summaryrefslogtreecommitdiff
path: root/libs/raylib/src/models.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/raylib/src/models.c')
-rw-r--r--libs/raylib/src/models.c4829
1 files changed, 0 insertions, 4829 deletions
diff --git a/libs/raylib/src/models.c b/libs/raylib/src/models.c
deleted file mode 100644
index feaadf8..0000000
--- a/libs/raylib/src/models.c
+++ /dev/null
@@ -1,4829 +0,0 @@
-/**********************************************************************************************
-*
-* raylib.models - Basic functions to deal with 3d shapes and 3d models
-*
-* CONFIGURATION:
-*
-* #define SUPPORT_FILEFORMAT_OBJ
-* #define SUPPORT_FILEFORMAT_MTL
-* #define SUPPORT_FILEFORMAT_IQM
-* #define SUPPORT_FILEFORMAT_GLTF
-* Selected desired fileformats to be supported for model data loading.
-*
-* #define SUPPORT_MESH_GENERATION
-* Support procedural mesh generation functions, uses external par_shapes.h library
-* NOTE: Some generated meshes DO NOT include generated texture coordinates
-*
-*
-* LICENSE: zlib/libpng
-*
-* Copyright (c) 2013-2021 Ramon Santamaria (@raysan5)
-*
-* This software is provided "as-is", without any express or implied warranty. In no event
-* will the authors be held liable for any damages arising from the use of this software.
-*
-* Permission is granted to anyone to use this software for any purpose, including commercial
-* applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-* 1. The origin of this software must not be misrepresented; you must not claim that you
-* wrote the original software. If you use this software in a product, an acknowledgment
-* in the product documentation would be appreciated but is not required.
-*
-* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
-* as being the original software.
-*
-* 3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#include "raylib.h" // Declares module functions
-
-// Check if config flags have been externally provided on compilation line
-#if !defined(EXTERNAL_CONFIG_FLAGS)
- #include "config.h" // Defines module configuration flags
-#endif
-
-#include "utils.h" // Required for: LoadFileData(), LoadFileText(), SaveFileText()
-
-#include <stdio.h> // Required for: sprintf()
-#include <stdlib.h> // Required for: malloc(), free()
-#include <string.h> // Required for: memcmp(), strlen()
-#include <math.h> // Required for: sinf(), cosf(), sqrtf(), fabsf()
-
-#if defined(_WIN32)
- #include <direct.h> // Required for: _chdir() [Used in LoadOBJ()]
- #define CHDIR _chdir
-#else
- #include <unistd.h> // Required for: chdir() (POSIX) [Used in LoadOBJ()]
- #define CHDIR chdir
-#endif
-
-#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
-
-#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
- #define TINYOBJ_MALLOC RL_MALLOC
- #define TINYOBJ_CALLOC RL_CALLOC
- #define TINYOBJ_REALLOC RL_REALLOC
- #define TINYOBJ_FREE RL_FREE
-
- #define TINYOBJ_LOADER_C_IMPLEMENTATION
- #include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_GLTF)
- #define CGLTF_MALLOC RL_MALLOC
- #define CGLTF_FREE RL_FREE
-
- #define CGLTF_IMPLEMENTATION
- #include "external/cgltf.h" // glTF file format loading
- #include "external/stb_image.h" // glTF texture images loading
-#endif
-
-#if defined(SUPPORT_MESH_GENERATION)
- #define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T)))
- #define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1))
- #define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N)))
- #define PAR_FREE RL_FREE
-
- #define PAR_SHAPES_IMPLEMENTATION
- #include "external/par_shapes.h" // Shapes 3d parametric generation
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-// ...
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-//----------------------------------------------------------------------------------
-// ...
-
-//----------------------------------------------------------------------------------
-// Global Variables Definition
-//----------------------------------------------------------------------------------
-// ...
-
-//----------------------------------------------------------------------------------
-// Module specific Functions Declaration
-//----------------------------------------------------------------------------------
-#if defined(SUPPORT_FILEFORMAT_OBJ)
-static Model LoadOBJ(const char *fileName); // Load OBJ mesh data
-#endif
-#if defined(SUPPORT_FILEFORMAT_IQM)
-static Model LoadIQM(const char *fileName); // Load IQM mesh data
-static ModelAnimation *LoadIQMModelAnimations(const char *fileName, int *animCount); // Load IQM animation data
-#endif
-#if defined(SUPPORT_FILEFORMAT_GLTF)
-static Model LoadGLTF(const char *fileName); // Load GLTF mesh data
-static ModelAnimation *LoadGLTFModelAnimations(const char *fileName, int *animCount); // Load GLTF animation data
-static void LoadGLTFModelIndices(Model* model, cgltf_accessor* indexAccessor, int primitiveIndex);
-static void BindGLTFPrimitiveToBones(Model* model, const cgltf_data* data, int primitiveIndex);
-static void LoadGLTFBoneAttribute(Model* model, cgltf_accessor* jointsAccessor, const cgltf_data* data, int primitiveIndex);
-static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_data* data);
-static void InitGLTFBones(Model* model, const cgltf_data* data);
-#endif
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition
-//----------------------------------------------------------------------------------
-
-// Draw a line in 3D world space
-void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
-{
- // WARNING: Be careful with internal buffer vertex alignment
- // when using RL_LINES or RL_TRIANGLES, data is aligned to fit
- // lines-triangles-quads in the same indexed buffers!!!
- rlCheckRenderBatchLimit(8);
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlVertex3f(startPos.x, startPos.y, startPos.z);
- rlVertex3f(endPos.x, endPos.y, endPos.z);
- rlEnd();
-}
-
-// Draw a point in 3D space, actually a small line
-void DrawPoint3D(Vector3 position, Color color)
-{
- rlCheckRenderBatchLimit(8);
-
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlVertex3f(0.0f, 0.0f, 0.0f);
- rlVertex3f(0.0f, 0.0f, 0.1f);
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a circle in 3D world space
-void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
-{
- rlCheckRenderBatchLimit(2*36);
-
- rlPushMatrix();
- rlTranslatef(center.x, center.y, center.z);
- rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
-
- rlBegin(RL_LINES);
- for (int i = 0; i < 360; i += 10)
- {
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
- rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a color-filled triangle (vertex in counter-clockwise order!)
-void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color)
-{
- rlCheckRenderBatchLimit(3);
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlVertex3f(v1.x, v1.y, v1.z);
- rlVertex3f(v2.x, v2.y, v2.z);
- rlVertex3f(v3.x, v3.y, v3.z);
- rlEnd();
-}
-
-// Draw a triangle strip defined by points
-void DrawTriangleStrip3D(Vector3 *points, int pointsCount, Color color)
-{
- if (pointsCount >= 3)
- {
- rlCheckRenderBatchLimit(3*(pointsCount - 2));
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 2; i < pointsCount; i++)
- {
- if ((i%2) == 0)
- {
- rlVertex3f(points[i].x, points[i].y, points[i].z);
- rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
- rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
- }
- else
- {
- rlVertex3f(points[i].x, points[i].y, points[i].z);
- rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
- rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
- }
- }
- rlEnd();
- }
-}
-
-// Draw cube
-// NOTE: Cube position is the center position
-void DrawCube(Vector3 position, float width, float height, float length, Color color)
-{
- float x = 0.0f;
- float y = 0.0f;
- float z = 0.0f;
-
- rlCheckRenderBatchLimit(36);
-
- rlPushMatrix();
- // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
- rlTranslatef(position.x, position.y, position.z);
- //rlRotatef(45, 0, 1, 0);
- //rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- // Front face
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
-
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
-
- // Back face
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
-
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
-
- // Top face
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
-
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
-
- // Bottom face
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
-
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
-
- // Right face
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
-
- rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left
- rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
-
- // Left face
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
- rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right
-
- rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
- rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
- rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw cube (Vector version)
-void DrawCubeV(Vector3 position, Vector3 size, Color color)
-{
- DrawCube(position, size.x, size.y, size.z, color);
-}
-
-// Draw cube wires
-void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
-{
- float x = 0.0f;
- float y = 0.0f;
- float z = 0.0f;
-
- rlCheckRenderBatchLimit(36);
-
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- // Front Face -----------------------------------------------------
- // Bottom Line
- rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
- rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
-
- // Left Line
- rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
- rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
-
- // Top Line
- rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
- rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
-
- // Right Line
- rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
- rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
-
- // Back Face ------------------------------------------------------
- // Bottom Line
- rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
- rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
-
- // Left Line
- rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
- rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
-
- // Top Line
- rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
- rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
-
- // Right Line
- rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
- rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
-
- // Top Face -------------------------------------------------------
- // Left Line
- rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
- rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
-
- // Right Line
- rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
- rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
-
- // Bottom Face ---------------------------------------------------
- // Left Line
- rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
- rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
-
- // Right Line
- rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
- rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw cube wires (vector version)
-void DrawCubeWiresV(Vector3 position, Vector3 size, Color color)
-{
- DrawCubeWires(position, size.x, size.y, size.z, color);
-}
-
-// Draw cube
-// NOTE: Cube position is the center position
-void DrawCubeTexture(Texture2D texture, Vector3 position, float width, float height, float length, Color color)
-{
- float x = position.x;
- float y = position.y;
- float z = position.z;
-
- rlCheckRenderBatchLimit(36);
-
- rlSetTexture(texture.id);
-
- //rlPushMatrix();
- // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
- //rlTranslatef(2.0f, 0.0f, 0.0f);
- //rlRotatef(45, 0, 1, 0);
- //rlScalef(2.0f, 2.0f, 2.0f);
-
- rlBegin(RL_QUADS);
- rlColor4ub(color.r, color.g, color.b, color.a);
- // Front Face
- rlNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Towards Viewer
- rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
- rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
- rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad
- rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad
- // Back Face
