/* * Copyright 2016 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "binary-reader.h" #include #include #include #include #include #include #include #include #include "binary.h" #include "config.h" #include "stream.h" #if HAVE_ALLOCA #include #endif #define INDENT_SIZE 2 #define INITIAL_PARAM_TYPES_CAPACITY 128 #define INITIAL_BR_TABLE_TARGET_CAPACITY 1000 namespace wabt { namespace { #define CALLBACK_CTX(member, ...) \ RAISE_ERROR_UNLESS( \ WABT_SUCCEEDED( \ ctx->reader->member \ ? ctx->reader->member(get_user_context(ctx), __VA_ARGS__) \ : Result::Ok), \ #member " callback failed") #define CALLBACK_CTX0(member) \ RAISE_ERROR_UNLESS( \ WABT_SUCCEEDED(ctx->reader->member \ ? ctx->reader->member(get_user_context(ctx)) \ : Result::Ok), \ #member " callback failed") #define CALLBACK_SECTION(member, section_size) \ CALLBACK_CTX(member, section_size) #define CALLBACK0(member) \ RAISE_ERROR_UNLESS( \ WABT_SUCCEEDED(ctx->reader->member \ ? ctx->reader->member(ctx->reader->user_data) \ : Result::Ok), \ #member " callback failed") #define CALLBACK(member, ...) \ RAISE_ERROR_UNLESS( \ WABT_SUCCEEDED( \ ctx->reader->member \ ? ctx->reader->member(__VA_ARGS__, ctx->reader->user_data) \ : Result::Ok), \ #member " callback failed") #define FORWARD0(member) \ return ctx->reader->member ? ctx->reader->member(ctx->reader->user_data) \ : Result::Ok #define FORWARD_CTX0(member) \ if (!ctx->reader->member) \ return Result::Ok; \ BinaryReaderContext new_ctx = *context; \ new_ctx.user_data = ctx->reader->user_data; \ return ctx->reader->member(&new_ctx); #define FORWARD_CTX(member, ...) \ if (!ctx->reader->member) \ return Result::Ok; \ BinaryReaderContext new_ctx = *context; \ new_ctx.user_data = ctx->reader->user_data; \ return ctx->reader->member(&new_ctx, __VA_ARGS__); #define FORWARD(member, ...) \ return ctx->reader->member \ ? ctx->reader->member(__VA_ARGS__, ctx->reader->user_data) \ : Result::Ok #define RAISE_ERROR(...) raise_error(ctx, __VA_ARGS__) #define RAISE_ERROR_UNLESS(cond, ...) \ if (!(cond)) \ RAISE_ERROR(__VA_ARGS__); struct Context { const uint8_t* data = nullptr; size_t data_size = 0; size_t offset = 0; size_t read_end = 0; /* Either the section end or data_size. */ BinaryReaderContext user_ctx; BinaryReader* reader = nullptr; jmp_buf error_jmp_buf; TypeVector param_types; std::vector target_depths; const ReadBinaryOptions* options = nullptr; BinarySection last_known_section = BinarySection::Invalid; uint32_t num_signatures = 0; uint32_t num_imports = 0; uint32_t num_func_imports = 0; uint32_t num_table_imports = 0; uint32_t num_memory_imports = 0; uint32_t num_global_imports = 0; uint32_t num_function_signatures = 0; uint32_t num_tables = 0; uint32_t num_memories = 0; uint32_t num_globals = 0; uint32_t num_exports = 0; uint32_t num_function_bodies = 0; }; struct LoggingContext { Stream* stream; BinaryReader* reader; int indent; }; } // namespace static BinaryReaderContext* get_user_context(Context* ctx) { ctx->user_ctx.user_data = ctx->reader->user_data; ctx->user_ctx.data = ctx->data; ctx->user_ctx.size = ctx->data_size; ctx->user_ctx.offset = ctx->offset; return &ctx->user_ctx; } static void WABT_PRINTF_FORMAT(2, 3) raise_error(Context* ctx, const char* format, ...) { WABT_SNPRINTF_ALLOCA(buffer, length, format); bool handled = false; if (ctx->reader->on_error) { handled = ctx->reader->on_error(get_user_context(ctx), buffer); } if (!handled) { /* Not great to just print, but we don't want to eat the error either. */ fprintf(stderr, "*ERROR*: @0x%08zx: %s\n", ctx->offset, buffer); } longjmp(ctx->error_jmp_buf, 1); } #define IN_SIZE(type) \ if (ctx->offset + sizeof(type) > ctx->read_end) { \ RAISE_ERROR("unable to read " #type ": %s", desc); \ } \ memcpy(out_value, ctx->data + ctx->offset, sizeof(type)); \ ctx->offset += sizeof(type) static void in_u8(Context* ctx, uint8_t* out_value, const char* desc) { IN_SIZE(uint8_t); } static void in_u32(Context* ctx, uint32_t* out_value, const char* desc) { IN_SIZE(uint32_t); } static void in_f32(Context* ctx, uint32_t* out_value, const char* desc) { IN_SIZE(float); } static void in_f64(Context* ctx, uint64_t* out_value, const char* desc) { IN_SIZE(double); } #undef IN_SIZE #define BYTE_AT(type, i, shift) ((static_cast(p[i]) & 0x7f) << (shift)) #define LEB128_1(type) (BYTE_AT(type, 0, 0)) #define LEB128_2(type) (BYTE_AT(type, 1, 7) | LEB128_1(type)) #define LEB128_3(type) (BYTE_AT(type, 2, 14) | LEB128_2(type)) #define LEB128_4(type) (BYTE_AT(type, 3, 21) | LEB128_3(type)) #define LEB128_5(type) (BYTE_AT(type, 4, 28) | LEB128_4(type)) #define LEB128_6(type) (BYTE_AT(type, 5, 35) | LEB128_5(type)) #define LEB128_7(type) (BYTE_AT(type, 6, 42) | LEB128_6(type)) #define LEB128_8(type) (BYTE_AT(type, 7, 49) | LEB128_7(type)) #define LEB128_9(type) (BYTE_AT(type, 8, 56) | LEB128_8(type)) #define LEB128_10(type) (BYTE_AT(type, 9, 63) | LEB128_9(type)) #define SHIFT_AMOUNT(type, sign_bit) (sizeof(type) * 8 - 1 - (sign_bit)) #define SIGN_EXTEND(type, value, sign_bit) \ (static_cast((value) << SHIFT_AMOUNT(type, sign_bit)) >> \ SHIFT_AMOUNT(type, sign_bit)) size_t read_u32_leb128(const uint8_t* p, const uint8_t* end, uint32_t* out_value) { if (p < end && (p[0] & 0x80) == 0) { *out_value = LEB128_1(uint32_t); return 1; } else if (p + 1 < end && (p[1] & 0x80) == 0) { *out_value = LEB128_2(uint32_t); return 2; } else if (p + 2 < end && (p[2] & 0x80) == 0) { *out_value = LEB128_3(uint32_t); return 3; } else if (p + 3 < end && (p[3] & 0x80) == 0) { *out_value = LEB128_4(uint32_t); return 4; } else if (p + 4 < end && (p[4] & 0x80) == 0) { /* the top bits set represent values > 32 bits */ if (p[4] & 0xf0) return 0; *out_value = LEB128_5(uint32_t); return 5; } else { /* past the end */ *out_value = 0; return 0; } } static void in_u32_leb128(Context* ctx, uint32_t* out_value, const char* desc) { const uint8_t* p = ctx->data + ctx->offset; const uint8_t* end = ctx->data + ctx->read_end; size_t bytes_read = read_u32_leb128(p, end, out_value); if (!bytes_read) RAISE_ERROR("unable to read u32 leb128: %s", desc); ctx->offset += bytes_read; } size_t read_i32_leb128(const uint8_t* p, const uint8_t* end, uint32_t* out_value) { if (p < end && (p[0] & 0x80) == 0) { uint32_t result = LEB128_1(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 6); return 1; } else if (p + 1 < end && (p[1] & 0x80) == 0) { uint32_t result = LEB128_2(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 13); return 2; } else if (p + 2 < end && (p[2] & 0x80) == 0) { uint32_t result = LEB128_3(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 20); return 3; } else if (p + 3 < end && (p[3] & 0x80) == 0) { uint32_t result = LEB128_4(uint32_t); *out_value = SIGN_EXTEND(int32_t, result, 27); return 4; } else if (p + 4 < end && (p[4] & 0x80) == 0) { /* the top bits should be a sign-extension of the sign bit */ bool sign_bit_set = (p[4] & 0x8); int top_bits = p[4] & 0xf0; if ((sign_bit_set && top_bits != 0x70) || (!sign_bit_set && top_bits != 0)) { return 0; } uint32_t result = LEB128_5(uint32_t); *out_value = result; return 5; } else { /* past the end */ return 0; } } static void in_i32_leb128(Context* ctx, uint32_t* out_value, const char* desc) { const uint8_t* p = ctx->data + ctx->offset; const uint8_t* end = ctx->data + ctx->read_end; size_t bytes_read = read_i32_leb128(p, end, out_value); if (!bytes_read) RAISE_ERROR("unable to read i32 leb128: %s", desc); ctx->offset += bytes_read; } static void in_i64_leb128(Context* ctx, uint64_t* out_value, const char* desc) { const uint8_t* p = ctx->data + ctx->offset; const uint8_t* end = ctx->data + ctx->read_end; if (p < end && (p[0] & 0x80) == 0) { uint64_t result = LEB128_1(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 6); ctx->offset += 1; } else if (p + 1 < end && (p[1] & 0x80) == 0) { uint64_t result = LEB128_2(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 13); ctx->offset += 2; } else if (p + 2 < end && (p[2] & 0x80) == 0) { uint64_t result = LEB128_3(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 20); ctx->offset += 3; } else if (p + 3 < end && (p[3] & 0x80) == 0) { uint64_t result = LEB128_4(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 27); ctx->offset += 4; } else if (p + 4 < end && (p[4] & 0x80) == 0) { uint64_t result = LEB128_5(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 34); ctx->offset += 5; } else if (p + 5 < end && (p[5] & 0x80) == 0) { uint64_t result = LEB128_6(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 