionform (cadr form)) (fvrs-1 '()))
       (dolist (exp body-forms)
         (setq fvrs-1 (cconv-freevars exp fvrs-1)))
       (dolist (elm vars) (setq fvrs-1 (delq elm fvrs-1)))
       (append fvrs fvrs-1)))           ; function form

    (`(function . ,_) fvrs)             ; same as quote
					;condition-case
    (`(condition-case ,var ,protected-form . ,conditions-bodies)
     (let ((fvrs-1 '()))
       (dolist (exp conditions-bodies)
         (setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1)))
       (setq fvrs-1 (delq var fvrs-1))
       (setq fvrs-1 (cconv-freevars protected-form fvrs-1))
       (append fvrs fvrs-1)))

    (`(,(and sym (or `defun `defconst `defvar)) . ,_)
     ;; we call cconv-freevars only for functions(lambdas)
     ;; defun, defconst, defvar are not allowed to be inside
     ;; a function(lambda)
     (error "Invalid form: %s inside a function" sym))

    (`(,_ . ,body-forms)     ; first element is a function or whatever
     (dolist (exp body-forms)
       (setq fvrs (cconv-freevars exp fvrs))) fvrs)

    (_ (if (or (not (symbolp form))     ; form is not a list
               (special-variable-p form)
               ;; byte-compile-bound-variables normally holds both the
               ;; dynamic and lexical vars, but the bytecomp.el should
               ;; only call us at the top-level so there shouldn't be
               ;; any lexical vars in it here.
               (memq form byte-compile-bound-variables)
               (memq form '(nil t))
               (keywordp form))
           fvrs
         (cons form fvrs)))))

;;;###autoload
(defun cconv-closure-convert (form &optional toplevel)
  ;; cconv-closure-convert-rec has a lot of parameters that are
  ;; whether useless for user, whether they should contain
  ;; specific data like a list of closure mutables or the list
  ;; of lambdas suitable for lifting.
  ;;
  ;; That's why this function exists.
  "Main entry point for non-toplevel forms.
-- FORM is a piece of Elisp code after macroexpansion.
-- TOPLEVEL(optional) is a boolean variable, true if we are at the root of AST

Returns a form where all lambdas don't have any free variables."
  (let ((cconv-mutated '())
	(cconv-lambda-candidates '())
	(cconv-captured '())
	(cconv-captured+mutated '()))
    ;; Analyse form - fill these variables with new information
    (cconv-analyse-form form '() nil)
    ;; Calculate an intersection of cconv-mutated and cconv-captured
    (dolist (mvr cconv-mutated)
      (when (memq mvr cconv-captured)   ;
        (push mvr cconv-captured+mutated)))
    (cconv-closure-convert-rec
     form                               ; the tree
     '()                                ;
     '()                                ; fvrs initially empty
     '()                                ; envs initially empty
     '()
     toplevel)))                 ; true if the tree is a toplevel form

;;;###autoload
(defun cconv-closure-convert-toplevel (form)
  "Entry point for toplevel forms.
-- FORM is a piece of Elisp code after macroexpansion.

Returns a form where all lambdas don't have any free variables."
  ;; we distinguish toplevel forms to treat def(un|var|const) correctly.
  (cconv-closure-convert form t))

(defun cconv-closure-convert-rec
  (form emvrs fvrs envs lmenvs defs-are-legal)
  ;; This function actually rewrites the tree.
  "Eliminates all free variables of all lambdas in given forms.
Arguments:
-- FORM is a piece of Elisp code after macroexpansion.
-- LMENVS is a list of environments used for lambda-lifting. Initially empty.
-- EMVRS is a list that contains mutated variables that are visible
within current environment.
-- ENVS is an environment(list of free variables) of current closure.
Initially empty.
-- FVRS is a list of variables to substitute in each context.
Initially empty.
-- DEFS-ARE-LEGAL is a boolean variable, true if def(un|var|const)
can be used in this form(e.g. toplevel form)