- rlNormal3f(0.0f, 0.0f, - 1.0f); // Normal Pointing Away From Viewer
- rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad
- rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
- rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
- rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad
- // Top Face
- rlNormal3f(0.0f, 1.0f, 0.0f); // Normal Pointing Up
- rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
- rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left Of The Texture and Quad
- rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right Of The Texture and Quad
- rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
- // Bottom Face
- rlNormal3f(0.0f, - 1.0f, 0.0f); // Normal Pointing Down
- rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Right Of The Texture and Quad
- rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Left Of The Texture and Quad
- rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
- rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
- // Right face
- rlNormal3f(1.0f, 0.0f, 0.0f); // Normal Pointing Right
- rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad
- rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
- rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad
- rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
- // Left Face
- rlNormal3f( - 1.0f, 0.0f, 0.0f); // Normal Pointing Left
- rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad
- rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
- rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad
- rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
- rlEnd();
- //rlPopMatrix();
-
- rlSetTexture(0);
-}
-
-// Draw sphere
-void DrawSphere(Vector3 centerPos, float radius, Color color)
-{
- DrawSphereEx(centerPos, radius, 16, 16, color);
-}
-
-// Draw sphere with extended parameters
-void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
-{
- int numVertex = (rings + 2)*slices*6;
- rlCheckRenderBatchLimit(numVertex);
-
- rlPushMatrix();
- // NOTE: Transformation is applied in inverse order (scale -> translate)
- rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
- rlScalef(radius, radius, radius);
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < (rings + 2); i++)
- {
- for (int j = 0; j < slices; j++)
- {
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
- cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
-
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
- cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*sinf(DEG2RAD*((j+1)*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*cosf(DEG2RAD*((j+1)*360/slices)));
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
- }
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw sphere wires
-void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
-{
- int numVertex = (rings + 2)*slices*6;
- rlCheckRenderBatchLimit(numVertex);
-
- rlPushMatrix();
- // NOTE: Transformation is applied in inverse order (scale -> translate)
- rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
- rlScalef(radius, radius, radius);
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < (rings + 2); i++)
- {
- for (int j = 0; j < slices; j++)
- {
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
- cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
-
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
-
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
- cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
- rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
- sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
- cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
- }
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a cylinder
-// NOTE: It could be also used for pyramid and cone
-void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
-{
- if (sides < 3) sides = 3;
-
- int numVertex = sides*6;
- rlCheckRenderBatchLimit(numVertex);
-
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
-
- rlBegin(RL_TRIANGLES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- if (radiusTop > 0)
- {
- // Draw Body -------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); //Bottom Right
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
-
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
- }
-
- // Draw Cap --------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(0, height, 0);
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
- }
- }
- else
- {
- // Draw Cone -------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(0, height, 0);
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
- }
- }
-
- // Draw Base -----------------------------------------------------------------------------------------
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(0, 0, 0);
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a wired cylinder
-// NOTE: It could be also used for pyramid and cone
-void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
-{
- if (sides < 3) sides = 3;
-
- int numVertex = sides*8;
- rlCheckRenderBatchLimit(numVertex);
-
- rlPushMatrix();
- rlTranslatef(position.x, position.y, position.z);
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- for (int i = 0; i < 360; i += 360/sides)
- {
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
-
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
-
- rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
-
- rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
- rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
- }
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a plane
-void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
-{
- rlCheckRenderBatchLimit(4);
-
- // NOTE: Plane is always created on XZ ground
- rlPushMatrix();
- rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
- rlScalef(size.x, 1.0f, size.y);
-
- rlBegin(RL_QUADS);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlNormal3f(0.0f, 1.0f, 0.0f);
-
- rlVertex3f(-0.5f, 0.0f, -0.5f);
- rlVertex3f(-0.5f, 0.0f, 0.5f);
- rlVertex3f(0.5f, 0.0f, 0.5f);
- rlVertex3f(0.5f, 0.0f, -0.5f);
- rlEnd();
- rlPopMatrix();
-}
-
-// Draw a ray line
-void DrawRay(Ray ray, Color color)
-{
- float scale = 10000;
-
- rlBegin(RL_LINES);
- rlColor4ub(color.r, color.g, color.b, color.a);
- rlColor4ub(color.r, color.g, color.b, color.a);
-
- rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
- rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
- rlEnd();
-}
-
-// Draw a grid centered at (0, 0, 0)
-void DrawGrid(int slices, float spacing)
-{
- int halfSlices = slices/2;
-
- rlCheckRenderBatchLimit((slices + 2)*4);
-
- rlBegin(RL_LINES);
- for (int i = -halfSlices; i <= halfSlices; i++)
- {
- if (i == 0)
- {
- rlColor3f(0.5f, 0.5f, 0.5f);
- rlColor3f(0.5f, 0.5f, 0.5f);
- rlColor3f(0.5f, 0.5f, 0.5f);
- rlColor3f(0.5f, 0.5f, 0.5f);
- }
- else
- {
- rlColor3f(0.75f, 0.75f, 0.75f);
- rlColor3f(0.75f, 0.75f, 0.75f);
- rlColor3f(0.75f, 0.75f, 0.75f);
- rlColor3f(0.75f, 0.75f, 0.75f);
- }
-
- rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
- rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
-
- rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
- rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
- }
- rlEnd();
-}
-
-// Load model from files (mesh and material)
-Model LoadModel(const char *fileName)
-{
- Model model = { 0 };
-
-#if defined(SUPPORT_FILEFORMAT_OBJ)
- if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName);
-#endif
-#if defined(SUPPORT_FILEFORMAT_IQM)
- if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName);
-#endif
-#if defined(SUPPORT_FILEFORMAT_GLTF)
- if (IsFileExtension(fileName, ".gltf;.glb")) model = LoadGLTF(fileName);
-#endif
-
- // Make sure model transform is set to identity matrix!
- model.transform = MatrixIdentity();
-
- if (model.meshCount == 0)
- {
- model.meshCount = 1;
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
-#if defined(SUPPORT_MESH_GENERATION)
- TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data, default to cube mesh", fileName);
- model.meshes[0] = GenMeshCube(1.0f, 1.0f, 1.0f);
-#else
- TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data", fileName);
-#endif
- }
- else
- {
- // Upload vertex data to GPU (static mesh)
- for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false);
- }
-
- if (model.materialCount == 0)
- {
- TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load material data, default to white material", fileName);
-
- model.materialCount = 1;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- model.materials[0] = LoadMaterialDefault();
-
- if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
- }
-
- return model;
-}
-
-// Load model from generated mesh
-// WARNING: A shallow copy of mesh is generated, passed by value,
-// as long as struct contains pointers to data and some values, we get a copy
-// of mesh pointing to same data as original version... be careful!
-Model LoadModelFromMesh(Mesh mesh)
-{
- Model model = { 0 };
-
- model.transform = MatrixIdentity();
-
- model.meshCount = 1;
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
- model.meshes[0] = mesh;
-
- model.materialCount = 1;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- model.materials[0] = LoadMaterialDefault();
-
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
- model.meshMaterial[0] = 0; // First material index
-
- return model;
-}
-
-// Unload model (meshes/materials) from memory (RAM and/or VRAM)
-// NOTE: This function takes care of all model elements, for a detailed control
-// over them, use UnloadMesh() and UnloadMaterial()
-void UnloadModel(Model model)
-{
- // Unload meshes
- for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
-
- // Unload materials maps
- // NOTE: As the user could be sharing shaders and textures between models,
- // we don't unload the material but just free it's maps,
- // the user is responsible for freeing models shaders and textures
- for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
-
- // Unload arrays
- RL_FREE(model.meshes);
- RL_FREE(model.materials);
- RL_FREE(model.meshMaterial);
-
- // Unload animation data
- RL_FREE(model.bones);
- RL_FREE(model.bindPose);
-
- TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM");
-}
-
-// Unload model (but not meshes) from memory (RAM and/or VRAM)
-void UnloadModelKeepMeshes(Model model)
-{
- // Unload materials maps
- // NOTE: As the user could be sharing shaders and textures between models,
- // we don't unload the material but just free it's maps,
- // the user is responsible for freeing models shaders and textures
- for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
-
- // Unload arrays
- RL_FREE(model.meshes);
- RL_FREE(model.materials);
- RL_FREE(model.meshMaterial);
-
- // Unload animation data
- RL_FREE(model.bones);
- RL_FREE(model.bindPose);
-
- TRACELOG(LOG_INFO, "MODEL: Unloaded model (but not meshes) from RAM and VRAM");
-}
-
-// Upload vertex data into a VAO (if supported) and VBO
-void UploadMesh(Mesh *mesh, bool dynamic)
-{
- if (mesh->vaoId > 0)
- {
- // Check if mesh has already been loaded in GPU
- TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId);
- return;
- }
-
- mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int));
-
- mesh->vaoId = 0; // Vertex Array Object
- mesh->vboId[0] = 0; // Vertex buffer: positions
- mesh->vboId[1] = 0; // Vertex buffer: texcoords
- mesh->vboId[2] = 0; // Vertex buffer: normals
- mesh->vboId[3] = 0; // Vertex buffer: colors
- mesh->vboId[4] = 0; // Vertex buffer: tangents
- mesh->vboId[5] = 0; // Vertex buffer: texcoords2
- mesh->vboId[6] = 0; // Vertex buffer: indices
-
-#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
- mesh->vaoId = rlLoadVertexArray();
- rlEnableVertexArray(mesh->vaoId);
-
- // NOTE: Attributes must be uploaded considering default locations points
-
- // Enable vertex attributes: position (shader-location = 0)
- mesh->vboId[0] = rlLoadVertexBuffer(mesh->vertices, mesh->vertexCount*3*sizeof(float), dynamic);
- rlSetVertexAttribute(0, 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(0);
-
- // Enable vertex attributes: texcoords (shader-location = 1)
- mesh->vboId[1] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic);
- rlSetVertexAttribute(1, 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(1);
-
- if (mesh->normals != NULL)