41); ctx->offset += 6; } else if (p + 6 < end && (p[6] & 0x80) == 0) { uint64_t result = LEB128_7(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 48); ctx->offset += 7; } else if (p + 7 < end && (p[7] & 0x80) == 0) { uint64_t result = LEB128_8(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 55); ctx->offset += 8; } else if (p + 8 < end && (p[8] & 0x80) == 0) { uint64_t result = LEB128_9(uint64_t); *out_value = SIGN_EXTEND(int64_t, result, 62); ctx->offset += 9; } else if (p + 9 < end && (p[9] & 0x80) == 0) { /* the top bits should be a sign-extension of the sign bit */ bool sign_bit_set = (p[9] & 0x1); int top_bits = p[9] & 0xfe; if ((sign_bit_set && top_bits != 0x7e) || (!sign_bit_set && top_bits != 0)) { RAISE_ERROR("invalid i64 leb128: %s", desc); } uint64_t result = LEB128_10(uint64_t); *out_value = result; ctx->offset += 10; } else { /* past the end */ RAISE_ERROR("unable to read i64 leb128: %s", desc); } } #undef BYTE_AT #undef LEB128_1 #undef LEB128_2 #undef LEB128_3 #undef LEB128_4 #undef LEB128_5 #undef LEB128_6 #undef LEB128_7 #undef LEB128_8 #undef LEB128_9 #undef LEB128_10 #undef SHIFT_AMOUNT #undef SIGN_EXTEND static void in_type(Context* ctx, Type* out_value, const char* desc) { uint32_t type = 0; in_i32_leb128(ctx, &type, desc); /* Must be in the vs7 range: [-128, 127). */ if (static_cast(type) < -128 || static_cast(type) > 127) RAISE_ERROR("invalid type: %d", type); *out_value = static_cast(type); } static void in_str(Context* ctx, StringSlice* out_str, const char* desc) { uint32_t str_len = 0; in_u32_leb128(ctx, &str_len, "string length"); if (ctx->offset + str_len > ctx->read_end) RAISE_ERROR("unable to read string: %s", desc); out_str->start = reinterpret_cast(ctx->data) + ctx->offset; out_str->length = str_len; ctx->offset += str_len; } static void in_bytes(Context* ctx, const void** out_data, uint32_t* out_data_size, const char* desc) { uint32_t data_size = 0; in_u32_leb128(ctx, &data_size, "data size"); if (ctx->offset + data_size > ctx->read_end) RAISE_ERROR("unable to read data: %s", desc); *out_data = static_cast(ctx->data) + ctx->offset; *out_data_size = data_size; ctx->offset += data_size; } static bool is_valid_external_kind(uint8_t kind) { return kind < kExternalKindCount; } static bool is_concrete_type(Type type) { switch (type) { case Type::I32: case Type::I64: case Type::F32: case Type::F64: return true; default: return false; } } static bool is_inline_sig_type(Type type) { return is_concrete_type(type) || type == Type::Void; } static uint32_t num_total_funcs(Context* ctx) { return ctx->num_func_imports + ctx->num_function_signatures; } static uint32_t num_total_tables(Context* ctx) { return ctx->num_table_imports + ctx->num_tables; } static uint32_t num_total_memories(Context* ctx) { return ctx->num_memory_imports + ctx->num_memories; } static uint32_t num_total_globals(Context* ctx) { return ctx->num_global_imports + ctx->num_globals; } /* Logging */ static void indent(LoggingContext* ctx) { ctx->indent += INDENT_SIZE; } static void dedent(LoggingContext* ctx) { ctx->indent -= INDENT_SIZE; assert(ctx->indent >= 0); } static void write_indent(LoggingContext* ctx) { static char s_indent[] = " " " "; static size_t s_indent_len = sizeof(s_indent) - 1; size_t indent = ctx->indent; while (indent > s_indent_len) { write_data(ctx->stream, s_indent, s_indent_len, nullptr); indent -= s_indent_len; } if (indent > 0) { write_data(ctx->stream, s_indent, indent, nullptr); } } #define LOGF_NOINDENT(...) writef(ctx->stream, __VA_ARGS__) #define LOGF(...) \ do { \ write_indent(ctx); \ LOGF_NOINDENT(__VA_ARGS__); \ } while (0) static bool logging_on_error(BinaryReaderContext* context, const char* message) { LoggingContext* ctx = static_cast(context->user_data); // Can't use FORWARD_CTX because it returns Result by default. if (!ctx->reader->on_error) return false; BinaryReaderContext new_ctx = *context; new_ctx.user_data = ctx->reader->user_data; return ctx->reader->on_error(&new_ctx, message); } static Result logging_begin_section(BinaryReaderContext* context, BinarySection section_type, uint32_t size) { LoggingContext* ctx = static_cast(context->user_data); FORWARD_CTX(begin_section, section_type, size); } static Result logging_begin_custom_section(BinaryReaderContext* context, uint32_t size, StringSlice section_name) { LoggingContext* ctx = static_cast(context->user_data); LOGF("begin_custom_section: '" PRIstringslice "' size=%d\n", WABT_PRINTF_STRING_SLICE_ARG(section_name), size); indent(ctx); FORWARD_CTX(begin_custom_section, size, section_name); } #define LOGGING_BEGIN(name) \ static Result logging_begin_##name(BinaryReaderContext* context, \ uint32_t size) { \ LoggingContext* ctx = static_cast(context->user_data); \ LOGF("begin_" #name "(%u)\n", size); \ indent(ctx); \ FORWARD_CTX(begin_##name, size); \ } #define LOGGING_END(name) \ static Result logging_end_##name(BinaryReaderContext* context) { \ LoggingContext* ctx = static_cast(context->user_data); \ dedent(ctx); \ LOGF("end_" #name "\n"); \ FORWARD_CTX0(end_##name); \ } #define LOGGING_UINT32(name) \ static Result logging_##name(uint32_t value, void* user_data) { \ LoggingContext* ctx = static_cast(user_data); \ LOGF(#name "(%u)\n", value); \ FORWARD(name, value); \ } #define LOGGING_UINT32_CTX(name) \ static Result logging_##name(BinaryReaderContext* context, uint32_t value) { \ LoggingContext* ctx = static_cast(context->user_data); \ LOGF(#name "(%u)\n", value); \ FORWARD_CTX(name, value); \ } #define LOGGING_UINT32_DESC(name, desc) \ static Result logging_##name(uint32_t value, void* user_data) { \ LoggingContext* ctx = static_cast(user_data); \ LOGF(#name "(" desc ": %u)\n", value); \ FORWARD(name, value); \ } #define LOGGING_UINT32_UINT32(name, desc0, desc1) \ static Result logging_##name(uint32_t value0, uint32_t value1, \ void* user_data) { \ LoggingContext* ctx = static_cast(user_data); \ LOGF(#name "(" desc0 ": %u, " desc1 ": %u)\n", value0, value1); \ FORWARD(name, value0, value1); \ } #define LOGGING_UINT32_UINT32_CTX(name, desc0, desc1) \ static Result logging_##name(BinaryReaderContext* context, uint32_t value0, \ uint32_t value1) { \ LoggingContext* ctx = static_cast(context->user_data); \ LOGF(#name "(" desc0 ": %u, " desc1 ": %u)\n", value0, value1); \ FORWARD_CTX(name, value0, value1); \ } #define LOGGING_OPCODE(name) \ static Result logging_##name(Opcode opcode, void* user_data) { \ LoggingContext* ctx = static_cast(user_data); \ LOGF(#name "(\"%s\" (%u))\n", get_opcode_name(opcode), \ static_cast(opcode)); \ FORWARD(name, opcode); \ } #define LOGGING0(name) \ static Result logging_##name(void* user_data) { \ LoggingContext* ctx = static_cast(user_data); \ LOGF(#name "\n"); \ FORWARD0(name); \ } LOGGING_UINT32(begin_module) LOGGING0(end_module) LOGGING_END(custom_section) LOGGING_BEGIN(signature_section) LOGGING_UINT32(on_signature_count) LOGGING_END(signature_section) LOGGING_BEGIN(import_section) LOGGING_UINT32(on_import_count) LOGGING_END(import_section) LOGGING_BEGIN(function_signatures_section) LOGGING_UINT32(on_function_signatures_count) LOGGING_UINT32_UINT32(on_function_signature, "index", "sig_index") LOGGING_END(function_signatures_section) LOGGING_BEGIN(table_section) LOGGING_UINT32(on_table_count) LOGGING_END(table_section) LOGGING_BEGIN(memory_section) LOGGING_UINT32(on_memory_count) LOGGING_END(memory_section) LOGGING_BEGIN(global_section) LOGGING_UINT32(on_global_count) LOGGING_UINT32(begin_global_init_expr) LOGGING_UINT32(end_global_init_expr) LOGGING_UINT32(end_global) LOGGING_END(global_section) LOGGING_BEGIN(export_section) LOGGING_UINT32(on_export_count) LOGGING_END(export_section) LOGGING_BEGIN(start_section) LOGGING_UINT32(on_start_function) LOGGING_END(start_section) LOGGING_BEGIN(function_bodies_section) LOGGING_UINT32(on_function_bodies_count) LOGGING_UINT32_CTX(begin_function_body) LOGGING_UINT32(end_function_body) LOGGING_UINT32(on_local_decl_count) LOGGING_OPCODE(on_binary_expr) LOGGING_UINT32_DESC(on_call_expr, "func_index") LOGGING_UINT32_DESC(on_call_import_expr, "import_index") LOGGING_UINT32_DESC(on_call_indirect_expr, "sig_index") LOGGING_OPCODE(on_compare_expr) LOGGING_OPCODE(on_convert_expr) LOGGING0(on_current_memory_expr) LOGGING0(on_drop_expr) LOGGING0(on_else_expr) LOGGING0(on_end_expr) LOGGING_UINT32_DESC(on_get_global_expr, "index") LOGGING_UINT32_DESC(on_get_local_expr, "index") LOGGING0(on_grow_memory_expr) LOGGING0(on_nop_expr) LOGGING0(on_return_expr) LOGGING0(on_select