Returns a form where all lambdas don't have any free variables."
  ;; What's the difference between fvrs and envs?
  ;; Suppose that we have the code
  ;; (lambda (..) fvr (let ((fvr 1)) (+ fvr 1)))
  ;; only the first occurrence of fvr should be replaced by
  ;; (aref env ...).
  ;; So initially envs and fvrs are the same thing, but when we descend to
  ;; the 'let, we delete fvr from fvrs. Why we don't delete fvr from envs?
  ;; Because in envs the order of variables is important. We use this list
  ;; to find the number of a specific variable in the environment vector,
  ;; so we never touch it(unless we enter to the other closure).
  ;;(if (listp form) (print (car form)) form)
  (pcase form
    (`(,(and letsym (or `let* `let)) ,varsvalues . ,body-forms)

					; let and let* special forms
     (let ((body-forms-new '())
           (varsvalues-new '())
           ;; next for variables needed for delayed push
           ;; because we should process <value(s)>
           ;; before we change any arguments
           (lmenvs-new '())             ;needed only in case of let
           (emvrs-new '())              ;needed only in case of let
           (emvr-push)                  ;needed only in case of let*
           (lmenv-push))                ;needed only in case of let*

       (dolist (elm varsvalues)       ;begin of dolist over varsvalues
         (let (var value elm-new iscandidate ismutated)
           (if (listp elm)    ; (let (v1) ...) => (let ((v1 nil)) ...)
               (progn
                 (setq var (car elm))
                 (setq value (cadr elm)))
             (setq var elm))

           ;; Check if var is a candidate for lambda lifting
           (let ((lcandid cconv-lambda-candidates))
             (while (and lcandid (not iscandidate))
               (when (and (eq (caar lcandid) var)
                          (eq (caddar lcandid) elm)
                          (eq (cadr (cddar lcandid)) form))
                 (setq iscandidate t))
               (setq lcandid (cdr lcandid))))

                                    ; declared variable is a candidate
                                    ; for lambda lifting
           (if iscandidate
               (let* ((func (cadr elm)) ; function(lambda) itself
					; free variables
                      (fv (delete-dups (cconv-freevars func '())))
                      (funcvars (append fv (cadadr func))) ;function args
                      (funcbodies (cddadr func)) ; function bodies
                      (funcbodies-new '()))
					; lambda lifting condition
                 (if (or (not fv) (< cconv-liftwhen (length funcvars)))
					; do not lift
                     (setq
                      elm-new
                      `(,var
                        ,(cconv-closure-convert-rec
                          func emvrs fvrs envs lmenvs nil)))
					; lift
                   (progn
                     (dolist (elm2 funcbodies)
                       (push            ; convert function bodies
                        (cconv-closure-convert-rec
                         elm2 emvrs nil envs lmenvs nil)
                        funcbodies-new))
                     (if (eq letsym 'let*)
                         (setq lmenv-push (cons var fv))
                       (push (cons var fv) lmenvs-new))
					; push lifted function

                     (setq elm-new
                           `(,var
                             (function .
                                       ((lambda ,funcvars .
                                          ,(reverse funcbodies-new)))))))))

                                  ;declared variable is not a function
             (progn
               ;; Check if var is mutated
               (let ((lmutated cconv-captured+mutated))
                 (while (and lmutated (not ismutated))
                   (when (and (eq (caar lmutated) var)
                              (eq (caddar lmutated) elm)
                              (eq (cadr (cddar lmutated)) form))
                     (setq ismutated t))
                   (setq lmutated (cdr lmutated))))
               (if ismutated
                   (progn               ; declared variable is mutated
                     (setq elm-new
                           `(,var (list ,(cconv-closure-convert-rec
                                          value emvrs
                                          fvrs envs lmenvs nil))))
                     (if (eq letsym 'let*)
                         (setq emvr-push var)
                       (push var emvrs-new)))
                 (progn
                   (setq
                    elm-new
                    `(,var              ; else
                      ,(cconv-closure-convert-rec
                        value emvrs fvrs envs lmenvs nil)))))))

           ;; this piece of code below letbinds free
           ;; variables  of a lambda lifted function
           ;; if they are redefined in this let
           ;; example:
           ;; (let* ((fun (lambda (x) (+ x y))) (y 1)) (funcall fun 1))
           ;; Here we can not pass y as parameter because it is
           ;; redefined. We add a (closed-y y) declaration.
           ;; We do that even if the function is not used inside
           ;; this let(*). The reason why we ignore this case is
           ;; that we can't "look forward" to see if the function
           ;; is called there or not. To treat well this case we
           ;; need to traverse the tree one more time to collect this
           ;; data, and I think that it's not worth it.