- {
- // Enable vertex attributes: normals (shader-location = 2)
- mesh->vboId[2] = rlLoadVertexBuffer(mesh->normals, mesh->vertexCount*3*sizeof(float), dynamic);
- rlSetVertexAttribute(2, 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(2);
- }
- else
- {
- // Default color vertex attribute set to WHITE
- float value[3] = { 1.0f, 1.0f, 1.0f };
- rlSetVertexAttributeDefault(2, value, SHADER_ATTRIB_VEC3, 3);
- rlDisableVertexAttribute(2);
- }
-
- if (mesh->colors != NULL)
- {
- // Enable vertex attribute: color (shader-location = 3)
- mesh->vboId[3] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic);
- rlSetVertexAttribute(3, 4, RL_UNSIGNED_BYTE, 1, 0, 0);
- rlEnableVertexAttribute(3);
- }
- else
- {
- // Default color vertex attribute set to WHITE
- float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
- rlSetVertexAttributeDefault(3, value, SHADER_ATTRIB_VEC4, 4);
- rlDisableVertexAttribute(3);
- }
-
- if (mesh->tangents != NULL)
- {
- // Enable vertex attribute: tangent (shader-location = 4)
- mesh->vboId[4] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic);
- rlSetVertexAttribute(4, 4, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(4);
- }
- else
- {
- // Default tangents vertex attribute
- float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
- rlSetVertexAttributeDefault(4, value, SHADER_ATTRIB_VEC4, 4);
- rlDisableVertexAttribute(4);
- }
-
- if (mesh->texcoords2 != NULL)
- {
- // Enable vertex attribute: texcoord2 (shader-location = 5)
- mesh->vboId[5] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic);
- rlSetVertexAttribute(5, 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(5);
- }
- else
- {
- // Default texcoord2 vertex attribute
- float value[2] = { 0.0f, 0.0f };
- rlSetVertexAttributeDefault(5, value, SHADER_ATTRIB_VEC2, 2);
- rlDisableVertexAttribute(5);
- }
-
- if (mesh->indices != NULL)
- {
- mesh->vboId[6] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic);
- }
-
- if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId);
- else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)");
-
- rlDisableVertexArray();
-#endif
-}
-
-// Update mesh vertex data in GPU for a specific buffer index
-void UpdateMeshBuffer(Mesh mesh, int index, void *data, int dataSize, int offset)
-{
- rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset);
-}
-
-// Draw a 3d mesh with material and transform
-void DrawMesh(Mesh mesh, Material material, Matrix transform)
-{
- DrawMeshInstanced(mesh, material, &transform, 1);
-}
-
-// Draw multiple mesh instances with material and different transforms
-void DrawMeshInstanced(Mesh mesh, Material material, Matrix *transforms, int instances)
-{
-#if defined(GRAPHICS_API_OPENGL_11)
- #define GL_VERTEX_ARRAY 0x8074
- #define GL_NORMAL_ARRAY 0x8075
- #define GL_COLOR_ARRAY 0x8076
- #define GL_TEXTURE_COORD_ARRAY 0x8078
-
- rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id);
-
- rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices);
- rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords);
- rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals);
- rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors);
-
- rlPushMatrix();
- rlMultMatrixf(MatrixToFloat(transforms[0]));
- rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r,
- material.maps[MATERIAL_MAP_DIFFUSE].color.g,
- material.maps[MATERIAL_MAP_DIFFUSE].color.b,
- material.maps[MATERIAL_MAP_DIFFUSE].color.a);
-
- if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices);
- else rlDrawVertexArray(0, mesh.vertexCount);
- rlPopMatrix();
-
- rlDisableStatePointer(GL_VERTEX_ARRAY);
- rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY);
- rlDisableStatePointer(GL_NORMAL_ARRAY);
- rlDisableStatePointer(GL_COLOR_ARRAY);
-
- rlDisableTexture();
-#endif
-
-#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
- // Check instancing
- bool instancing = false;
- if (instances < 1) return;
- else if (instances > 1) instancing = true;
- float16 *instanceTransforms = NULL;
- unsigned int instancesVboId = 0;
-
- // Bind shader program
- rlEnableShader(material.shader.id);
-
- // Send required data to shader (matrices, values)
- //-----------------------------------------------------
- // Upload to shader material.colDiffuse
- if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
- {
- float values[4] = {
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
- (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
- };
-
- rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
- }
-
- // Upload to shader material.colSpecular (if location available)
- if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
- {
- float values[4] = {
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f,
- (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f
- };
-
- rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
- }
-
- // Get a copy of current matrices to work with,
- // just in case stereo render is required and we need to modify them
- // NOTE: At this point the modelview matrix just contains the view matrix (camera)
- // That's because BeginMode3D() sets it and there is no model-drawing function
- // that modifies it, all use rlPushMatrix() and rlPopMatrix()
- Matrix matView = rlGetMatrixModelview();
- Matrix matModelView = matView;
- Matrix matProjection = rlGetMatrixProjection();
-
- // Upload view and projection matrices (if locations available)
- if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
- if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
-
- if (instancing)
- {
- // Create instances buffer
- instanceTransforms = RL_MALLOC(instances*sizeof(float16));
-
- // Fill buffer with instances transformations as float16 arrays
- for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]);
-
- // Enable mesh VAO to attach new buffer
- rlEnableVertexArray(mesh.vaoId);
-
- // This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData().
- // It isn't clear which would be reliably faster in all cases and on all platforms,
- // anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems
- // no faster, since we're transferring all the transform matrices anyway
- instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false);
-
- // Instances transformation matrices are send to shader attribute location: SHADER_LOC_MATRIX_MODEL
- for (unsigned int i = 0; i < 4; i++)
- {
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 4, RL_FLOAT, 0, sizeof(Matrix), (void *)(i*sizeof(Vector4)));
- rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 1);
- }
-
- rlDisableVertexBuffer();
- rlDisableVertexArray();
-
- // Accumulate internal matrix transform (push/pop) and view matrix
- // NOTE: In this case, model instance transformation must be computed in the shader
- matModelView = MatrixMultiply(rlGetMatrixTransform(), matView);
- }
- else
- {
- // Model transformation matrix is send to shader uniform location: SHADER_LOC_MATRIX_MODEL
- if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], transforms[0]);
-
- // Accumulate several transformations:
- // matView: rlgl internal modelview matrix (actually, just view matrix)
- // rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack
- // transform: function parameter transformation
- matModelView = MatrixMultiply(transforms[0], MatrixMultiply(rlGetMatrixTransform(), matView));
- }
-
- // Upload model normal matrix (if locations available)
- if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModelView)));
- //-----------------------------------------------------
-
- // Bind active texture maps (if available)
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- if (material.maps[i].texture.id > 0)
- {
- // Select current shader texture slot
- rlActiveTextureSlot(i);
-
- // Enable texture for active slot
- if ((i == MATERIAL_MAP_IRRADIANCE) ||
- (i == MATERIAL_MAP_PREFILTER) ||
- (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
- else rlEnableTexture(material.maps[i].texture.id);
-
- rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
- }
- }
-
- // Try binding vertex array objects (VAO)
- // or use VBOs if not possible
- if (!rlEnableVertexArray(mesh.vaoId))
- {
- // Bind mesh VBO data: vertex position (shader-location = 0)
- rlEnableVertexBuffer(mesh.vboId[0]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
-
- rlEnableVertexBuffer(mesh.vboId[0]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
-
- // Bind mesh VBO data: vertex texcoords (shader-location = 1)
- rlEnableVertexBuffer(mesh.vboId[1]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
-
- if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
- {
- // Bind mesh VBO data: vertex normals (shader-location = 2)
- rlEnableVertexBuffer(mesh.vboId[2]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
- }
-
- // Bind mesh VBO data: vertex colors (shader-location = 3, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
- {
- if (mesh.vboId[3] != 0)
- {
- rlEnableVertexBuffer(mesh.vboId[3]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
- }
- else
- {
- // Set default value for unused attribute
- // NOTE: Required when using default shader and no VAO support
- float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
- rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC2, 4);
- rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
- }
- }
-
- // Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
- {
- rlEnableVertexBuffer(mesh.vboId[4]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
- }
-
- // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
- if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
- {
- rlEnableVertexBuffer(mesh.vboId[5]);
- rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
- rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
- }
-
- if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]);
- }
-
- int eyesCount = 1;
- if (rlIsStereoRenderEnabled()) eyesCount = 2;
-
- for (int eye = 0; eye < eyesCount; eye++)
- {
- // Calculate model-view-projection matrix (MVP)
- Matrix matMVP = MatrixIdentity();
- if (eyesCount == 1) matMVP = MatrixMultiply(matModelView, matProjection);
- else
- {
- // Setup current eye viewport (half screen width)
- rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
- matMVP = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
- }
-
- // Send combined model-view-projection matrix to shader
- rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matMVP);
-
- if (instancing) // Draw mesh instanced
- {
- if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances);
- else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances);
- }
- else // Draw mesh
- {
- if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0);
- else rlDrawVertexArray(0, mesh.vertexCount);
- }
- }
-
- // Unbind all binded texture maps
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- // Select current shader texture slot
- rlActiveTextureSlot(i);
-
- // Disable texture for active slot
- if ((i == MATERIAL_MAP_IRRADIANCE) ||
- (i == MATERIAL_MAP_PREFILTER) ||
- (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
- else rlDisableTexture();
- }
-
- // Disable all possible vertex array objects (or VBOs)
- rlDisableVertexArray();
- rlDisableVertexBuffer();
- rlDisableVertexBufferElement();
-
- // Disable shader program
- rlDisableShader();
-
- if (instancing)
- {
- // Remove instance transforms buffer
- rlUnloadVertexBuffer(instancesVboId);
- RL_FREE(instanceTransforms);
- }
- else
- {
- // Restore rlgl internal modelview and projection matrices
- rlSetMatrixModelview(matView);
- rlSetMatrixProjection(matProjection);
- }
-#endif
-}
-
-// Unload mesh from memory (RAM and VRAM)
-void UnloadMesh(Mesh mesh)
-{
- // Unload rlgl mesh vboId data
- rlUnloadVertexArray(mesh.vaoId);
-
- for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]);
- RL_FREE(mesh.vboId);
-
- RL_FREE(mesh.vertices);
- RL_FREE(mesh.texcoords);
- RL_FREE(mesh.normals);
- RL_FREE(mesh.colors);
- RL_FREE(mesh.tangents);
- RL_FREE(mesh.texcoords2);
- RL_FREE(mesh.indices);
-
- RL_FREE(mesh.animVertices);
- RL_FREE(mesh.animNormals);
- RL_FREE(mesh.boneWeights);
- RL_FREE(mesh.boneIds);
-}
-
-// Export mesh data to file
-bool ExportMesh(Mesh mesh, const char *fileName)
-{
- bool success = false;
-
- if (IsFileExtension(fileName, ".obj"))
- {
- // Estimated data size, it should be enough...