_expr) LOGGING_UINT32_DESC(on_set_global_expr, "index") LOGGING_UINT32_DESC(on_set_local_expr, "index") LOGGING_UINT32_DESC(on_tee_local_expr, "index") LOGGING0(on_unreachable_expr) LOGGING_OPCODE(on_unary_expr) LOGGING_END(function_bodies_section) LOGGING_BEGIN(elem_section) LOGGING_UINT32(on_elem_segment_count) LOGGING_UINT32_UINT32(begin_elem_segment, "index", "table_index") LOGGING_UINT32(begin_elem_segment_init_expr) LOGGING_UINT32(end_elem_segment_init_expr) LOGGING_UINT32_UINT32_CTX(on_elem_segment_function_index_count, "index", "count") LOGGING_UINT32_UINT32(on_elem_segment_function_index, "index", "func_index") LOGGING_UINT32(end_elem_segment) LOGGING_END(elem_section) LOGGING_BEGIN(data_section) LOGGING_UINT32(on_data_segment_count) LOGGING_UINT32_UINT32(begin_data_segment, "index", "memory_index") LOGGING_UINT32(begin_data_segment_init_expr) LOGGING_UINT32(end_data_segment_init_expr) LOGGING_UINT32(end_data_segment) LOGGING_END(data_section) LOGGING_BEGIN(names_section) LOGGING_UINT32(on_function_names_count) LOGGING_UINT32(on_local_name_function_count) LOGGING_UINT32_UINT32(on_local_name_local_count, "index", "count") LOGGING_END(names_section) LOGGING_BEGIN(reloc_section) LOGGING_END(reloc_section) LOGGING_UINT32_UINT32(on_init_expr_get_global_expr, "index", "global_index") static void sprint_limits(char* dst, size_t size, const Limits* limits) { int result; if (limits->has_max) { result = wabt_snprintf(dst, size, "initial: %" PRIu64 ", max: %" PRIu64, limits->initial, limits->max); } else { result = wabt_snprintf(dst, size, "initial: %" PRIu64, limits->initial); } WABT_USE(result); assert(static_cast(result) < size); } static void log_types(LoggingContext* ctx, uint32_t type_count, Type* types) { LOGF_NOINDENT("["); for (uint32_t i = 0; i < type_count; ++i) { LOGF_NOINDENT("%s", get_type_name(types[i])); if (i != type_count - 1) LOGF_NOINDENT(", "); } LOGF_NOINDENT("]"); } static Result logging_on_signature(uint32_t index, uint32_t param_count, Type* param_types, uint32_t result_count, Type* result_types, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_signature(index: %u, params: ", index); log_types(ctx, param_count, param_types); LOGF_NOINDENT(", results: "); log_types(ctx, result_count, result_types); LOGF_NOINDENT(")\n"); FORWARD(on_signature, index, param_count, param_types, result_count, result_types); } static Result logging_on_import(uint32_t index, StringSlice module_name, StringSlice field_name, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_import(index: %u, module: \"" PRIstringslice "\", field: \"" PRIstringslice "\")\n", index, WABT_PRINTF_STRING_SLICE_ARG(module_name), WABT_PRINTF_STRING_SLICE_ARG(field_name)); FORWARD(on_import, index, module_name, field_name); } static Result logging_on_import_func(uint32_t import_index, StringSlice module_name, StringSlice field_name, uint32_t func_index, uint32_t sig_index, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_import_func(import_index: %u, func_index: %u, sig_index: %u)\n", import_index, func_index, sig_index); FORWARD(on_import_func, import_index, module_name, field_name, func_index, sig_index); } static Result logging_on_import_table(uint32_t import_index, StringSlice module_name, StringSlice field_name, uint32_t table_index, Type elem_type, const Limits* elem_limits, void* user_data) { LoggingContext* ctx = static_cast(user_data); char buf[100]; sprint_limits(buf, sizeof(buf), elem_limits); LOGF( "on_import_table(import_index: %u, table_index: %u, elem_type: %s, %s)\n", import_index, table_index, get_type_name(elem_type), buf); FORWARD(on_import_table, import_index, module_name, field_name, table_index, elem_type, elem_limits); } static Result logging_on_import_memory(uint32_t import_index, StringSlice module_name, StringSlice field_name, uint32_t memory_index, const Limits* page_limits, void* user_data) { LoggingContext* ctx = static_cast(user_data); char buf[100]; sprint_limits(buf, sizeof(buf), page_limits); LOGF("on_import_memory(import_index: %u, memory_index: %u, %s)\n", import_index, memory_index, buf); FORWARD(on_import_memory, import_index, module_name, field_name, memory_index, page_limits); } static Result logging_on_import_global(uint32_t import_index, StringSlice module_name, StringSlice field_name, uint32_t global_index, Type type, bool mutable_, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF( "on_import_global(import_index: %u, global_index: %u, type: %s, mutable: " "%s)\n", import_index, global_index, get_type_name(type), mutable_ ? "true" : "false"); FORWARD(on_import_global, import_index, module_name, field_name, global_index, type, mutable_); } static Result logging_on_table(uint32_t index, Type elem_type, const Limits* elem_limits, void* user_data) { LoggingContext* ctx = static_cast(user_data); char buf[100]; sprint_limits(buf, sizeof(buf), elem_limits); LOGF("on_table(index: %u, elem_type: %s, %s)\n", index, get_type_name(elem_type), buf); FORWARD(on_table, index, elem_type, elem_limits); } static Result logging_on_memory(uint32_t index, const Limits* page_limits, void* user_data) { LoggingContext* ctx = static_cast(user_data); char buf[100]; sprint_limits(buf, sizeof(buf), page_limits); LOGF("on_memory(index: %u, %s)\n", index, buf); FORWARD(on_memory, index, page_limits); } static Result logging_begin_global(uint32_t index, Type type, bool mutable_, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("begin_global(index: %u, type: %s, mutable: %s)\n", index, get_type_name(type), mutable_ ? "true" : "false"); FORWARD(begin_global, index, type, mutable_); } static Result logging_on_export(uint32_t index, ExternalKind kind, uint32_t item_index, StringSlice name, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_export(index: %u, kind: %s, item_index: %u, name: \"" PRIstringslice "\")\n", index, get_kind_name(kind), item_index, WABT_PRINTF_STRING_SLICE_ARG(name)); FORWARD(on_export, index, kind, item_index, name); } static Result logging_begin_function_body_pass(uint32_t index, uint32_t pass, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("begin_function_body_pass(index: %u, pass: %u)\n", index, pass); indent(ctx); FORWARD(begin_function_body_pass, index, pass); } static Result logging_on_local_decl(uint32_t decl_index, uint32_t count, Type type, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_local_decl(index: %u, count: %u, type: %s)\n", decl_index, count, get_type_name(type)); FORWARD(on_local_decl, decl_index, count, type); } static Result logging_on_block_expr(uint32_t num_types, Type* sig_types, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_block_expr(sig: "); log_types(ctx, num_types, sig_types); LOGF_NOINDENT(")\n"); FORWARD(on_block_expr, num_types, sig_types); } static Result logging_on_br_expr(uint32_t depth, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_br_expr(depth: %u)\n", depth); FORWARD(on_br_expr, depth); } static Result logging_on_br_if_expr(uint32_t depth, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_br_if_expr(depth: %u)\n", depth); FORWARD(on_br_if_expr, depth); } static Result logging_on_br_table_expr(BinaryReaderContext* context, uint32_t num_targets, uint32_t* target_depths, uint32_t default_target_depth) { LoggingContext* ctx = static_cast(context->user_data); LOGF("on_br_table_expr(num_targets: %u, depths: [", num_targets); for (uint32_t i = 0; i < num_targets; ++i) { LOGF_NOINDENT("%u", target_depths[i]); if (i != num_targets - 1) LOGF_NOINDENT(", "); } LOGF_NOINDENT("], default: %u)\n", default_target_depth); FORWARD_CTX(on_br_table_expr, num_targets, target_depths, default_target_depth); } static Result logging_on_f32_const_expr(uint32_t value_bits, void* user_data) { LoggingContext* ctx = static_cast(user_data); float value; memcpy(&value, &value_bits, sizeof(value)); LOGF("on_f32_const_expr(%g (0x04%x))\n", value, value_bits); FORWARD(on_f32_const_expr, value_bits); } static Result logging_on_f64_const_expr(uint64_t value_bits, void* user_data) { LoggingContext* ctx = static_cast(user_data); double value; memcpy(&value, &value_bits, sizeof(value)); LOGF("on_f64_const_expr(%g (0x08%" PRIx64 "))\n", value, value_bits); FORWARD(on_f64_const_expr, value_bits); } static Result logging_on_i32_const_expr(uint32_t value, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_i32_const_expr(%u (0x%x))\n", value, value); FORWARD(on_i32_const_expr, value); } static Result logging_on_i64_const_expr(uint64_t value, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_i64_const_expr(%" PRIu64 " (0x%" PRIx64 "))\n", value, value); FORWARD(on_i64_const_expr, value); } static Result logging_on_if_expr(uint32_t num_types, Type* sig_types, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_if_expr(sig: "); log_types(ctx, num_types, sig_types); LOGF_NOINDENT(")\n"); FORWARD(on_if_expr, num_types, sig_types); } static Result logging_on_load_expr(Opcode opcode, uint32_t alignment_log2, uint32_t offset, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_load_expr(opcode: \"%s\" (%u), align log2: %u, offset: %u)\n", get_opcode_name(opcode), static_cast(opcode), alignment_log2, offset); FORWARD(on_load_expr, opcode, alignment_log2, offset); } static Result logging_on_loop_expr(uint32_t num_types, Type* sig_types, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_loop_expr(sig: "); log_types(ctx, num_types, sig_types); LOGF_NOINDENT(")\n"); FORWARD(on_loop_expr, num_types, sig_types); } static Result logging_on_store_expr(Opcode opcode, uint32_t alignment_log2, uint32_t offset, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_store_expr(opcode: \"%s\" (%u), align log2: %u, offset: %u)\n", get_opcode_name(opcode), static_cast(opcode), alignment_log2, offset); FORWARD(on_store_expr, opcode, alignment_log2, offset); } static Result logging_end_function_body_pass(uint32_t index, uint32_t pass, void* user_data) { LoggingContext* ctx = static_cast(user_data); dedent(ctx); LOGF("end_function_body_pass(index: %u, pass: %u)\n", index, pass); FORWARD(end_function_body_pass, index, pass); } static Result logging_on_data_segment_data(uint32_t index, const void* data, uint32_t size, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_data_segment_data(index:%u, size:%u)\n", index, size); FORWARD(on_data_segment_data, index, data, size); } static Result logging_on_function_name_subsection(uint32_t index, uint32_t name_type, uint32_t subsection_size, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_function_name_subsection(index:%u, nametype:%u, size:%u)\n", index, name_type, subsection_size); FORWARD(on_function_name_subsection, index, name_type, subsection_size); } static Result logging_on_function_name(uint32_t index, StringSlice name, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_function_name(index: %u, name: \"" PRIstringslice "\")\n", index, WABT_PRINTF_STRING_SLICE_ARG(name)); FORWARD(on_function_name, index, name); } static Result logging_on_local_name_subsection(uint32_t index, uint32_t name_type, uint32_t subsection_size, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_local_name_subsection(index:%u, nametype:%u, size:%u)\n", index, name_type, subsection_size); FORWARD(on_local_name_subsection, index, name_type, subsection_size); } static Result logging_on_local_name(uint32_t func_index, uint32_t local_index, StringSlice name, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_local_name(func_index: %u, local_index: %u, name: \"" PRIstringslice "\")\n", func_index, local_index, WABT_PRINTF_STRING_SLICE_ARG(name)); FORWARD(on_local_name, func_index, local_index, name); } static Result logging_on_init_expr_f32_const_expr(uint32_t index, uint32_t value_bits, void* user_data) { LoggingContext* ctx = static_cast(user_data); float value; memcpy(&value, &value_bits, sizeof(value)); LOGF("on_init_expr_f32_const_expr(index: %u, value: %g (0x04%x))\n", index, value, value_bits); FORWARD(on_init_expr_f32_const_expr, index, value_bits); } static Result logging_on_init_expr_f64_const_expr(uint32_t index, uint64_t value_bits, void* user_data) { LoggingContext* ctx = static_cast(user_data); double value; memcpy(&value, &value_bits, sizeof(value)); LOGF("on_init_expr_f64_const_expr(index: %u value: %g (0x08%" PRIx64 "))\n", index, value, value_bits); FORWARD(on_init_expr_f64_const_expr, index, value_bits); } static Result logging_on_init_expr_i32_const_expr(uint32_t index, uint32_t value, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_init_expr_i32_const_expr(index: %u, value: %u)\n", index, value); FORWARD(on_init_expr_i32_const_expr, index, value); } static Result logging_on_init_expr_i64_const_expr(uint32_t index, uint64_t value, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_init_expr_i64_const_expr(index: %u, value: %" PRIu64 ")\n", index, value); FORWARD(on_init_expr_i64_const_expr, index, value); } static Result logging_on_reloc_count(uint32_t count, BinarySection section_code, StringSlice section_name, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_reloc_count(count: %d, section: %s, section_name: " PRIstringslice ")\n", count, get_section_name(section_code), WABT_PRINTF_STRING_SLICE_ARG(section_name)); FORWARD(on_reloc_count, count, section_code, section_name); } static Result logging_on_reloc(RelocType type, uint32_t offset, uint32_t index, int32_t addend, void* user_data) { LoggingContext* ctx = static_cast(user_data); LOGF("on_reloc(type: %s, offset: %u, index: %u, addend: %d)\n", get_reloc_type_name(type), offset, index, addend); FORWARD(on_reloc, type, offset, index, addend); } static void read_init_expr(Context* ctx, uint32_t index) { uint8_t opcode; in_u8(ctx, &opcode, "opcode"); switch (static_cast(opcode)) { case Opcode::I32Const: { uint32_t value = 0; in_i32_leb128(ctx, &value, "init_expr i32.const value"); CALLBACK(on_init_expr_i32_const_expr, index, value); break; } case Opcode::I64Const: { uint64_t value = 0; in_i64_leb128(ctx, &value, "init_expr i64.const value"); CALLBACK(on_init_expr_i64_const_expr, index, value); break; } case Opcode::F32Const: { uint32_t value_bits = 0; in_f32(ctx, &value_bits, "init_expr f32.const value"); CALLBACK(on_init_expr_f32_const_expr, index, value_bits); break; } case Opcode::F64Const: { uint64_t value_bits = 0; in_f64(ctx, &value_bits, "init_expr f64.const value"); CALLBACK(on_init_expr_f64_const_expr, index, value_bits); break; } case Opcode::GetGlobal: { uint32_t global_index; in_u32_leb128(ctx, &global_index, "init_expr get_global index"); CALLBACK(on_init_expr_get_global_expr, index, global_index); break; } case Opcode::End: return; default: RAISE_ERROR("unexpected opcode in initializer expression: %d (0x%x)", opcode, opcode); break; } in_u8(ctx, &opcode, "opcode"); RAISE_ERROR_UNLESS(static_cast(opcode) == Opcode::End, "expected END opcode after initializer expression"); } static void read_table(Context* ctx, Type* out_elem_type, Limits* out_elem_limits) { in_type(ctx, out_elem_type, "table elem type"); RAISE_ERROR_UNLESS(*out_elem_type == Type::Anyfunc, "table elem type must by anyfunc"); uint32_t flags; uint32_t initial; uint32_t max = 0; in_u32_leb128(ctx, &flags, "table flags"); in_u32_leb128(ctx, &initial, "table initial elem count"); bool has_max = flags & WABT_BINARY_LIMITS_HAS_MAX_FLAG; if (has_max) { in_u32_leb128(ctx, &max, "table max elem count"); RAISE_ERROR_UNLESS(initial <= max, "table initial elem count must be <= max elem count"); } out_elem_limits->has_max = has_max; out_elem_limits->initial = initial; out_elem_limits->max = max; } static void read_memory(Context* ctx, Limits* out_page_limits) { uint32_t flags; uint32_t initial; uint32_t max = 0; in_u32_leb128(ctx, &flags, "memory flags"); in_u32_leb128(ctx, &initial, "memory initial page count"); bool has_max = flags & WABT_BINARY_LIMITS_HAS_MAX_FLAG; RAISE_ERROR_UNLESS(initial <= WABT_MAX_PAGES, "invalid memory initial size"); if (has_max) { in_u32_leb128(ctx, &max, "memory max page count"); RAISE_ERROR_UNLESS(max <= WABT_MAX_PAGES, "invalid memory max size"); RAISE_ERROR_UNLESS(initial <= max, "memory initial size must be <= max size"); } out_page_limits->has_max = has_max; out_page_limits->initial = initial; out_page_limits->max = max; } static void read_global_header(Context* ctx, Type* out_type, bool* out_mutable) { Type global_type; uint8_t mutable_; in_type(ctx, &global_type, "global type"); RAISE_ERROR_UNLESS(is_concrete_type(global_type), "invalid global type: %#x", static_cast(global_type)); in_u8(ctx, &mutable_, "global mutability"); RAISE_ERROR_UNLESS(mutable_ <= 1, "global mutability must be 0 or 1"); *out_type = global_type; *out_mutable = mutable_; } static void read_function_body(Context* ctx, uint32_t end_offset) { bool seen_end_opcode = false; while (ctx->offset < end_offset) { uint8_t opcode_u8; in_u8(ctx, &opcode_u8, "opcode"); Opcode opcode = static_cast(opcode_u8); CALLBACK_CTX(on_opcode, opcode); switch (opcode) { case Opcode::Unreachable: CALLBACK0(on_unreachable_expr); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::Block: { Type sig_type; in_type(ctx, &sig_type, "block signature type"); RAISE_ERROR_UNLESS(is_inline_sig_type(sig_type), "expected valid block signature type"); uint32_t num_types = sig_type == Type::Void ? 