           (when (eq letsym 'let*)
             (let ((closedsym '())
                   (new-lmenv '())
                   (old-lmenv '()))
               (dolist (lmenv lmenvs)
                 (when (memq var (cdr lmenv))
                   (setq closedsym
                         (make-symbol
                          (concat "closed-" (symbol-name var))))
                   (setq new-lmenv (list (car lmenv)))
                   (dolist (frv (cdr lmenv)) (if (eq frv var)
                                                 (push closedsym new-lmenv)
                                               (push frv new-lmenv)))
                   (setq new-lmenv (reverse new-lmenv))
                   (setq old-lmenv lmenv)))
               (when new-lmenv
                 (setq lmenvs (remq old-lmenv lmenvs))
                 (push new-lmenv lmenvs)
                 (push `(,closedsym ,var) varsvalues-new))))
           ;; we push the element after redefined free variables
           ;; are processes. this is important to avoid the bug
           ;; when free variable and the function have the same
           ;; name
           (push elm-new varsvalues-new)

           (when (eq letsym 'let*)      ; update fvrs
             (setq fvrs (remq var fvrs))
             (setq emvrs (remq var emvrs)) ; remove if redefined
             (when emvr-push
               (push emvr-push emvrs)
               (setq emvr-push nil))
             (let (lmenvs-1)     ; remove var from lmenvs if redefined
               (dolist (iter lmenvs)
                 (when (not (assq var lmenvs))
                   (push iter lmenvs-1)))
               (setq lmenvs lmenvs-1))
             (when lmenv-push
               (push lmenv-push lmenvs)
               (setq lmenv-push nil)))
           ))                          ; end of dolist over varsvalues
       (when (eq letsym 'let)

         (let (var fvrs-1 emvrs-1 lmenvs-1)
           ;; Here we update emvrs, fvrs and lmenvs lists
           (dolist (vr fvrs)
					; safely remove
             (when (not (assq vr varsvalues-new)) (push vr fvrs-1)))
           (setq fvrs fvrs-1)
           (dolist (vr emvrs)
					; safely remove
             (when (not (assq vr varsvalues-new)) (push vr emvrs-1)))
           (setq emvrs emvrs-1)
					; push new
           (setq emvrs (append emvrs emvrs-new))
           (dolist (vr lmenvs)
             (when (not (assq (car vr) varsvalues-new))
               (push vr lmenvs-1)))
           (setq lmenvs (append lmenvs lmenvs-new)))

         ;; Here we do the same letbinding as for let* above
         ;; to avoid situation when a free variable of a lambda lifted
         ;; function got redefined.

         (let ((new-lmenv)
               (var nil)
               (closedsym nil)
               (letbinds '())
               (fvrs-new))              ; list of (closed-var var)
           (dolist (elm varsvalues)
             (if (listp elm)
                 (setq var (car elm))
               (setq var elm))

             (let ((lmenvs-1 lmenvs))   ; just to avoid manipulating
               (dolist (lmenv lmenvs-1) ; the counter inside the loop
                 (when (memq var (cdr lmenv))
                   (setq closedsym (make-symbol
                                    (concat "closed-"
                                            (symbol-name var))))

                   (setq new-lmenv (list (car lmenv)))
                   (dolist (frv (cdr lmenv)) (if (eq frv var)
                                                 (push closedsym new-lmenv)
                                               (push frv new-lmenv)))
                   (setq new-lmenv (reverse new-lmenv))
                   (setq lmenvs (remq lmenv lmenvs))
                   (push new-lmenv lmenvs)
                   (push `(,closedsym ,var) letbinds)
                   ))))
           (setq varsvalues-new (append varsvalues-new letbinds))))

       (dolist (elm body-forms)         ; convert body forms
         (push (cconv-closure-convert-rec
                elm emvrs fvrs envs lmenvs nil)
               body-forms-new))
       `(,letsym ,(reverse varsvalues-new) . ,(reverse body-forms-new))))
					;end of let let* forms