- int dataSize = mesh.vertexCount/3* (int)strlen("v 0000.00f 0000.00f 0000.00f") +
- mesh.vertexCount/2* (int)strlen("vt 0.000f 0.00f") +
- mesh.vertexCount/3* (int)strlen("vn 0.000f 0.00f 0.00f") +
- mesh.triangleCount/3* (int)strlen("f 00000/00000/00000 00000/00000/00000 00000/00000/00000");
-
- // NOTE: Text data buffer size is estimated considering mesh data size
- char *txtData = (char *)RL_CALLOC(dataSize + 2000, sizeof(char));
-
- int bytesCount = 0;
- bytesCount += sprintf(txtData + bytesCount, "# //////////////////////////////////////////////////////////////////////////////////\n");
- bytesCount += sprintf(txtData + bytesCount, "# // //\n");
- bytesCount += sprintf(txtData + bytesCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n");
- bytesCount += sprintf(txtData + bytesCount, "# // //\n");
- bytesCount += sprintf(txtData + bytesCount, "# // more info and bugs-report: github.com/raysan5/raylib //\n");
- bytesCount += sprintf(txtData + bytesCount, "# // feedback and support: ray[at]raylib.com //\n");
- bytesCount += sprintf(txtData + bytesCount, "# // //\n");
- bytesCount += sprintf(txtData + bytesCount, "# // Copyright (c) 2018 Ramon Santamaria (@raysan5) //\n");
- bytesCount += sprintf(txtData + bytesCount, "# // //\n");
- bytesCount += sprintf(txtData + bytesCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n");
- bytesCount += sprintf(txtData + bytesCount, "# Vertex Count: %i\n", mesh.vertexCount);
- bytesCount += sprintf(txtData + bytesCount, "# Triangle Count: %i\n\n", mesh.triangleCount);
-
- bytesCount += sprintf(txtData + bytesCount, "g mesh\n");
-
- for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
- {
- bytesCount += sprintf(txtData + bytesCount, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]);
- }
-
- for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2)
- {
- bytesCount += sprintf(txtData + bytesCount, "vt %.3f %.3f\n", mesh.texcoords[v], mesh.texcoords[v + 1]);
- }
-
- for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
- {
- bytesCount += sprintf(txtData + bytesCount, "vn %.3f %.3f %.3f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]);
- }
-
- for (int i = 0; i < mesh.triangleCount; i += 3)
- {
- bytesCount += sprintf(txtData + bytesCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", i, i, i, i + 1, i + 1, i + 1, i + 2, i + 2, i + 2);
- }
-
- bytesCount += sprintf(txtData + bytesCount, "\n");
-
- // NOTE: Text data length exported is determined by '\0' (NULL) character
- success = SaveFileText(fileName, txtData);
-
- RL_FREE(txtData);
- }
- else if (IsFileExtension(fileName, ".raw"))
- {
- // TODO: Support additional file formats to export mesh vertex data
- }
-
- return success;
-}
-
-
-// Load materials from model file
-Material *LoadMaterials(const char *fileName, int *materialCount)
-{
- Material *materials = NULL;
- unsigned int count = 0;
-
- // TODO: Support IQM and GLTF for materials parsing
-
-#if defined(SUPPORT_FILEFORMAT_MTL)
- if (IsFileExtension(fileName, ".mtl"))
- {
- tinyobj_material_t *mats = NULL;
-
- int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
- if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName);
-
- // TODO: Process materials to return
-
- tinyobj_materials_free(mats, count);
- }
-#else
- TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName);
-#endif
-
- // Set materials shader to default (DIFFUSE, SPECULAR, NORMAL)
- if (materials != NULL)
- {
- for (unsigned int i = 0; i < count; i++) materials[i].shader = rlGetShaderDefault();
- }
-
- *materialCount = count;
- return materials;
-}
-
-// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
-Material LoadMaterialDefault(void)
-{
- Material material = { 0 };
- material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap));
-
- material.shader = rlGetShaderDefault();
- material.maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault(); // White texture (1x1 pixel)
- //material.maps[MATERIAL_MAP_NORMAL].texture; // NOTE: By default, not set
- //material.maps[MATERIAL_MAP_SPECULAR].texture; // NOTE: By default, not set
-
- material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE; // Diffuse color
- material.maps[MATERIAL_MAP_SPECULAR].color = WHITE; // Specular color
-
- return material;
-}
-
-// Unload material from memory
-void UnloadMaterial(Material material)
-{
- // Unload material shader (avoid unloading default shader, managed by raylib)
- if (material.shader.id != rlGetShaderDefault().id) UnloadShader(material.shader);
-
- // Unload loaded texture maps (avoid unloading default texture, managed by raylib)
- for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
- {
- if (material.maps[i].texture.id != rlGetTextureDefault().id) rlUnloadTexture(material.maps[i].texture.id);
- }
-
- RL_FREE(material.maps);
-}
-
-// Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...)
-// NOTE: Previous texture should be manually unloaded
-void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
-{
- material->maps[mapType].texture = texture;
-}
-
-// Set the material for a mesh
-void SetModelMeshMaterial(Model *model, int meshId, int materialId)
-{
- if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count");
- else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count");
- else model->meshMaterial[meshId] = materialId;
-}
-
-// Load model animations from file
-ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount)
-{
- ModelAnimation *animations = NULL;
-
-#if defined(SUPPORT_FILEFORMAT_IQM)
- if (IsFileExtension(fileName, ".iqm")) animations = LoadIQMModelAnimations(fileName, animCount);
-#endif
-#if defined(SUPPORT_FILEFORMAT_GLTF)
- if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadGLTFModelAnimations(fileName, animCount);
-#endif
-
- return animations;
-}
-
-// Update model animated vertex data (positions and normals) for a given frame
-// NOTE: Updated data is uploaded to GPU
-void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
-{
- if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL))
- {
- if (frame >= anim.frameCount) frame = frame%anim.frameCount;
-
- for (int m = 0; m < model.meshCount; m++)
- {
- Vector3 animVertex = { 0 };
- Vector3 animNormal = { 0 };
-
- Vector3 inTranslation = { 0 };
- Quaternion inRotation = { 0 };
- //Vector3 inScale = { 0 }; // Not used...
-
- Vector3 outTranslation = { 0 };
- Quaternion outRotation = { 0 };
- Vector3 outScale = { 0 };
-
- int vCounter = 0;
- int boneCounter = 0;
- int boneId = 0;
- float boneWeight = 0.0;
-
- for (int i = 0; i < model.meshes[m].vertexCount; i++)
- {
- model.meshes[m].animVertices[vCounter] = 0;
- model.meshes[m].animVertices[vCounter + 1] = 0;
- model.meshes[m].animVertices[vCounter + 2] = 0;
-
- model.meshes[m].animNormals[vCounter] = 0;
- model.meshes[m].animNormals[vCounter + 1] = 0;
- model.meshes[m].animNormals[vCounter + 2] = 0;
-
- for (int j = 0; j < 4; j++)
- {
- boneId = model.meshes[m].boneIds[boneCounter];
- boneWeight = model.meshes[m].boneWeights[boneCounter];
- inTranslation = model.bindPose[boneId].translation;
- inRotation = model.bindPose[boneId].rotation;
- //inScale = model.bindPose[boneId].scale;
- outTranslation = anim.framePoses[frame][boneId].translation;
- outRotation = anim.framePoses[frame][boneId].rotation;
- outScale = anim.framePoses[frame][boneId].scale;
-
- // Vertices processing
- // NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position)
- animVertex = (Vector3){ model.meshes[m].vertices[vCounter], model.meshes[m].vertices[vCounter + 1], model.meshes[m].vertices[vCounter + 2] };
- animVertex = Vector3Multiply(animVertex, outScale);
- animVertex = Vector3Subtract(animVertex, inTranslation);
- animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
- animVertex = Vector3Add(animVertex, outTranslation);
- model.meshes[m].animVertices[vCounter] += animVertex.x * boneWeight;
- model.meshes[m].animVertices[vCounter + 1] += animVertex.y * boneWeight;
- model.meshes[m].animVertices[vCounter + 2] += animVertex.z * boneWeight;
-
- // Normals processing
- // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
- if (model.meshes[m].normals != NULL)
- {
- animNormal = (Vector3){ model.meshes[m].normals[vCounter], model.meshes[m].normals[vCounter + 1], model.meshes[m].normals[vCounter + 2] };
- animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
- model.meshes[m].animNormals[vCounter] += animNormal.x * boneWeight;
- model.meshes[m].animNormals[vCounter + 1] += animNormal.y * boneWeight;
- model.meshes[m].animNormals[vCounter + 2] += animNormal.z * boneWeight;
- }
- boneCounter += 1;
- }
- vCounter += 3;
- }
-
- // Upload new vertex data to GPU for model drawing
- rlUpdateVertexBuffer(model.meshes[m].vboId[0], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float), 0); // Update vertex position
- rlUpdateVertexBuffer(model.meshes[m].vboId[2], model.meshes[m].animNormals, model.meshes[m].vertexCount*3*sizeof(float), 0); // Update vertex normals
- }
- }
-}
-
-// Unload animation array data
-void UnloadModelAnimations(ModelAnimation* animations, unsigned int count)
-{
- for (unsigned int i = 0; i < count; i++) UnloadModelAnimation(animations[i]);
- RL_FREE(animations);
-}
-
-// Unload animation data
-void UnloadModelAnimation(ModelAnimation anim)
-{
- for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]);
-
- RL_FREE(anim.bones);
- RL_FREE(anim.framePoses);
-}
-
-// Check model animation skeleton match
-// NOTE: Only number of bones and parent connections are checked
-bool IsModelAnimationValid(Model model, ModelAnimation anim)
-{
- int result = true;
-
- if (model.boneCount != anim.boneCount) result = false;
- else
- {
- for (int i = 0; i < model.boneCount; i++)
- {
- if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
- }
- }
-
- return result;
-}
-
-#if defined(SUPPORT_MESH_GENERATION)
-// Generate polygonal mesh
-Mesh GenMeshPoly(int sides, float radius)
-{
- Mesh mesh = { 0 };
-
- if (sides < 3) return mesh;
-
- int vertexCount = sides*3;
-
- // Vertices definition
- Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
-
- float d = 0.0f, dStep = 360.0f/sides;
- for (int v = 0; v < vertexCount; v += 3)
- {
- vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f };
- vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius };
- vertices[v + 2] = (Vector3){sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius };
- d += dStep;
- }
-
- // Normals definition
- Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
- for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
-
- // TexCoords definition
- Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
- for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f };
-
- mesh.vertexCount = vertexCount;
- mesh.triangleCount = sides;
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
-
- // Mesh vertices position array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.vertices[3*i] = vertices[i].x;
- mesh.vertices[3*i + 1] = vertices[i].y;
- mesh.vertices[3*i + 2] = vertices[i].z;
- }
-
- // Mesh texcoords array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.texcoords[2*i] = texcoords[i].x;
- mesh.texcoords[2*i + 1] = texcoords[i].y;
- }
-
- // Mesh normals array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.normals[3*i] = normals[i].x;
- mesh.normals[3*i + 1] = normals[i].y;
- mesh.normals[3*i + 2] = normals[i].z;
- }
-
- RL_FREE(vertices);
- RL_FREE(normals);
- RL_FREE(texcoords);
-
- // Upload vertex data to GPU (static mesh)
- // NOTE: mesh.vboId array is allocated inside UploadMesh()
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generate plane mesh (with subdivisions)
-Mesh GenMeshPlane(float width, float length, int resX, int resZ)
-{
- Mesh mesh = { 0 };
-
-#define CUSTOM_MESH_GEN_PLANE
-#if defined(CUSTOM_MESH_GEN_PLANE)
- resX++;
- resZ++;
-
- // Vertices definition
- int vertexCount = resX*resZ; // vertices get reused for the faces
-
- Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
- for (int z = 0; z < resZ; z++)
- {
- // [-length/2, length/2]
- float zPos = ((float)z/(resZ - 1) - 0.5f)*length;
- for (int x = 0; x < resX; x++)
- {
- // [-width/2, width/2]
- float xPos = ((float)x/(resX - 1) - 0.5f)*width;
- vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos };
- }
- }
-
- // Normals definition
- Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
- for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
-
- // TexCoords definition
- Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
- for (int v = 0; v < resZ; v++)
- {
- for (int u = 0; u < resX; u++)
- {
- texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) };
- }
- }
-
- // Triangles definition (indices)
- int numFaces = (resX - 1)*(resZ - 1);
- int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int));
- int t = 0;
- for (int face = 0; face < numFaces; face++)
- {
- // Retrieve lower left corner from face ind
- int i = face % (resX - 1) + (face/(resZ - 1)*resX);
-
- triangles[t++] = i + resX;
- triangles[t++] = i + 1;
- triangles[t++] = i;
-
- triangles[t++] = i + resX;
- triangles[t++] = i + resX + 1;
- triangles[t++] = i + 1;
- }
-
- mesh.vertexCount = vertexCount;
- mesh.triangleCount = numFaces*2;
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short));
-
- // Mesh vertices position array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.vertices[3*i] = vertices[i].x;
- mesh.vertices[3*i + 1] = vertices[i].y;
- mesh.vertices[3*i + 2] = vertices[i].z;
- }
-
- // Mesh texcoords array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.texcoords[2*i] = texcoords[i].x;
- mesh.texcoords[2*i + 1] = texcoords[i].y;
- }
-
- // Mesh normals array
- for (int i = 0; i < mesh.vertexCount; i++)
- {
- mesh.normals[3*i] = normals[i].x;
- mesh.normals[3*i + 1] = normals[i].y;
- mesh.normals[3*i + 2] = normals[i].z;
- }
-
- // Mesh indices array initialization
- for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i];
-
- RL_FREE(vertices);
- RL_FREE(normals);
- RL_FREE(texcoords);
- RL_FREE(triangles);
-
-#else // Use par_shapes library to generate plane mesh
-
- par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!!