0 : 1; CALLBACK(on_block_expr, num_types, &sig_type); CALLBACK_CTX(on_opcode_block_sig, num_types, &sig_type); break; } case Opcode::Loop: { Type sig_type; in_type(ctx, &sig_type, "loop signature type"); RAISE_ERROR_UNLESS(is_inline_sig_type(sig_type), "expected valid block signature type"); uint32_t num_types = sig_type == Type::Void ? 0 : 1; CALLBACK(on_loop_expr, num_types, &sig_type); CALLBACK_CTX(on_opcode_block_sig, num_types, &sig_type); break; } case Opcode::If: { Type sig_type; in_type(ctx, &sig_type, "if signature type"); RAISE_ERROR_UNLESS(is_inline_sig_type(sig_type), "expected valid block signature type"); uint32_t num_types = sig_type == Type::Void ? 0 : 1; CALLBACK(on_if_expr, num_types, &sig_type); CALLBACK_CTX(on_opcode_block_sig, num_types, &sig_type); break; } case Opcode::Else: CALLBACK0(on_else_expr); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::Select: CALLBACK0(on_select_expr); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::Br: { uint32_t depth; in_u32_leb128(ctx, &depth, "br depth"); CALLBACK(on_br_expr, depth); CALLBACK_CTX(on_opcode_uint32, depth); break; } case Opcode::BrIf: { uint32_t depth; in_u32_leb128(ctx, &depth, "br_if depth"); CALLBACK(on_br_if_expr, depth); CALLBACK_CTX(on_opcode_uint32, depth); break; } case Opcode::BrTable: { uint32_t num_targets; in_u32_leb128(ctx, &num_targets, "br_table target count"); ctx->target_depths.resize(num_targets); for (uint32_t i = 0; i < num_targets; ++i) { uint32_t target_depth; in_u32_leb128(ctx, &target_depth, "br_table target depth"); ctx->target_depths[i] = target_depth; } uint32_t default_target_depth; in_u32_leb128(ctx, &default_target_depth, "br_table default target depth"); uint32_t* target_depths = num_targets ? ctx->target_depths.data() : nullptr; CALLBACK_CTX(on_br_table_expr, num_targets, target_depths, default_target_depth); break; } case Opcode::Return: CALLBACK0(on_return_expr); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::Nop: CALLBACK0(on_nop_expr); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::Drop: CALLBACK0(on_drop_expr); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::End: if (ctx->offset == end_offset) { seen_end_opcode = true; CALLBACK0(on_end_func); } else { CALLBACK0(on_end_expr); } break; case Opcode::I32Const: { uint32_t value = 0; in_i32_leb128(ctx, &value, "i32.const value"); CALLBACK(on_i32_const_expr, value); CALLBACK_CTX(on_opcode_uint32, value); break; } case Opcode::I64Const: { uint64_t value = 0; in_i64_leb128(ctx, &value, "i64.const value"); CALLBACK(on_i64_const_expr, value); CALLBACK_CTX(on_opcode_uint64, value); break; } case Opcode::F32Const: { uint32_t value_bits = 0; in_f32(ctx, &value_bits, "f32.const value"); CALLBACK(on_f32_const_expr, value_bits); CALLBACK_CTX(on_opcode_f32, value_bits); break; } case Opcode::F64Const: { uint64_t value_bits = 0; in_f64(ctx, &value_bits, "f64.const value"); CALLBACK(on_f64_const_expr, value_bits); CALLBACK_CTX(on_opcode_f64, value_bits); break; } case Opcode::GetGlobal: { uint32_t global_index; in_u32_leb128(ctx, &global_index, "get_global global index"); CALLBACK(on_get_global_expr, global_index); CALLBACK_CTX(on_opcode_uint32, global_index); break; } case Opcode::GetLocal: { uint32_t local_index; in_u32_leb128(ctx, &local_index, "get_local local index"); CALLBACK(on_get_local_expr, local_index); CALLBACK_CTX(on_opcode_uint32, local_index); break; } case Opcode::SetGlobal: { uint32_t global_index; in_u32_leb128(ctx, &global_index, "set_global global index"); CALLBACK(on_set_global_expr, global_index); CALLBACK_CTX(on_opcode_uint32, global_index); break; } case Opcode::SetLocal: { uint32_t local_index; in_u32_leb128(ctx, &local_index, "set_local local index"); CALLBACK(on_set_local_expr, local_index); CALLBACK_CTX(on_opcode_uint32, local_index); break; } case Opcode::Call: { uint32_t func_index; in_u32_leb128(ctx, &func_index, "call function index"); RAISE_ERROR_UNLESS(func_index < num_total_funcs(ctx), "invalid call function index"); CALLBACK(on_call_expr, func_index); CALLBACK_CTX(on_opcode_uint32, func_index); break; } case Opcode::CallIndirect: { uint32_t sig_index; in_u32_leb128(ctx, &sig_index, "call_indirect signature index"); RAISE_ERROR_UNLESS(sig_index < ctx->num_signatures, "invalid call_indirect signature index"); uint32_t reserved; in_u32_leb128(ctx, &reserved, "call_indirect reserved"); RAISE_ERROR_UNLESS(reserved == 0, "call_indirect reserved value must be 0"); CALLBACK(on_call_indirect_expr, sig_index); CALLBACK_CTX(on_opcode_uint32_uint32, sig_index, reserved); break; } case Opcode::TeeLocal: { uint32_t local_index; in_u32_leb128(ctx, &local_index, "tee_local local index"); CALLBACK(on_tee_local_expr, local_index); CALLBACK_CTX(on_opcode_uint32, local_index); break; } case Opcode::I32Load8S: case Opcode::I32Load8U: case Opcode::I32Load16S: case Opcode::I32Load16U: case Opcode::I64Load8S: case Opcode::I64Load8U: case Opcode::I64Load16S: case Opcode::I64Load16U: case Opcode::I64Load32S: case Opcode::I64Load32U: case Opcode::I32Load: case Opcode::I64Load: case Opcode::F32Load: case Opcode::F64Load: { uint32_t alignment_log2; in_u32_leb128(ctx, &alignment_log2, "load alignment"); uint32_t offset; in_u32_leb128(ctx, &offset, "load offset"); CALLBACK(on_load_expr, opcode, alignment_log2, offset); CALLBACK_CTX(on_opcode_uint32_uint32, alignment_log2, offset); break; } case Opcode::I32Store8: case Opcode::I32Store16: case Opcode::I64Store8: case Opcode::I64Store16: case Opcode::I64Store32: case Opcode::I32Store: case Opcode::I64Store: case Opcode::F32Store: case Opcode::F64Store: { uint32_t alignment_log2; in_u32_leb128(ctx, &alignment_log2, "store alignment"); uint32_t offset; in_u32_leb128(ctx, &offset, "store offset"); CALLBACK(on_store_expr, opcode, alignment_log2, offset); CALLBACK_CTX(on_opcode_uint32_uint32, alignment_log2, offset); break; } case Opcode::CurrentMemory: { uint32_t reserved; in_u32_leb128(ctx, &reserved, "current_memory reserved"); RAISE_ERROR_UNLESS(reserved == 0, "current_memory reserved value must be 0"); CALLBACK0(on_current_memory_expr); CALLBACK_CTX(on_opcode_uint32, reserved); break; } case Opcode::GrowMemory: { uint32_t reserved; in_u32_leb128(ctx, &reserved, "grow_memory reserved"); RAISE_ERROR_UNLESS(reserved == 0, "grow_memory reserved value must be 0"); CALLBACK0(on_grow_memory_expr); CALLBACK_CTX(on_opcode_uint32, reserved); break; } case Opcode::I32Add: case Opcode::I32Sub: case Opcode::I32Mul: case Opcode::I32DivS: case Opcode::I32DivU: case Opcode::I32RemS: case Opcode::I32RemU: case Opcode::I32And: case Opcode::I32Or: case Opcode::I32Xor: case Opcode::I32Shl: case Opcode::I32ShrU: case Opcode::I32ShrS: case Opcode::I32Rotr: case Opcode::I32Rotl: case Opcode::I64Add: case Opcode::I64Sub: case Opcode::I64Mul: case Opcode::I64DivS: case Opcode::I64DivU: case Opcode::I64RemS: case Opcode::I64RemU: case Opcode::I64And: case Opcode::I64Or: case Opcode::I64Xor: case Opcode::I64Shl: case Opcode::I64ShrU: case Opcode::I64ShrS: case Opcode::I64Rotr: case Opcode::I64Rotl: case Opcode::F32Add: case Opcode::F32Sub: case Opcode::F32Mul: case Opcode::F32Div: case Opcode::F32Min: case Opcode::F32Max: case Opcode::F32Copysign: case Opcode::F64Add: case Opcode::F64Sub: case Opcode::F64Mul: case Opcode::F64Div: case Opcode::F64Min: case Opcode::F64Max: case Opcode::F64Copysign: CALLBACK(on_binary_expr, opcode); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::I32Eq: case Opcode::I32Ne: case Opcode::I32LtS: case Opcode::I32LeS: case Opcode::I32LtU: case Opcode::I32LeU: case Opcode::I32GtS: case Opcode::I32GeS: case Opcode::I32GtU: case Opcode::I32GeU: case Opcode::I64Eq: case Opcode::I64Ne: case Opcode::I64LtS: case Opcode::I64LeS: case Opcode::I64LtU: case Opcode::I64LeU: case Opcode::I64GtS: case Opcode::I64GeS: case Opcode::I64GtU: case Opcode::I64GeU: case Opcode::F32Eq: case Opcode::F32Ne: case Opcode::F32Lt: case Opcode::F32Le: case Opcode::F32Gt: case Opcode::F32Ge: case Opcode::F64Eq: case Opcode::F64Ne: case Opcode::F64Lt: case Opcode::F64Le: case Opcode::F64Gt: case Opcode::F64Ge: CALLBACK(on_compare_expr, opcode); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::I32Clz: case Opcode::I32Ctz: case Opcode::I32Popcnt: case Opcode::I64Clz: case Opcode::I64Ctz: case Opcode::I64Popcnt: case Opcode::F32Abs: case Opcode::F32Neg: case Opcode::F32Ceil: case Opcode::F32Floor: case Opcode::F32Trunc: case Opcode::F32Nearest: case Opcode::F32Sqrt: case Opcode::F64Abs: case Opcode::F64Neg: case Opcode::F64Ceil: case Opcode::F64Floor: case Opcode::F64Trunc: case Opcode::F64Nearest: case Opcode::F64Sqrt: CALLBACK(on_unary_expr, opcode); CALLBACK_CTX0(on_opcode_bare); break; case Opcode::I32TruncSF32: case Opcode::I32TruncSF64: case Opcode::I32TruncUF32: case Opcode::I32TruncUF64: case Opcode::I32WrapI64: case Opcode::I64TruncSF32: case Opcode::I64TruncSF64: case Opcode::I64TruncUF32: case Opcode::I64TruncUF64: case Opcode::I64ExtendSI32: case Opcode::I64ExtendUI32: case Opcode::F32ConvertSI32: case Opcode::F32ConvertUI32: case Opcode::F32ConvertSI64: case Opcode::F32ConvertUI64: case Opcode::F32DemoteF64: case Opcode::F32ReinterpretI32: case Opcode::F64ConvertSI32: case Opcode::F64ConvertUI32: case Opcode::F64ConvertSI64: case Opcode::F64ConvertUI64: case Opcode::F64PromoteF32: case Opcode::F64ReinterpretI64: case Opcode::I32ReinterpretF32: case Opcode::I64ReinterpretF64: case Opcode::I32Eqz: case Opcode::I64Eqz: CALLBACK(on_convert_expr, opcode); CALLBACK_CTX0(on_opcode_bare); break; default: RAISE_ERROR("unexpected opcode: %d (0x%x)", static_cast(opcode), static_cast(opcode)); } } RAISE_ERROR_UNLESS(ctx->offset == end_offset, "function body longer than given size"); RAISE_ERROR_UNLESS(seen_end_opcode, "function body must end with END opcode"); } static void read_custom_section(Context* ctx, uint32_t section_size) { StringSlice section_name; in_str(ctx, §ion_name, "section name"); CALLBACK_CTX(begin_custom_section, section_size, section_name); bool name_section_ok = ctx->last_known_section >= BinarySection::Import; if (ctx->options->read_debug_names && name_section_ok && strncmp(section_name.start, WABT_BINARY_SECTION_NAME, section_name.length) == 0) { CALLBACK_SECTION(begin_names_section, section_size); uint32_t i = 0; while (ctx->offset < ctx->read_end) { uint32_t name_type; uint32_t subsection_size; in_u32_leb128(ctx, &name_type, "name type"); in_u32_leb128(ctx, &subsection_size, "subsection size"); switch (static_cast(name_type)) { case NameSectionSubsection::Function: CALLBACK(on_function_name_subsection, i, name_type, subsection_size); if (subsection_size) { uint32_t num_names; in_u32_leb128(ctx, &num_names, "name count"); CALLBACK(on_function_names_count, num_names); for (uint32_t j = 0; j < num_names; ++j) { uint32_t function_index; StringSlice function_name; in_u32_leb128(ctx, &function_index, "function index"); in_str(ctx, &function_name, "function name"); CALLBACK(on_function_name, function_index, function_name); } } ++i; break; case NameSectionSubsection::Local: CALLBACK(on_local_name_subsection, i, name_type, subsection_size); if (subsection_size) { uint32_t num_funcs; in_u32_leb128(ctx, &num_funcs, "function count"); CALLBACK(on_local_name_function_count, num_funcs); for (uint32_t j = 0; j < num_funcs; ++j) { uint32_t function_index; in_u32_leb128(ctx, &function_index, "function index"); uint32_t num_locals; in_u32_leb128(ctx, &num_locals, "local count"); CALLBACK(on_local_name_local_count, function_index, num_locals); for (uint32_t k = 0; k < num_locals; ++k) { uint32_t local_index; StringSlice local_name; in_u32_leb128(ctx, &local_index, "named index"); in_str(ctx, &local_name, "name"); CALLBACK(on_local_name, function_index, local_index, local_name); } } } ++i; break; default: /* unknown subsection, skip rest of section */ ctx->offset = ctx->read_end; break; } } CALLBACK_CTX0(end_names_section); } else if (strncmp(section_name.start, WABT_BINARY_SECTION_RELOC, strlen(WABT_BINARY_SECTION_RELOC)) == 0) { CALLBACK_SECTION(begin_reloc_section, section_size); uint32_t num_relocs, section; in_u32_leb128(ctx, §ion, "section"); WABT_ZERO_MEMORY(section_name); if (static_cast(section) == BinarySection::Custom) in_str(ctx, §ion_name, "section name"); in_u32_leb128(ctx, &num_relocs, "relocation count"); CALLBACK(on_reloc_count, num_relocs, static_cast(section), section_name); for (uint32_t i = 0; i < num_relocs; ++i) { uint32_t reloc_type, offset, index, addend = 0; in_u32_leb128(ctx, &reloc_type, "relocation type"); in_u32_leb128(ctx, &offset, "offset"); in_u32_leb128(ctx, &index, "index"); RelocType type = static_cast(reloc_type); switch (type) { case RelocType::MemoryAddressLEB: case RelocType::MemoryAddressSLEB: case RelocType::MemoryAddressI32: in_u32_leb128(ctx, &addend, "addend"); break; default: break; } CALLBACK(on_reloc, type, offset, index, addend); } CALLBACK_CTX0(end_reloc_section); } else { /* This is an unknown custom section, skip it. */ ctx->offset = ctx->read_end; } CALLBACK_CTX0(end_custom_section); } static void read_type_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_signature_section, section_size); in_u32_leb128(ctx, &ctx->num_signatures, "type count"); CALLBACK(on_signature_count, ctx->num_signatures); for (uint32_t i = 0; i < ctx->num_signatures; ++i) { Type form; in_type(ctx, &form, "type form"); RAISE_ERROR_UNLESS(form == Type::Func, "unexpected type form: %d", static_cast(form)); uint32_t num_params; in_u32_leb128(ctx, &num_params, "function param count"); ctx->param_types.resize(num_params); for (uint32_t j = 0; j < num_params; ++j) { Type param_type; in_type(ctx, ¶m_type, "function param type"); RAISE_ERROR_UNLESS(is_concrete_type(param_type), "expected valid param type (got %d)", static_cast(param_type)); ctx->param_types[j] = param_type; } uint32_t num_results; in_u32_leb128(ctx, &num_results, "function result count"); RAISE_ERROR_UNLESS(num_results <= 1, "result count must be 0 or 1"); Type result_type = Type::Void; if (num_results) { in_type(ctx, &result_type, "function result type"); RAISE_ERROR_UNLESS(is_concrete_type(result_type), "expected valid result type: %d", static_cast(result_type)); } Type* param_types = num_params ? ctx->param_types.data() : nullptr; CALLBACK(on_signature, i, num_params, param_types, num_results, &result_type); } CALLBACK_CTX0(end_signature_section); } static void read_import_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_import_section, section_size); in_u32_leb128(ctx, &ctx->num_imports, "import count"); CALLBACK(on_import_count, ctx->num_imports); for (uint32_t i = 0; i < ctx->num_imports; ++i) { StringSlice module_name; in_str(ctx, &module_name, "import module name"); StringSlice field_name; in_str(ctx, &field_name, "import field name"); uint32_t kind; in_u32_leb128(ctx, &kind, "import kind"); switch (static_cast(kind)) { case ExternalKind::Func: { uint32_t sig_index; in_u32_leb128(ctx, &sig_index, "import signature index"); RAISE_ERROR_UNLESS(sig_index < ctx->num_signatures, "invalid import signature index"); CALLBACK(on_import, i, module_name, field_name); CALLBACK(on_import_func, i, module_name, field_name, ctx->num_func_imports, sig_index); ctx->num_func_imports++; break; } case ExternalKind::Table: { Type elem_type; Limits elem_limits; read_table(ctx, &elem_type, &elem_limits); CALLBACK(on_import, i, module_name, field_name); CALLBACK(on_import_table, i, module_name, field_name, ctx->num_table_imports, elem_type, &elem_limits); ctx->num_table_imports++; break; } case ExternalKind::Memory: { Limits page_limits; read_memory(ctx, &page_limits); CALLBACK(on_import, i, module_name, field_name); CALLBACK(on_import_memory, i, module_name, field_name, ctx->num_memory_imports, &page_limits); ctx->num_memory_imports++; break; } case ExternalKind::Global: { Type type; bool mutable_; read_global_header(ctx, &type, &mutable_); CALLBACK(on_import, i, module_name, field_name); CALLBACK(on_import_global, i, module_name, field_name, ctx->num_global_imports, type, mutable_); ctx->num_global_imports++; break; } default: RAISE_ERROR("invalid import kind: %d", kind); } } CALLBACK_CTX0(end_import_section); } static void read_function_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_function_signatures_section, section_size); in_u32_leb128(ctx, &ctx->num_function_signatures, "function signature count"); CALLBACK(on_function_signatures_count, ctx->num_function_signatures); for (uint32_t i = 0; i < ctx->num_function_signatures; ++i) { uint32_t func_index = ctx->num_func_imports + i; uint32_t sig_index; in_u32_leb128(ctx, &sig_index, "function signature index"); RAISE_ERROR_UNLESS(sig_index < ctx->num_signatures, "invalid function signature index: %d", sig_index); CALLBACK(on_function_signature, func_index, sig_index); } CALLBACK_CTX0(end_function_signatures_section); } static void read_table_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_table_section, section_size); in_u32_leb128(ctx, &ctx->num_tables, "table count"); RAISE_ERROR_UNLESS(ctx->num_tables <= 1, "table count (%d) must be 0 or 1", ctx->num_tables); CALLBACK(on_table_count, ctx->num_tables); for (uint32_t i = 0; i < ctx->num_tables; ++i) { uint32_t table_index = ctx->num_table_imports + i; Type elem_type; Limits elem_limits; read_table(ctx, &elem_type, &elem_limits); CALLBACK(on_table, table_index, elem_type, &elem_limits); } CALLBACK_CTX0(end_table_section); } static void read_memory_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_memory_section, section_size); in_u32_leb128(ctx, &ctx->num_memories, "memory count"); RAISE_ERROR_UNLESS(ctx->num_memories <= 1, "memory count must be 0 or 1"); CALLBACK(on_memory_count, ctx->num_memories); for (uint32_t i = 0; i < ctx->num_memories; ++i) { uint32_t memory_index = ctx->num_memory_imports + i; Limits page_limits; read_memory(ctx, &page_limits); CALLBACK(on_memory, memory_index, &page_limits); } CALLBACK_CTX0(end_memory_section); } static void read_global_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_global_section, section_size); in_u32_leb128(ctx, &ctx->num_globals, "global count"); CALLBACK(on_global_count, ctx->num_globals); for (uint32_t i = 0; i < ctx->num_globals; ++i) { uint32_t global_index = ctx->num_global_imports + i; Type global_type; bool mutable_; read_global_header(ctx, &global_type, &mutable_); CALLBACK(begin_global, global_index, global_type, mutable_); CALLBACK(begin_global_init_expr, global_index); read_init_expr(ctx, global_index); CALLBACK(end_global_init_expr, global_index); CALLBACK(end_global, global_index); } CALLBACK_CTX0(end_global_section); } static void read_export_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_export_section, section_size); in_u32_leb128(ctx, &ctx->num_exports, "export count"); CALLBACK(on_export_count, ctx->num_exports); for (uint32_t i = 0; i < ctx->num_exports; ++i) { StringSlice name; in_str(ctx, &name, "export item name"); uint8_t external_kind; in_u8(ctx, &external_kind, "export external kind"); RAISE_ERROR_UNLESS(is_valid_external_kind(external_kind), "invalid export external kind"); uint32_t item_index; in_u32_leb128(ctx, &item_index, "export item index"); switch (static_cast(external_kind)) { case ExternalKind::Func: RAISE_ERROR_UNLESS(item_index < num_total_funcs(ctx), "invalid export func index: %d", item_index); break; case ExternalKind::Table: RAISE_ERROR_UNLESS(item_index < num_total_tables(ctx), "invalid export table index"); break; case ExternalKind::Memory: RAISE_ERROR_UNLESS(item_index < num_total_memories(ctx), "invalid export memory index"); break; case ExternalKind::Global: RAISE_ERROR_UNLESS(item_index < num_total_globals(ctx), "invalid export global index"); break; } CALLBACK(on_export, i, static_cast(external_kind), item_index, name); } CALLBACK_CTX0(end_export_section); } static void read_start_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_start_section, section_size); uint32_t func_index; in_u32_leb128(ctx, &func_index, "start function index"); RAISE_ERROR_UNLESS(func_index < num_total_funcs(ctx), "invalid start function index"); CALLBACK(on_start_function, func_index); CALLBACK_CTX0(end_start_section); } static void read_elem_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_elem_section, section_size); uint32_t num_elem_segments; in_u32_leb128(ctx, &num_elem_segments, "elem segment count"); CALLBACK(on_elem_segment_count, num_elem_segments); RAISE_ERROR_UNLESS(num_elem_segments == 0 || num_total_tables(ctx) > 0, "elem section without table section"); for (uint32_t i = 0; i < num_elem_segments; ++i) { uint32_t table_index; in_u32_leb128(ctx, &table_index, "elem segment table index"); CALLBACK(begin_elem_segment, i, table_index); CALLBACK(begin_elem_segment_init_expr, i); read_init_expr(ctx, i); CALLBACK(end_elem_segment_init_expr, i); uint32_t num_function_indexes; in_u32_leb128(ctx, &num_function_indexes, "elem segment function index count"); CALLBACK_CTX(on_elem_segment_function_index_count, i, num_function_indexes); for (uint32_t j = 0; j < num_function_indexes; ++j) { uint32_t func_index; in_u32_leb128(ctx, &func_index, "elem segment function index"); CALLBACK(on_elem_segment_function_index, i, func_index); } CALLBACK(end_elem_segment, i); } CALLBACK_CTX0(end_elem_section); } static void read_code_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_function_bodies_section, section_size); in_u32_leb128(ctx, &ctx->num_function_bodies, "function body count"); RAISE_ERROR_UNLESS(ctx->num_function_signatures == ctx->num_function_bodies, "function signature count != function body count"); CALLBACK(on_function_bodies_count, ctx->num_function_bodies); for (uint32_t i = 0; i < ctx->num_function_bodies; ++i) { uint32_t func_index = ctx->num_func_imports + i; uint32_t func_offset = ctx->offset; ctx->offset = func_offset; CALLBACK_CTX(begin_function_body, func_index); uint32_t body_size; in_u32_leb128(ctx, &body_size, "function body size"); uint32_t body_start_offset = ctx->offset; uint32_t end_offset = body_start_offset + body_size; uint32_t num_local_decls; in_u32_leb128(ctx, &num_local_decls, "local declaration count"); CALLBACK(on_local_decl_count, num_local_decls); for (uint32_t k = 0; k < num_local_decls; ++k) { uint32_t num_local_types; in_u32_leb128(ctx, &num_local_types, "local type count"); Type local_type; in_type(ctx, &local_type, "local type"); RAISE_ERROR_UNLESS(is_concrete_type(local_type), "expected valid local type"); CALLBACK(on_local_decl, k, num_local_types, local_type); } read_function_body(ctx, end_offset); CALLBACK(end_function_body, func_index); } CALLBACK_CTX0(end_function_bodies_section); } static void read_data_section(Context* ctx, uint32_t section_size) { CALLBACK_SECTION(begin_data_section, section_size); uint32_t num_data_segments; in_u32_leb128(ctx, &num_data_segments, "data segment count"); CALLBACK(on_data_segment_count, num_data_segments); RAISE_ERROR_UNLESS(num_data_segments == 0 || num_total_memories(ctx) > 0, "data section without memory section"); for (uint32_t i = 0; i < num_data_segments; ++i) { uint32_t memory_index; in_u32_leb128(ctx, &memory_index, "data segment memory index"); CALLBACK(begin_data_segment, i, memory_index); CALLBACK(begin_data_segment_init_expr, i); read_init_expr(ctx, i); CALLBACK(end_data_segment_init_expr, i); uint32_t data_size; const void* data; in_bytes(ctx, &data, &data_size, "data segment data"); CALLBACK(on_data_segment_data, i, data, data_size); CALLBACK(end_data_segment, i); } CALLBACK_CTX0(end_data_section); } static void read_sections(Context* ctx) { while (ctx->offset < ctx->data_size) { uint32_t section_code; uint32_t section_size; /* Temporarily reset read_end to the full data size so the next section * can be read. */ ctx->read_end = ctx->data_size; in_u32_leb128(ctx, §ion_code, "section code"); in_u32_leb128(ctx, §ion_size, "section size"); ctx->read_end = ctx->offset + section_size; if (section_code >= kBinarySectionCount) { RAISE_ERROR("invalid section code: %u; max is %u", section_code, kBinarySectionCount - 1); } BinarySection section = static_cast(section_code); if (ctx->read_end > ctx->data_size) RAISE_ERROR("invalid section size: extends past end"); if (ctx->last_known_section != BinarySection::Invalid && section != BinarySection::Custom && section <= ctx->last_known_section) { RAISE_ERROR("section %s out of order", get_section_name(section)); } CALLBACK_CTX(begin_section, section, section_size); #define V(Name, name, code) \ case BinarySection::Name: \ read_##name##_section(ctx, section_size); \ break; switch (section) { WABT_FOREACH_BINARY_SECTION(V) default: assert(0); break; } #undef V if (ctx->offset != ctx->read_end) { RAISE_ERROR("unfinished section (expected end: 0x%" PRIzx ")", ctx->read_end); } if (section != BinarySection::Custom) ctx->last_known_section = section; } } Result read_binary(const void* data, size_t size, BinaryReader* reader, uint32_t num_function_passes, const ReadBinaryOptions* options) { LoggingContext logging_context; WABT_ZERO_MEMORY(logging_context); logging_context.reader = reader; logging_context.stream = options->log_stream; BinaryReader logging_reader; WABT_ZERO_MEMORY(logging_reader); logging_reader.user_data = &logging_context; logging_reader.on_error = logging_on_error; logging_reader.begin_section = logging_begin_section; logging_reader.begin_module = logging_begin_module; logging_reader.end_module = logging_end_module; logging_reader.begin_custom_section = logging_begin_custom_section; logging_reader.end_custom_section = logging_end_custom_section; logging_reader.begin_signature_section = logging_begin_signature_section; logging_reader.on_signature_count = logging_on_signature_count; logging_reader.on_signature = logging_on_signature; logging_reader.end_signature_section = logging_end_signature_section; logging_reader.begin_import_section = logging_begin_import_section; logging_reader.on_import_count = logging_on_import_count; logging_reader.on_import = logging_on_import; logging_reader.on_import_func = logging_on_import_func; logging_reader.on_import_table = logging_on_import_table; logging_reader.on_import_memory = logging_on_import_memory; logging_reader.on_import_global = logging_on_import_global; logging_reader.end_import_section = logging_end_import_section; logging_reader.begin_function_signatures_section = logging_begin_function_signatures_section; logging_reader.on_function_signatures_count = logging_on_function_signatures_count; logging_reader.on_function_signature = logging_on_function_signature; logging_reader.end_function_signatures_section = logging_end_function_signatures_section; logging_reader.begin_table_section = logging_begin_table_section; logging_reader.on_table_count = logging_on_table_count; logging_reader.on_table = logging_on_table; logging_reader.end_table_section = logging_end_table_section; logging_reader.begin_memory_section = logging_begin_memory_section; logging_reader.on_memory_count = logging_on_memory_count; logging_reader.on_memory = logging_on_memory; logging_reader.end_memory_section = logging_end_memory_section; logging_reader.begin_global_section = logging_begin_global_section; logging_reader.on_global_count = logging_on_global_count; logging_reader.begin_global = logging_begin_global; logging_reader.begin_global_init_expr = logging_begin_global_init_expr; logging_reader.end_global_init_expr = logging_end_global_init_expr; logging_reader.end_global = logging_end_global; logging_reader.end_global_section = logging_end_global_section; logging_reader.begin_export_section = logging_begin_export_section; logging_reader.on_export_count = logging_on_export_count; logging_reader.on_export = logging_on_export; logging_reader.end_export_section = logging_end_export_section; logging_reader.begin_start_section = logging_begin_start_section; logging_reader.on_start_function = logging_on_start_function; logging_reader.end_start_section = logging_end_start_section; logging_reader.begin_function_bodies_section = logging_begin_function_bodies_section; logging_reader.on_function_bodies_count = logging_on_function_bodies_count; logging_reader.begin_function_body_pass = logging_begin_function_body_pass; logging_reader.begin_function_body = logging_begin_function_body; logging_reader.on_local_decl_count = logging_on_local_decl_count; logging_reader.on_local_decl = logging_on_local_decl; logging_reader.on_binary_expr = logging_on_binary_expr; logging_reader.on_block_expr = logging_on_block_expr; logging_reader.on_br_expr = logging_on_br_expr; logging_reader.on_br_if_expr = logging_on_br_if_expr; logging_reader.on_br_table_expr = logging_on_br_table_expr; logging_reader.on_call_expr = logging_on_call_expr; logging_reader.on_call_import_expr = logging_on_call_import_expr; logging_reader.on_call_indirect_expr = logging_on_call_indirect_expr; logging_reader.on_compare_expr = logging_on_compare_expr; logging_reader.on_convert_expr = logging_on_convert_expr; logging_reader.on_drop_expr = logging_on_drop_expr; logging_reader.on_else_expr = logging_on_else_expr; logging_reader.on_end_expr = logging_on_end_expr; logging_reader.on_f32_const_expr = logging_on_f32_const_expr; logging_reader.on_f64_const_expr = logging_on_f64_const_expr; logging_reader.on_get_global_expr = logging_on_get_global_expr; logging_reader.on_get_local_expr = logging_on_get_local_expr; logging_reader.on_grow_memory_expr = logging_on_grow_memory_expr; logging_reader.on_i32_const_expr = logging_on_i32_const_expr; logging_reader.on_i64_const_expr = logging_on_i64_const_expr; logging_reader.on_if_expr = logging_on_if_expr; logging_reader.on_load_expr = logging_on_load_expr; logging_reader.on_loop_expr = logging_on_loop_expr; logging_reader.on_current_memory_expr = logging_on_current_memory_expr; logging_reader.on_nop_expr = logging_on_nop_expr; logging_reader.on_return_expr = logging_on_return_expr; logging_reader.on_select_expr = logging_on_select_expr; logging_reader.on_set_global_expr = logging_on_set_global_expr; logging_reader.on_set_local_expr = logging_on_set_local_expr; logging_reader.on_store_expr = logging_on_store_expr; logging_reader.on_tee_local_expr = logging_on_tee_local_expr; logging_reader.on_unary_expr = logging_on_unary_expr; logging_reader.on_unreachable_expr = logging_on_unreachable_expr; logging_reader.end_function_body = logging_end_function_body; logging_reader.end_function_body_pass = logging_end_function_body_pass; logging_reader.end_function_bodies_section = logging_end_function_bodies_section; logging_reader.begin_elem_section = logging_begin_elem_section; logging_reader.on_elem_segment_count = logging_on_elem_segment_count; logging_reader.begin_elem_segment = logging_begin_elem_segment; logging_reader.begin_elem_segment_init_expr = logging_begin_elem_segment_init_expr; logging_reader.end_elem_segment_init_expr = logging_end_elem_segment_init_expr; logging_reader.on_elem_segment_function_index_count = logging_on_elem_segment_function_index_count; logging_reader.on_elem_segment_function_index = logging_on_elem_segment_function_index; logging_reader.end_elem_segment = logging_end_elem_segment; logging_reader.end_elem_section = logging_end_elem_section; logging_reader.begin_data_section = logging_begin_data_section; logging_reader.on_data_segment_count = logging_on_data_segment_count; logging_reader.begin_data_segment = logging_begin_data_segment; logging_reader.begin_data_segment_init_expr = logging_begin_data_segment_init_expr; logging_reader.end_data_segment_init_expr = logging_end_data_segment_init_expr; logging_reader.on_data_segment_data = logging_on_data_segment_data; logging_reader.end_data_segment = logging_end_data_segment; logging_reader.end_data_section = logging_end_data_section; logging_reader.begin_names_section = logging_begin_names_section; logging_reader.on_function_name_subsection = logging_on_function_name_subsection; logging_reader.on_function_names_count = logging_on_function_names_count; logging_reader.on_function_name = logging_on_function_name; logging_reader.on_local_name_subsection = logging_on_local_name_subsection; logging_reader.on_local_name_function_count = logging_on_local_name_function_count; logging_reader.on_local_name_local_count = logging_on_local_name_local_count; logging_reader.on_local_name = logging_on_local_name; logging_reader.end_names_section = logging_end_names_section; logging_reader.begin_reloc_section = logging_begin_reloc_section; logging_reader.on_reloc_count = logging_on_reloc_count; logging_reader.on_reloc = logging_on_reloc; logging_reader.end_reloc_section = logging_end_reloc_section; logging_reader.on_init_expr_f32_const_expr = logging_on_init_expr_f32_const_expr; logging_reader.on_init_expr_f64_const_expr = logging_on_init_expr_f64_const_expr; logging_reader.on_init_expr_get_global_expr = logging_on_init_expr_get_global_expr; logging_reader.on_init_expr_i32_const_expr = logging_on_init_expr_i32_const_expr; logging_reader.on_init_expr_i64_const_expr = logging_on_init_expr_i64_const_expr; Context context; /* all the macros assume a Context* named ctx */ Context* ctx = &context; ctx->data = static_cast(data); ctx->data_size = ctx->read_end = size; ctx->reader = options->log_stream ? &logging_reader : reader; ctx->options = options; ctx->last_known_section = BinarySection::Invalid; if (setjmp(ctx->error_jmp_buf) == 1) { return Result::Error; } uint32_t magic; in_u32(ctx, &magic, "magic"); RAISE_ERROR_UNLESS(magic == WABT_BINARY_MAGIC, "bad magic value"); uint32_t version; in_u32(ctx, &version, "version"); RAISE_ERROR_UNLESS(version == WABT_BINARY_VERSION, "bad wasm file version: %#x (expected %#x)", version, WABT_BINARY_VERSION); CALLBACK(begin_module, version); read_sections(ctx); CALLBACK0(end_module); return Result::Ok; } } // namespace wabt