                                  ; first element is lambda expression
    (`(,(and `(lambda . ,_) fun) . ,other-body-forms)

     (let ((other-body-forms-new '()))
       (dolist (elm other-body-forms)
         (push (cconv-closure-convert-rec
                elm emvrs fvrs envs lmenvs nil)
               other-body-forms-new))
       (cons
        (cadr
         (cconv-closure-convert-rec
          (list 'function fun) emvrs fvrs envs lmenvs nil))
        (reverse other-body-forms-new))))

    (`(cond . ,cond-forms)              ; cond special form
     (let ((cond-forms-new '()))
       (dolist (elm cond-forms)
         (push (let ((elm-new '()))
                 (dolist (elm-2 elm)
                   (push
                    (cconv-closure-convert-rec
                     elm-2 emvrs fvrs envs lmenvs nil)
                    elm-new))
                 (reverse elm-new))
               cond-forms-new))
       (cons 'cond
             (reverse cond-forms-new))))

    (`(quote . ,_) form)                ; quote form

    (`(function . ((lambda ,vars . ,body-forms))) ; function form
     (let (fvrs-new)           ; we remove vars from fvrs
       (dolist (elm fvrs) ;i use such a tricky way to avoid side effects
         (when (not (memq elm vars))
           (push elm fvrs-new)))
       (setq fvrs fvrs-new))
     (let* ((fv (delete-dups (cconv-freevars form '())))
            (leave fvrs) ; leave = non nil if we should leave env unchanged
            (body-forms-new '())
            (letbind '())
            (mv nil)
            (envector nil))
       (when fv
         ;; Here we form our environment vector.
         ;; If outer closure contains all
         ;; free variables of this function(and nothing else)
         ;; then we use the same environment vector as for outer closure,
         ;; i.e. we leave the environment vector unchanged
         ;; otherwise we build a new environmet vector
         (if (eq (length envs) (length fv))
             (let ((fv-temp fv))
               (while (and fv-temp leave)
                 (when (not (memq (car fv-temp) fvrs)) (setq leave nil))
                 (setq fv-temp (cdr fv-temp))))
           (setq leave nil))

         (if (not leave)
             (progn
               (dolist (elm fv)
                 (push
                  (cconv-closure-convert-rec
                   elm (remq elm emvrs) fvrs envs lmenvs nil)
                  envector))         ; process vars for closure vector
               (setq envector (reverse envector))
               (setq envs fv))
           (setq envector `(env)))	; leave unchanged
         (setq fvrs fv))                ; update substitution list

       ;; the difference between envs and fvrs is explained
       ;; in comment in the beginning of the function
       (dolist (elm cconv-captured+mutated) ; find mutated arguments
         (setq mv (car elm))                ; used in inner closures
         (when (and (memq mv vars) (eq form (caddr elm)))
           (progn (push mv emvrs)
                  (push `(,mv (list ,mv)) letbind))))
       (dolist (elm body-forms)         ; convert function body
         (push (cconv-closure-convert-rec
                elm emvrs fvrs envs lmenvs nil)
               body-forms-new))

       (setq body-forms-new
             (if letbind `((let ,letbind . ,(reverse body-forms-new)))
               (reverse body-forms-new)))

       (cond
					;if no freevars - do nothing
        ((null envector)
         `(function (lambda ,vars . ,body-forms-new)))
                               ; 1 free variable - do not build vector
        ((null (cdr envector))
         `(curry
           (function (lambda (env . ,vars) . ,body-forms-new))
           ,(car envector)))
                                   ; >=2 free variables - build vector
        (t
         `(curry
           (function (lambda (env . ,vars) . ,body-forms-new))
           (vector . ,envector))))))

    (`(function . ,_) form)             ; same as quote

					;defconst, defvar
    (`(,(and sym (or `defconst `defvar)) ,definedsymbol . ,body-forms)

     (if defs-are-legal
         (let ((body-forms-new '()))
           (dolist (elm body-forms)
             (push (cconv-closure-convert-rec
                    elm emvrs fvrs envs lmenvs nil)
                   body-forms-new))
           (setq body-forms-new (reverse body-forms-new))
           `(,sym ,definedsymbol . ,body-forms-new))
       (error "Invalid form: %s inside a function" sym)))