- par_shapes_scale(plane, width, length, 1.0f);
- par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 });
- par_shapes_translate(plane, -width/2, 0.0f, length/2);
-
- mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = plane->ntriangles*3;
- mesh.triangleCount = plane->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = plane->points[plane->triangles[k]*3];
- mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = plane->normals[plane->triangles[k]*3];
- mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(plane);
-#endif
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generated cuboid mesh
-Mesh GenMeshCube(float width, float height, float length)
-{
- Mesh mesh = { 0 };
-
-#define CUSTOM_MESH_GEN_CUBE
-#if defined(CUSTOM_MESH_GEN_CUBE)
- float vertices[] = {
- -width/2, -height/2, length/2,
- width/2, -height/2, length/2,
- width/2, height/2, length/2,
- -width/2, height/2, length/2,
- -width/2, -height/2, -length/2,
- -width/2, height/2, -length/2,
- width/2, height/2, -length/2,
- width/2, -height/2, -length/2,
- -width/2, height/2, -length/2,
- -width/2, height/2, length/2,
- width/2, height/2, length/2,
- width/2, height/2, -length/2,
- -width/2, -height/2, -length/2,
- width/2, -height/2, -length/2,
- width/2, -height/2, length/2,
- -width/2, -height/2, length/2,
- width/2, -height/2, -length/2,
- width/2, height/2, -length/2,
- width/2, height/2, length/2,
- width/2, -height/2, length/2,
- -width/2, -height/2, -length/2,
- -width/2, -height/2, length/2,
- -width/2, height/2, length/2,
- -width/2, height/2, -length/2
- };
-
- float texcoords[] = {
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f,
- 0.0f, 0.0f,
- 0.0f, 0.0f,
- 1.0f, 0.0f,
- 1.0f, 1.0f,
- 0.0f, 1.0f
- };
-
- float normals[] = {
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f, 1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 0.0f,-1.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f, 1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 0.0f,-1.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- 1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f,
- -1.0f, 0.0f, 0.0f
- };
-
- mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float));
- memcpy(mesh.vertices, vertices, 24*3*sizeof(float));
-
- mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float));
- memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float));
-
- mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float));
- memcpy(mesh.normals, normals, 24*3*sizeof(float));
-
- mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short));
-
- int k = 0;
-
- // Indices can be initialized right now
- for (int i = 0; i < 36; i+=6)
- {
- mesh.indices[i] = 4*k;
- mesh.indices[i+1] = 4*k+1;
- mesh.indices[i+2] = 4*k+2;
- mesh.indices[i+3] = 4*k;
- mesh.indices[i+4] = 4*k+2;
- mesh.indices[i+5] = 4*k+3;
-
- k++;
- }
-
- mesh.vertexCount = 24;
- mesh.triangleCount = 12;
-
-#else // Use par_shapes library to generate cube mesh
-/*
-// Platonic solids:
-par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid)
-par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube)
-par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (dyamond)
-par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron
-par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron
-*/
- // Platonic solid generation: cube (6 sides)
- // NOTE: No normals/texcoords generated by default
- par_shapes_mesh *cube = par_shapes_create_cube();
- cube->tcoords = PAR_MALLOC(float, 2*cube->npoints);
- for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f;
- par_shapes_scale(cube, width, height, length);
- par_shapes_translate(cube, -width/2, 0.0f, -length/2);
- par_shapes_compute_normals(cube);
-
- mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = cube->ntriangles*3;
- mesh.triangleCount = cube->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = cube->points[cube->triangles[k]*3];
- mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = cube->normals[cube->triangles[k]*3];
- mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(cube);
-#endif
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generate sphere mesh (standard sphere)
-Mesh GenMeshSphere(float radius, int rings, int slices)
-{
- Mesh mesh = { 0 };
-
- if ((rings >= 3) && (slices >= 3))
- {
- par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
- par_shapes_scale(sphere, radius, radius, radius);
- // NOTE: Soft normals are computed internally
-
- mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = sphere->ntriangles*3;
- mesh.triangleCount = sphere->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
- mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
- mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(sphere);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere");
-
- return mesh;
-}
-
-// Generate hemi-sphere mesh (half sphere, no bottom cap)
-Mesh GenMeshHemiSphere(float radius, int rings, int slices)
-{
- Mesh mesh = { 0 };
-
- if ((rings >= 3) && (slices >= 3))
- {
- if (radius < 0.0f) radius = 0.0f;
-
- par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
- par_shapes_scale(sphere, radius, radius, radius);
- // NOTE: Soft normals are computed internally
-
- mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = sphere->ntriangles*3;
- mesh.triangleCount = sphere->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
- mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
- mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(sphere);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere");
-
- return mesh;
-}
-
-// Generate cylinder mesh
-Mesh GenMeshCylinder(float radius, float height, int slices)
-{
- Mesh mesh = { 0 };
-
- if (slices >= 3)
- {
- // Instance a cylinder that sits on the Z=0 plane using the given tessellation
- // levels across the UV domain. Think of "slices" like a number of pizza
- // slices, and "stacks" like a number of stacked rings.
- // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
- par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8);
- par_shapes_scale(cylinder, radius, radius, height);
- par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 });
- par_shapes_rotate(cylinder, PI/2.0f, (float[]){ 0, 1, 0 });
-
- // Generate an orientable disk shape (top cap)
- par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 });
- capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints);
- for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f;
- par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 });
- par_shapes_translate(capTop, 0, height, 0);
-
- // Generate an orientable disk shape (bottom cap)
- par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
- capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
- for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
- par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
-
- par_shapes_merge_and_free(cylinder, capTop);
- par_shapes_merge_and_free(cylinder, capBottom);
-
- mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = cylinder->ntriangles*3;
- mesh.triangleCount = cylinder->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3];
- mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3];
- mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(cylinder);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder");
-
- return mesh;
-}
-
-// Generate torus mesh
-Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
-{
- Mesh mesh = { 0 };
-
- if ((sides >= 3) && (radSeg >= 3))
- {
- if (radius > 1.0f) radius = 1.0f;
- else if (radius < 0.1f) radius = 0.1f;
-
- // Create a donut that sits on the Z=0 plane with the specified inner radius
- // The outer radius can be controlled with par_shapes_scale
- par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius);
- par_shapes_scale(torus, size/2, size/2, size/2);
-
- mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = torus->ntriangles*3;
- mesh.triangleCount = torus->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = torus->points[torus->triangles[k]*3];
- mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = torus->normals[torus->triangles[k]*3];
- mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(torus);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus");
-
- return mesh;
-}
-
-// Generate trefoil knot mesh
-Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
-{
- Mesh mesh = { 0 };
-
- if ((sides >= 3) && (radSeg >= 3))
- {
- if (radius > 3.0f) radius = 3.0f;
- else if (radius < 0.5f) radius = 0.5f;
-
- par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius);
- par_shapes_scale(knot, size, size, size);
-
- mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
-
- mesh.vertexCount = knot->ntriangles*3;
- mesh.triangleCount = knot->ntriangles;
-
- for (int k = 0; k < mesh.vertexCount; k++)
- {
- mesh.vertices[k*3] = knot->points[knot->triangles[k]*3];
- mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1];
- mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2];
-
- mesh.normals[k*3] = knot->normals[knot->triangles[k]*3];
- mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1];
- mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2];
-
- mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2];
- mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1];
- }
-
- par_shapes_free_mesh(knot);
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
- }
- else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot");
-
- return mesh;
-}
-
-// Generate a mesh from heightmap
-// NOTE: Vertex data is uploaded to GPU
-Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
-{
- #define GRAY_VALUE(c) ((c.r+c.g+c.b)/3)
-
- Mesh mesh = { 0 };
-
- int mapX = heightmap.width;
- int mapZ = heightmap.height;
-
- Color *pixels = LoadImageColors(heightmap);
-
- // NOTE: One vertex per pixel
- mesh.triangleCount = (mapX-1)*(mapZ-1)*2; // One quad every four pixels
-
- mesh.vertexCount = mesh.triangleCount*3;
-
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.colors = NULL;
-
- int vCounter = 0; // Used to count vertices float by float
- int tcCounter = 0; // Used to count texcoords float by float
- int nCounter = 0; // Used to count normals float by float
-
- int trisCounter = 0;
-
- Vector3 scaleFactor = { size.x/mapX, size.y/255.0f, size.z/mapZ };
-
- Vector3 vA;
- Vector3 vB;
- Vector3 vC;
- Vector3 vN;
-
- for (int z = 0; z < mapZ-1; z++)
- {
- for (int x = 0; x < mapX-1; x++)
- {
- // Fill vertices array with data
- //----------------------------------------------------------
-
- // one triangle - 3 vertex
- mesh.vertices[vCounter] = (float)x*scaleFactor.x;
- mesh.vertices[vCounter + 1] = (float)GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
-
- mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
- mesh.vertices[vCounter + 4] = (float)GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
-
- mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
- mesh.vertices[vCounter + 7] = (float)GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
-
- // another triangle - 3 vertex
- mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
- mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
- mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
-
- mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
- mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
- mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
-
- mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
- mesh.vertices[vCounter + 16] = (float)GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
- mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
- vCounter += 18; // 6 vertex, 18 floats
-
- // Fill texcoords array with data
- //--------------------------------------------------------------
- mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
- mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
-
- mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
- mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
-
- mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
- mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
-
- mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
- mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
-
- mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
- mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
-
- mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
- mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
- tcCounter += 12; // 6 texcoords, 12 floats
-
- // Fill normals array with data
- //--------------------------------------------------------------
- for (int i = 0; i < 18; i += 9)
- {
- vA.x = mesh.vertices[nCounter + i];
- vA.y = mesh.vertices[nCounter + i + 1];
- vA.z = mesh.vertices[nCounter + i + 2];
-
- vB.x = mesh.vertices[nCounter + i + 3];
- vB.y = mesh.vertices[nCounter + i + 4];
- vB.z = mesh.vertices[nCounter + i + 5];
-
- vC.x = mesh.vertices[nCounter + i + 6];
- vC.y = mesh.vertices[nCounter + i + 7];
- vC.z = mesh.vertices[nCounter + i + 8];
-
- vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA)));
-
- mesh.normals[nCounter + i] = vN.x;
- mesh.normals[nCounter + i + 1] = vN.y;
- mesh.normals[nCounter + i + 2] = vN.z;
-
- mesh.normals[nCounter + i + 3] = vN.x;
- mesh.normals[nCounter + i + 4] = vN.y;
- mesh.normals[nCounter + i + 5] = vN.z;
-
- mesh.normals[nCounter + i + 6] = vN.x;
- mesh.normals[nCounter + i + 7] = vN.y;
- mesh.normals[nCounter + i + 8] = vN.z;
- }
-
- nCounter += 18; // 6 vertex, 18 floats
- trisCounter += 2;
- }
- }
-
- UnloadImageColors(pixels); // Unload pixels color data
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-
-// Generate a cubes mesh from pixel data
-// NOTE: Vertex data is uploaded to GPU
-Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
-{
- #define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
-
- Mesh mesh = { 0 };
-
- Color *pixels = LoadImageColors(cubicmap);
-
- int mapWidth = cubicmap.width;
- int mapHeight = cubicmap.height;
-
- // NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
- int maxTriangles = cubicmap.width*cubicmap.height*12;
-
- int vCounter = 0; // Used to count vertices
- int tcCounter = 0; // Used to count texcoords
- int nCounter = 0; // Used to count normals
-
- float w = cubeSize.x;
- float h = cubeSize.z;
- float h2 = cubeSize.y;
-
- Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
- Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2));
- Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
-
- // Define the 6 normals of the cube, we will combine them accordingly later...
- Vector3 n1 = { 1.0f, 0.0f, 0.0f };
- Vector3 n2 = { -1.0f, 0.0f, 0.0f };
- Vector3 n3 = { 0.0f, 1.0f, 0.0f };
- Vector3 n4 = { 0.0f, -1.0f, 0.0f };
- Vector3 n5 = { 0.0f, 0.0f, -1.0f };
- Vector3 n6 = { 0.0f, 0.0f, 1.0f };
-
- // NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
- typedef struct RectangleF {
- float x;
- float y;
- float width;
- float height;
- } RectangleF;
-
- RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
- RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
- RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
- RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
- RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
- RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
-
- for (int z = 0; z < mapHeight; ++z)
- {
- for (int x = 0; x < mapWidth; ++x)
- {
- // Define the 8 vertex of the cube, we will combine them accordingly later...
- Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
- Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
- Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
- Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
- Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
- Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
- Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
- Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
-
- // We check pixel color to be WHITE -> draw full cube
- if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE))
- {
- // Define triangles and checking collateral cubes
- //------------------------------------------------
-
- // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
- // WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v2;
- mapVertices[vCounter + 2] = v3;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v3;
- mapVertices[vCounter + 5] = v4;
- vCounter += 6;
-
- mapNormals[nCounter] = n3;
- mapNormals[nCounter + 1] = n3;
- mapNormals[nCounter + 2] = n3;
- mapNormals[nCounter + 3] = n3;
- mapNormals[nCounter + 4] = n3;
- mapNormals[nCounter + 5] = n3;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
- tcCounter += 6;
-
- // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
- mapVertices[vCounter] = v6;
- mapVertices[vCounter + 1] = v8;
- mapVertices[vCounter + 2] = v7;
- mapVertices[vCounter + 3] = v6;
- mapVertices[vCounter + 4] = v5;
- mapVertices[vCounter + 5] = v8;
- vCounter += 6;
-
- mapNormals[nCounter] = n4;
- mapNormals[nCounter + 1] = n4;
- mapNormals[nCounter + 2] = n4;
- mapNormals[nCounter + 3] = n4;
- mapNormals[nCounter + 4] = n4;
- mapNormals[nCounter + 5] = n4;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
- mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- tcCounter += 6;
-
- // Checking cube on bottom of current cube
- if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1))
- {
- // Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v2;
- mapVertices[vCounter + 1] = v7;
- mapVertices[vCounter + 2] = v3;
- mapVertices[vCounter + 3] = v3;
- mapVertices[vCounter + 4] = v7;
- mapVertices[vCounter + 5] = v8;
- vCounter += 6;
-
- mapNormals[nCounter] = n6;
- mapNormals[nCounter + 1] = n6;
- mapNormals[nCounter + 2] = n6;
- mapNormals[nCounter + 3] = n6;
- mapNormals[nCounter + 4] = n6;
- mapNormals[nCounter + 5] = n6;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
- mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
- tcCounter += 6;
- }
-
- // Checking cube on top of current cube
- if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0))
- {
- // Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v5;
- mapVertices[vCounter + 2] = v6;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v4;
- mapVertices[vCounter + 5] = v5;
- vCounter += 6;
-
- mapNormals[nCounter] = n5;
- mapNormals[nCounter + 1] = n5;
- mapNormals[nCounter + 2] = n5;
- mapNormals[nCounter + 3] = n5;
- mapNormals[nCounter + 4] = n5;
- mapNormals[nCounter + 5] = n5;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
- mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
- tcCounter += 6;
- }
-
- // Checking cube on right of current cube
- if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1))
- {
- // Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v3;
- mapVertices[vCounter + 1] = v8;
- mapVertices[vCounter + 2] = v4;
- mapVertices[vCounter + 3] = v4;
- mapVertices[vCounter + 4] = v8;
- mapVertices[vCounter + 5] = v5;
- vCounter += 6;
-
- mapNormals[nCounter] = n1;
- mapNormals[nCounter + 1] = n1;
- mapNormals[nCounter + 2] = n1;
- mapNormals[nCounter + 3] = n1;
- mapNormals[nCounter + 4] = n1;
- mapNormals[nCounter + 5] = n1;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
- mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
- tcCounter += 6;
- }
-
- // Checking cube on left of current cube
- if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0))
- {
- // Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
- // NOTE: Collateral occluded faces are not generated
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v7;
- mapVertices[vCounter + 2] = v2;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v6;
- mapVertices[vCounter + 5] = v7;
- vCounter += 6;
-
- mapNormals[nCounter] = n2;
- mapNormals[nCounter + 1] = n2;
- mapNormals[nCounter + 2] = n2;
- mapNormals[nCounter + 3] = n2;
- mapNormals[nCounter + 4] = n2;
- mapNormals[nCounter + 5] = n2;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
- mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
- tcCounter += 6;
- }
- }
- // We check pixel color to be BLACK, we will only draw floor and roof
- else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK))
- {
- // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
- mapVertices[vCounter] = v1;
- mapVertices[vCounter + 1] = v3;
- mapVertices[vCounter + 2] = v2;
- mapVertices[vCounter + 3] = v1;
- mapVertices[vCounter + 4] = v4;
- mapVertices[vCounter + 5] = v3;
- vCounter += 6;
-
- mapNormals[nCounter] = n4;
- mapNormals[nCounter + 1] = n4;
- mapNormals[nCounter + 2] = n4;
- mapNormals[nCounter + 3] = n4;
- mapNormals[nCounter + 4] = n4;
- mapNormals[nCounter + 5] = n4;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
- mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
- tcCounter += 6;
-
- // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
- mapVertices[vCounter] = v6;
- mapVertices[vCounter + 1] = v7;
- mapVertices[vCounter + 2] = v8;
- mapVertices[vCounter + 3] = v6;
- mapVertices[vCounter + 4] = v8;
- mapVertices[vCounter + 5] = v5;
- vCounter += 6;
-
- mapNormals[nCounter] = n3;
- mapNormals[nCounter + 1] = n3;
- mapNormals[nCounter + 2] = n3;
- mapNormals[nCounter + 3] = n3;
- mapNormals[nCounter + 4] = n3;
- mapNormals[nCounter + 5] = n3;
- nCounter += 6;
-
- mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
- mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
- mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
- tcCounter += 6;
- }
- }
- }
-
- // Move data from mapVertices temp arays to vertices float array
- mesh.vertexCount = vCounter;
- mesh.triangleCount = vCounter/3;
-
- mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
- mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
- mesh.colors = NULL;
-
- int fCounter = 0;
-
- // Move vertices data
- for (int i = 0; i < vCounter; i++)
- {
- mesh.vertices[fCounter] = mapVertices[i].x;
- mesh.vertices[fCounter + 1] = mapVertices[i].y;
- mesh.vertices[fCounter + 2] = mapVertices[i].z;
- fCounter += 3;
- }
-
- fCounter = 0;
-
- // Move normals data
- for (int i = 0; i < nCounter; i++)
- {
- mesh.normals[fCounter] = mapNormals[i].x;
- mesh.normals[fCounter + 1] = mapNormals[i].y;
- mesh.normals[fCounter + 2] = mapNormals[i].z;
- fCounter += 3;
- }
-
- fCounter = 0;
-
- // Move texcoords data
- for (int i = 0; i < tcCounter; i++)
- {
- mesh.texcoords[fCounter] = mapTexcoords[i].x;
- mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
- fCounter += 2;
- }
-
- RL_FREE(mapVertices);
- RL_FREE(mapNormals);
- RL_FREE(mapTexcoords);
-
- UnloadImageColors(pixels); // Unload pixels color data
-
- // Upload vertex data to GPU (static mesh)
- UploadMesh(&mesh, false);
-
- return mesh;
-}
-#endif // SUPPORT_MESH_GENERATION
-
-// Compute mesh bounding box limits
-// NOTE: minVertex and maxVertex should be transformed by model transform matrix
-BoundingBox MeshBoundingBox(Mesh mesh)
-{
- // Get min and max vertex to construct bounds (AABB)
- Vector3 minVertex = { 0 };
- Vector3 maxVertex = { 0 };
-
- if (mesh.vertices != NULL)
- {
- minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
- maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
-
- for (int i = 1; i < mesh.vertexCount; i++)
- {
- minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
- maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
- }
- }
-
- // Create the bounding box
- BoundingBox box = { 0 };
- box.min = minVertex;
- box.max = maxVertex;
-
- return box;
-}
-
-// Compute mesh tangents
-// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
-// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
-void MeshTangents(Mesh *mesh)
-{
- if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
- else TRACELOG(LOG_WARNING, "MESH: Tangents data already available, re-writting");
-
- Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
- Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
-
- for (int i = 0; i < mesh->vertexCount; i += 3)
- {
- // Get triangle vertices
- Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
- Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
- Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
-
- // Get triangle texcoords
- Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
- Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
- Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
-
- float x1 = v2.x - v1.x;
- float y1 = v2.y - v1.y;
- float z1 = v2.z - v1.z;
- float x2 = v3.x - v1.x;
- float y2 = v3.y - v1.y;
- float z2 = v3.z - v1.z;
-
- float s1 = uv2.x - uv1.x;
- float t1 = uv2.y - uv1.y;
- float s2 = uv3.x - uv1.x;
- float t2 = uv3.y - uv1.y;
-
- float div = s1*t2 - s2*t1;
- float r = (div == 0.0f)? 0.0f : 1.0f/div;
-
- Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
- Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
-
- tan1[i + 0] = sdir;
- tan1[i + 1] = sdir;
- tan1[i + 2] = sdir;
-
- tan2[i + 0] = tdir;
- tan2[i + 1] = tdir;
- tan2[i + 2] = tdir;
- }
-
- // Compute tangents considering normals
- for (int i = 0; i < mesh->vertexCount; ++i)
- {
- Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
- Vector3 tangent = tan1[i];
-
- // TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
- #if defined(COMPUTE_TANGENTS_METHOD_01)
- Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent)));
- tmp = Vector3Normalize(tmp);
- mesh->tangents[i*4 + 0] = tmp.x;
- mesh->tangents[i*4 + 1] = tmp.y;
- mesh->tangents[i*4 + 2] = tmp.z;
- mesh->tangents[i*4 + 3] = 1.0f;
- #else
- Vector3OrthoNormalize(&normal, &tangent);
- mesh->tangents[i*4 + 0] = tangent.x;
- mesh->tangents[i*4 + 1] = tangent.y;
- mesh->tangents[i*4 + 2] = tangent.z;
- mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
- #endif
- }
-
- RL_FREE(tan1);
- RL_FREE(tan2);
-
- // Load a new tangent attributes buffer
- mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false);
-
- TRACELOG(LOG_INFO, "MESH: Tangents data computed for provided mesh");
-}
-
-// Compute mesh binormals (aka bitangent)
-void MeshBinormals(Mesh *mesh)
-{
- for (int i = 0; i < mesh->vertexCount; i++)
- {
- //Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
- //Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
- //Vector3 binormal = Vector3Scale(Vector3CrossProduct(normal, tangent), mesh->tangents[i*4 + 3]);
-
- // TODO: Register computed binormal in mesh->binormal?
- }
-}
-
-// Draw a model (with texture if set)
-void DrawModel(Model model, Vector3 position, float scale, Color tint)
-{
- Vector3 vScale = { scale, scale, scale };
- Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f };
-
- DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
-}
-
-// Draw a model with extended parameters
-void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
-{
- // Calculate transformation matrix from function parameters
- // Get transform matrix (rotation -> scale -> translation)
- Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
- Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
- Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
-
- Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
-
- // Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
- model.transform = MatrixMultiply(model.transform, matTransform);
-
- for (int i = 0; i < model.meshCount; i++)
- {
- Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color;
-
- Color colorTint = WHITE;
- colorTint.r = (unsigned char)((((float)color.r/255.0)*((float)tint.r/255.0))*255.0f);
- colorTint.g = (unsigned char)((((float)color.g/255.0)*((float)tint.g/255.0))*255.0f);
- colorTint.b = (unsigned char)((((float)color.b/255.0)*((float)tint.b/255.0))*255.0f);
- colorTint.a = (unsigned char)((((float)color.a/255.0)*((float)tint.a/255.0))*255.0f);
-
- model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint;
- DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform);
- model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color;
- }
-}
-
-// Draw a model wires (with texture if set)
-void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
-{
- rlEnableWireMode();
-
- DrawModel(model, position, scale, tint);
-
- rlDisableWireMode();
-}
-
-// Draw a model wires (with texture if set) with extended parameters
-void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
-{
- rlEnableWireMode();
-
- DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
-
- rlDisableWireMode();
-}
-
-// Draw a billboard
-void DrawBillboard(Camera camera, Texture2D texture, Vector3 center, float size, Color tint)
-{
- Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
-
- DrawBillboardRec(camera, texture, source, center, size, tint);
-}
-
-// Draw a billboard (part of a texture defined by a rectangle)
-void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 center, float size, Color tint)
-{
- // NOTE: Billboard size will maintain source rectangle aspect ratio, size will represent billboard width
- Vector2 sizeRatio = { size, size*(float)source.height/source.width };
-
- Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
-
- Vector3 right = { matView.m0, matView.m4, matView.m8 };
- //Vector3 up = { matView.m1, matView.m5, matView.m9 };
-
- // NOTE: Billboard locked on axis-Y
- Vector3 up = { 0.0f, 1.0f, 0.0f };
-/*
- a-------b
- | |
- | * |
- | |
- d-------c
-*/
- right = Vector3Scale(right, sizeRatio.x/2);
- up = Vector3Scale(up, sizeRatio.y/2);
-
- Vector3 p1 = Vector3Add(right, up);
- Vector3 p2 = Vector3Subtract(right, up);
-
- Vector3 a = Vector3Subtract(center, p2);
- Vector3 b = Vector3Add(center, p1);
- Vector3 c = Vector3Add(center, p2);
- Vector3 d = Vector3Subtract(center, p1);
-
- rlCheckRenderBatchLimit(4);
-
- rlSetTexture(texture.id);
-
- rlBegin(RL_QUADS);
- rlColor4ub(tint.r, tint.g, tint.b, tint.a);
-
- // Bottom-left corner for texture and quad
- rlTexCoord2f((float)source.x/texture.width, (float)source.y/texture.height);
- rlVertex3f(a.x, a.y, a.z);
-
- // Top-left corner for texture and quad
- rlTexCoord2f((float)source.x/texture.width, (float)(source.y + source.height)/texture.height);
- rlVertex3f(d.x, d.y, d.z);
-
- // Top-right corner for texture and quad
- rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height);
- rlVertex3f(c.x, c.y, c.z);
-
- // Bottom-right corner for texture and quad
- rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)source.y/texture.height);
- rlVertex3f(b.x, b.y, b.z);
- rlEnd();
-
- rlSetTexture(0);
-}
-
-// Draw a bounding box with wires
-void DrawBoundingBox(BoundingBox box, Color color)
-{
- Vector3 size;
-
- size.x = fabsf(box.max.x - box.min.x);
- size.y = fabsf(box.max.y - box.min.y);
- size.z = fabsf(box.max.z - box.min.z);
-
- Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
-
- DrawCubeWires(center, size.x, size.y, size.z, color);
-}
-
-// Detect collision between two spheres
-bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2)
-{
- bool collision = false;
-
- // Simple way to check for collision, just checking distance between two points
- // Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
- /*
- float dx = center1.x - center2.x; // X distance between centers
- float dy = center1.y - center2.y; // Y distance between centers
- float dz = center1.z - center2.z; // Z distance between centers