					;defun, defmacro
    (`(,(and sym (or `defun `defmacro))
       ,func ,vars . ,body-forms)
     (if defs-are-legal
         (let ((body-new '())            ; the whole body
               (body-forms-new '()) ; body w\o docstring and interactive
               (letbind '()))
					; find mutable arguments
           (let ((lmutated cconv-captured+mutated) ismutated)
             (dolist (elm vars)
               (setq ismutated nil)
               (while (and lmutated (not ismutated))
                 (when (and (eq (caar lmutated) elm)
                            (eq (cadar lmutated) form))
                   (setq ismutated t))
                 (setq lmutated (cdr lmutated)))
               (when ismutated
                 (push elm letbind)
                 (push elm emvrs))))
                                                 ;transform body-forms
           (when (stringp (car body-forms)) ; treat docstring well
             (push (car body-forms) body-new)
             (setq body-forms (cdr body-forms)))
           (when (and (listp (car body-forms)) ; treat (interactive) well
                      (eq (caar body-forms) 'interactive))
             (push
              (cconv-closure-convert-rec
               (car body-forms)
               emvrs fvrs envs lmenvs nil) body-new)
             (setq body-forms (cdr body-forms)))

           (dolist (elm body-forms)
             (push (cconv-closure-convert-rec
                    elm emvrs fvrs envs lmenvs nil)
                   body-forms-new))
           (setq body-forms-new (reverse body-forms-new))

           (if letbind
					; letbind mutable arguments
               (let ((varsvalues-new '()))
                 (dolist (elm letbind) (push `(,elm (list ,elm))
                                             varsvalues-new))
                 (push `(let ,(reverse varsvalues-new) .
                             ,body-forms-new) body-new)
                 (setq body-new (reverse body-new)))
             (setq body-new (append (reverse body-new) body-forms-new)))

           `(,sym ,func ,vars . ,body-new))

       (error "Invalid form: defun inside a function")))
					;condition-case
    (`(condition-case ,var ,protected-form . ,conditions-bodies)
     (let ((conditions-bodies-new '()))
       (setq fvrs (remq var fvrs))
       (dolist (elm conditions-bodies)
         (push (let ((elm-new '()))
                 (dolist (elm-2 (cdr elm))
                   (push
                    (cconv-closure-convert-rec
                     elm-2 emvrs fvrs envs lmenvs nil)
                    elm-new))
                 (cons (car elm) (reverse elm-new)))
               conditions-bodies-new))
       `(condition-case
            ,var
            ,(cconv-closure-convert-rec
              protected-form emvrs fvrs envs lmenvs nil)
          . ,(reverse conditions-bodies-new))))

    (`(setq . ,forms)                   ; setq special form
     (let (prognlist sym sym-new value)
       (while forms
         (setq sym (car forms))
         (setq sym-new (cconv-closure-convert-rec
                        sym
                        (remq sym emvrs) fvrs envs lmenvs nil))
         (setq value
               (cconv-closure-convert-rec
                (cadr forms) emvrs fvrs envs lmenvs nil))
         (if (memq sym emvrs)
             (push `(setcar ,sym-new ,value) prognlist)
           (if (symbolp sym-new)
               (push `(setq ,sym-new ,value) prognlist)
             (push `(set ,sym-new ,value) prognlist)))
         (setq forms (cddr forms)))
       (if (cdr prognlist)
           `(progn . ,(reverse prognlist))
         (car prognlist))))

    (`(,(and (or `funcall `apply) callsym) ,fun . ,args)
                                     ; funcall is not a special form
                                     ; but we treat it separately
                                     ; for the needs of lambda lifting
     (let ((fv (cdr (assq fun lmenvs))))
       (if fv
           (let ((args-new '())
                 (processed-fv '()))
             ;; All args (free variables and actual arguments)
             ;; should be processed, because they can be fvrs
             ;; (free variables of another closure)
             (dolist (fvr fv)
               (push (cconv-closure-convert-rec
                      fvr (remq fvr emvrs)
                      fvrs envs lmenvs nil)
                     processed-fv))
             (setq processed-fv (reverse processed-fv))
             (dolist (elm args)
               (push (cconv-closure-convert-rec
                      elm emvrs fvrs envs lmenvs nil)
                     args-new))
             (setq args-new (append processed-fv (reverse args-new)))
             (setq fun (cconv-closure-convert-rec
                        fun emvrs fvrs envs lmenvs nil))
             `(,callsym ,fun . ,args-new))
         (let ((cdr-new '()))
           (dolist (elm (cdr form))
             (push (cconv-closure-convert-rec
                    elm emvrs fvrs envs lmenvs nil)
                   cdr-new))
           `(,callsym . ,(reverse cdr-new))))))

    (`(,func . ,body-forms)    ; first element is function or whatever
                               ; function-like forms are:
                               ; or, and, if, progn, prog1, prog2,
                               ; while, until
     (let ((body-forms-new '()))
       (dolist (elm body-forms)
         (push (cconv-closure-convert-rec
                elm emvrs fvrs envs lmenvs defs-are-legal)
               body-forms-new))
       (setq body-forms-new (reverse body-forms-new))
       `(,func . ,body-forms-new)))

    (_
     (if (memq form fvrs)               ;form is a free variable
         (let* ((numero (position form envs))
                (var '()))
           (assert numero)
           (if (null (cdr envs))
               (setq var 'env)
					;replace form =>
					;(aref env #)
             (setq var `(aref env ,numero)))
           (if (memq form emvrs) ; form => (car (aref env #)) if mutable
               `(car ,var)
             var))
       (if (memq form emvrs)           ; if form is a mutable variable
           `(car ,form)                ; replace form => (car form)
         form)))))

(defun cconv-analyse-form (form vars inclosure)

  "Find mutated variables and variables captured by closure.  Analyse
lambdas if they are suitable for lambda lifting.
-- FORM is a piece of Elisp code after macroexpansion.
-- MLCVRS is a structure that contains captured and mutated variables.
 (first MLCVRS) is a list of mutated variables, (second MLCVRS) is a
list of candidates for lambda lifting and (third MLCVRS) is a list of
variables captured by closure. It should be (nil nil nil) initially.
-- VARS is a list of local variables visible in current environment
 (initially empty).
-- INCLOSURE is a boolean variable, true if we are in closure.
Initially false"
  (pcase form
					; let special form
    (`(,(and (or `let* `let) letsym) ,varsvalues . ,body-forms)

     (when (eq letsym 'let)
       (dolist (elm varsvalues)         ; analyse values
         (when (listp elm)
           (cconv-analyse-form (cadr elm) vars inclosure))))

     (let ((v nil)
           (var nil)
           (value nil)
           (varstruct nil))
       (dolist (elm varsvalues)
         (if (listp elm)
             (progn
               (setq var (car elm))
               (setq value (cadr elm)))
           (progn
             (setq var elm)        ; treat the form (let (x) ...) well
             (setq value nil)))

         (when (eq letsym 'let*)        ; analyse value
           (cconv-analyse-form value vars inclosure))

         (let (vars-new)                ; remove the old var
           (dolist (vr vars)
             (when (not (eq (car vr) var))
               (push vr vars-new)))
           (setq vars vars-new))

         (setq varstruct (list var inclosure elm form))
         (push varstruct vars)          ; push a new one

         (when (and (listp value)
                    (eq (car value) 'function)
                    (eq (caadr value) 'lambda))
					; if var is a function
					; push it to lambda list
           (push varstruct cconv-lambda-candidates))))

     (dolist (elm body-forms)           ; analyse body forms
       (cconv-analyse-form elm vars inclosure))
     nil)
					; defun special form
    (`(,(or `defun `defmacro) ,func ,vrs . ,body-forms)
     (let ((v nil))
       (dolist (vr vrs)
         (push (list vr form) vars)))   ;push vrs to vars
     (dolist (elm body-forms)           ; analyse body forms
       (cconv-analyse-form elm vars inclosure))
     nil)

    (`(function . ((lambda ,vrs . ,body-forms)))
     (if inclosure                      ;we are in closure
         (setq inclosure (+ inclosure 1))
       (setq inclosure 1))
     (let (vars-new)                 ; update vars
       (dolist (vr vars)             ; we do that in such a tricky way
         (when (not (memq (car vr) vrs)) ; to avoid side effects
           (push vr vars-new)))
       (dolist (vr vrs)
         (push (list vr inclosure form) vars-new))
       (setq vars vars-new))

     (dolist (elm body-forms)
       (cconv-analyse-form elm vars inclosure))
     nil)

    (`(setq . ,forms)           ; setq
                                ; if a local variable (member of vars)
                                ; is modified by setq
                                ; then it is a mutated variable
     (while forms
       (let ((v (assq (car forms) vars))) ; v = non nil if visible
         (when v
           (push v cconv-mutated)
           ;; delete from candidate list for lambda lifting
           (setq cconv-lambda-candidates (delq v cconv-lambda-candidates))
           (when inclosure
             ;; test if v is declared as argument for lambda
             (let* ((thirdv (third v))
                    (isarg (if (listp thirdv)
                               (eq (car thirdv) 'function) nil)))
               (if isarg
                   (when (> inclosure (cadr v)) ; when we are in closure
                     (push v cconv-captured)) ; push it to captured vars
                 ;; FIXME more detailed comments needed
                 (push v cconv-captured))))))
       (cconv-analyse-form (cadr forms) vars inclosure)
       (setq forms (cddr forms)))
     nil)

    (`((lambda . ,_) . ,_)        ; first element is lambda expression
     (dolist (exp `((function ,(car form)) . ,(cdr form)))
       (cconv-analyse-form exp vars inclosure))
     nil)

    (`(cond . ,cond-forms)              ; cond special form
     (dolist (exp1 cond-forms)
       (dolist (exp2 exp1)
         (cconv-analyse-form exp2 vars inclosure)))
     nil)

    (`(quote . ,_) nil)                 ; quote form

    (`(function . ,_) nil)              ; same as quote

    (`(condition-case ,var ,protected-form . ,conditions-bodies)
					;condition-case
     (cconv-analyse-form protected-form vars inclosure)
     (dolist (exp conditions-bodies)
       (cconv-analyse-form (cadr exp) vars inclosure))
     nil)

    (`(,(or `defconst `defvar) ,value)
     (cconv-analyse-form value vars inclosure))

    (`(,(or `funcall `apply) ,fun . ,args)
     ;; Here  we ignore fun because
     ;; funcall and apply are the only two
     ;; functions where we can pass a candidate
     ;; for lambda lifting as argument.
     ;; So, if we see fun elsewhere, we'll
     ;; delete it from lambda candidate list.

     ;; If this funcall and the definition of fun
     ;; are in different closures - we delete fun from
     ;; canidate list, because it is too complicated
     ;; to manage free variables in this case.
     (let ((lv (assq fun cconv-lambda-candidates)))
       (when lv
         (when (not (eq (cadr lv) inclosure))
           (setq cconv-lambda-candidates
                 (delq lv cconv-lambda-candidates)))))

     (dolist (elm args)
       (cconv-analyse-form elm vars inclosure))
     nil)

    (`(,_ . ,body-forms)     ; first element is a function or whatever
     (dolist (exp body-forms)
       (cconv-analyse-form exp vars inclosure))
     nil)

    (_
     (when (and (symbolp form)
                (not (memq form '(nil t)))
                (not (keywordp form))
                (not (special-variable-p form)))
       (let ((dv (assq form vars)))     ; dv = declared and visible
         (when dv
           (when inclosure
             ;; test if v is declared as argument of lambda
             (let* ((thirddv (third dv))
                    (isarg (if (listp thirddv)
                               (eq (car thirddv) 'function) nil)))
               (if isarg
                   ;; FIXME add detailed comments
                   (when (> inclosure (cadr dv)) ; capturing condition
                     (push dv cconv-captured))
                 (push dv cconv-captured))))
                                              ; delete lambda
           (setq cconv-lambda-candidates      ; if it is found here
                 (delq dv cconv-lambda-candidates)))))
     nil)))

(provide 'cconv)
;;; cconv.el ends here