-
- float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
-
- if (distance <= (radius1 + radius2)) collision = true;
- */
-
- // Check for distances squared to avoid sqrtf()
- if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true;
-
- return collision;
-}
-
-// Detect collision between two boxes
-// NOTE: Boxes are defined by two points minimum and maximum
-bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
-{
- bool collision = true;
-
- if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
- {
- if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
- if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
- }
- else collision = false;
-
- return collision;
-}
-
-// Detect collision between box and sphere
-bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
-{
- bool collision = false;
-
- float dmin = 0;
-
- if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
- else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
-
- if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
- else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
-
- if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
- else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
-
- if (dmin <= (radius*radius)) collision = true;
-
- return collision;
-}
-
-// Detect collision between ray and sphere
-bool CheckCollisionRaySphere(Ray ray, Vector3 center, float radius)
-{
- bool collision = false;
-
- Vector3 raySpherePos = Vector3Subtract(center, ray.position);
- float distance = Vector3Length(raySpherePos);
- float vector = Vector3DotProduct(raySpherePos, ray.direction);
- float d = radius*radius - (distance*distance - vector*vector);
-
- if (d >= 0.0f) collision = true;
-
- return collision;
-}
-
-// Detect collision between ray and sphere with extended parameters and collision point detection
-bool CheckCollisionRaySphereEx(Ray ray, Vector3 center, float radius, Vector3 *collisionPoint)
-{
- bool collision = false;
-
- Vector3 raySpherePos = Vector3Subtract(center, ray.position);
- float distance = Vector3Length(raySpherePos);
- float vector = Vector3DotProduct(raySpherePos, ray.direction);
- float d = radius*radius - (distance*distance - vector*vector);
-
- if (d >= 0.0f) collision = true;
-
- // Check if ray origin is inside the sphere to calculate the correct collision point
- float collisionDistance = 0;
-
- if (distance < radius) collisionDistance = vector + sqrtf(d);
- else collisionDistance = vector - sqrtf(d);
-
- // Calculate collision point
- Vector3 cPoint = Vector3Add(ray.position, Vector3Scale(ray.direction, collisionDistance));
-
- collisionPoint->x = cPoint.x;
- collisionPoint->y = cPoint.y;
- collisionPoint->z = cPoint.z;
-
- return collision;
-}
-
-// Detect collision between ray and bounding box
-bool CheckCollisionRayBox(Ray ray, BoundingBox box)
-{
- bool collision = false;
-
- float t[8];
- t[0] = (box.min.x - ray.position.x)/ray.direction.x;
- t[1] = (box.max.x - ray.position.x)/ray.direction.x;
- t[2] = (box.min.y - ray.position.y)/ray.direction.y;
- t[3] = (box.max.y - ray.position.y)/ray.direction.y;
- t[4] = (box.min.z - ray.position.z)/ray.direction.z;
- t[5] = (box.max.z - ray.position.z)/ray.direction.z;
- t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
- t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
-
- collision = !(t[7] < 0 || t[6] > t[7]);
-
- return collision;
-}
-// Get collision info between ray and mesh
-RayHitInfo GetCollisionRayMesh(Ray ray, Mesh mesh, Matrix transform)
-{
- RayHitInfo result = { 0 };
-
- // Check if mesh vertex data on CPU for testing
- if (mesh.vertices != NULL)
- {
- int triangleCount = mesh.triangleCount;
-
- // Test against all triangles in mesh
- for (int i = 0; i < triangleCount; i++)
- {
- Vector3 a, b, c;
- Vector3* vertdata = (Vector3*)mesh.vertices;
-
- if (mesh.indices)
- {
- a = vertdata[mesh.indices[i*3 + 0]];
- b = vertdata[mesh.indices[i*3 + 1]];
- c = vertdata[mesh.indices[i*3 + 2]];
- }
- else
- {
- a = vertdata[i*3 + 0];
- b = vertdata[i*3 + 1];
- c = vertdata[i*3 + 2];
- }
-
- a = Vector3Transform(a, transform);
- b = Vector3Transform(b, transform);
- c = Vector3Transform(c, transform);
-
- RayHitInfo triHitInfo = GetCollisionRayTriangle(ray, a, b, c);
-
- if (triHitInfo.hit)
- {
- // Save the closest hit triangle
- if ((!result.hit) || (result.distance > triHitInfo.distance)) result = triHitInfo;
- }
- }
- }
- return result;
-}
-
-// Get collision info between ray and model
-RayHitInfo GetCollisionRayModel(Ray ray, Model model)
-{
- RayHitInfo result = { 0 };
-
- for (int m = 0; m < model.meshCount; m++)
- {
- RayHitInfo meshHitInfo = GetCollisionRayMesh(ray, model.meshes[m], model.transform);
-
- if (meshHitInfo.hit)
- {
- // Save the closest hit mesh
- if ((!result.hit) || (result.distance > meshHitInfo.distance)) result = meshHitInfo;
- }
- }
-
- return result;
-}
-
-// Get collision info between ray and triangle
-// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
-RayHitInfo GetCollisionRayTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
-{
- #define EPSILON 0.000001 // A small number
-
- Vector3 edge1, edge2;
- Vector3 p, q, tv;
- float det, invDet, u, v, t;
- RayHitInfo result = {0};
-
- // Find vectors for two edges sharing V1
- edge1 = Vector3Subtract(p2, p1);
- edge2 = Vector3Subtract(p3, p1);
-
- // Begin calculating determinant - also used to calculate u parameter
- p = Vector3CrossProduct(ray.direction, edge2);
-
- // If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
- det = Vector3DotProduct(edge1, p);
-
- // Avoid culling!
- if ((det > -EPSILON) && (det < EPSILON)) return result;
-
- invDet = 1.0f/det;
-
- // Calculate distance from V1 to ray origin
- tv = Vector3Subtract(ray.position, p1);
-
- // Calculate u parameter and test bound
- u = Vector3DotProduct(tv, p)*invDet;
-
- // The intersection lies outside of the triangle
- if ((u < 0.0f) || (u > 1.0f)) return result;
-
- // Prepare to test v parameter
- q = Vector3CrossProduct(tv, edge1);
-
- // Calculate V parameter and test bound
- v = Vector3DotProduct(ray.direction, q)*invDet;
-
- // The intersection lies outside of the triangle
- if ((v < 0.0f) || ((u + v) > 1.0f)) return result;
-
- t = Vector3DotProduct(edge2, q)*invDet;
-
- if (t > EPSILON)
- {
- // Ray hit, get hit point and normal
- result.hit = true;
- result.distance = t;
- result.hit = true;
- result.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2));
- result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, t));
- }
-
- return result;
-}
-
-// Get collision info between ray and ground plane (Y-normal plane)
-RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight)
-{
- #define EPSILON 0.000001 // A small number
-
- RayHitInfo result = { 0 };
-
- if (fabsf(ray.direction.y) > EPSILON)
- {
- float distance = (ray.position.y - groundHeight)/-ray.direction.y;
-
- if (distance >= 0.0)
- {
- result.hit = true;
- result.distance = distance;
- result.normal = (Vector3){ 0.0, 1.0, 0.0 };
- result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, distance));
- result.position.y = groundHeight;
- }
- }
-
- return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module specific Functions Definition
-//----------------------------------------------------------------------------------
-
-#if defined(SUPPORT_FILEFORMAT_OBJ)
-// Load OBJ mesh data
-static Model LoadOBJ(const char *fileName)
-{
- Model model = { 0 };
-
- tinyobj_attrib_t attrib = { 0 };
- tinyobj_shape_t *meshes = NULL;
- unsigned int meshCount = 0;
-
- tinyobj_material_t *materials = NULL;
- unsigned int materialCount = 0;
-
- char *fileData = LoadFileText(fileName);
-
- if (fileData != NULL)
- {
- unsigned int dataSize = (unsigned int)strlen(fileData);
- char currentDir[1024] = { 0 };
- strcpy(currentDir, GetWorkingDirectory());
- const char *workingDir = GetDirectoryPath(fileName);
- if (CHDIR(workingDir) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir);
- }
-
- unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
- int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, fileData, dataSize, flags);
-
- if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load OBJ data", fileName);
- else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes / %i materials", fileName, meshCount, materialCount);
-
- model.meshCount = materialCount;
-
- // Init model materials array
- if (materialCount > 0)
- {
- model.materialCount = materialCount;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- TraceLog(LOG_INFO, "MODEL: model has %i material meshes", materialCount);
- }
- else
- {
- model.meshCount = 1;
- TraceLog(LOG_INFO, "MODEL: No materials, putting all meshes in a default material");
- }
-
- model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
-
- // count the faces for each material
- int *matFaces = RL_CALLOC(meshCount, sizeof(int));
-
- for (unsigned int mi = 0; mi < meshCount; mi++)
- {
- for (unsigned int fi = 0; fi < meshes[mi].length; fi++)
- {
- int idx = attrib.material_ids[meshes[mi].face_offset + fi];
- if (idx == -1) idx = 0; // for no material face (which could be the whole model)
- matFaces[idx]++;
- }
- }
-
- //--------------------------------------
- // create the material meshes
-
- // running counts / indexes for each material mesh as we are
- // building them at the same time
- int *vCount = RL_CALLOC(model.meshCount, sizeof(int));
- int *vtCount = RL_CALLOC(model.meshCount, sizeof(int));
- int *vnCount = RL_CALLOC(model.meshCount, sizeof(int));
- int *faceCount = RL_CALLOC(model.meshCount, sizeof(int));
-
- // allocate space for each of the material meshes
- for (int mi = 0; mi < model.meshCount; mi++)
- {
- model.meshes[mi].vertexCount = matFaces[mi]*3;
- model.meshes[mi].triangleCount = matFaces[mi];
- model.meshes[mi].vertices = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float));
- model.meshes[mi].texcoords = (float *)RL_CALLOC(model.meshes[mi].vertexCount*2, sizeof(float));
- model.meshes[mi].normals = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float));
- model.meshMaterial[mi] = mi;
- }
-
- // scan through the combined sub meshes and pick out each material mesh
- for (unsigned int af = 0; af < attrib.num_faces; af++)
- {
- int mm = attrib.material_ids[af]; // mesh material for this face
- if (mm == -1) { mm = 0; } // no material object..
-
- // Get indices for the face
- tinyobj_vertex_index_t idx0 = attrib.faces[3*af + 0];
- tinyobj_vertex_index_t idx1 = attrib.faces[3*af + 1];
- tinyobj_vertex_index_t idx2 = attrib.faces[3*af + 2];
-
- // Fill vertices buffer (float) using vertex index of the face
- for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx0.v_idx*3 + v]; } vCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx1.v_idx*3 + v]; } vCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx2.v_idx*3 + v]; } vCount[mm] +=3;
-
- if (attrib.num_texcoords > 0)
- {
- // Fill texcoords buffer (float) using vertex index of the face
- // NOTE: Y-coordinate must be flipped upside-down to account for
- // raylib's upside down textures...
- model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx0.vt_idx*2 + 0];
- model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1]; vtCount[mm] += 2;
- model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx1.vt_idx*2 + 0];
- model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1]; vtCount[mm] += 2;
- model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx2.vt_idx*2 + 0];
- model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1]; vtCount[mm] += 2;
- }
-
- if (attrib.num_normals > 0)
- {
- // Fill normals buffer (float) using vertex index of the face
- for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx0.vn_idx*3 + v]; } vnCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx1.vn_idx*3 + v]; } vnCount[mm] +=3;
- for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx2.vn_idx*3 + v]; } vnCount[mm] +=3;
- }
- }
-
- // Init model materials
- for (unsigned int m = 0; m < materialCount; m++)
- {
- // Init material to default
- // NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE
- model.materials[m] = LoadMaterialDefault();
-
- model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault(); // Get default texture, in case no texture is defined
-
- if (materials[m].diffuse_texname != NULL) model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(materials[m].diffuse_texname); //char *diffuse_texname; // map_Kd
- else model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault();
-
- model.materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(materials[m].diffuse[0]*255.0f), (unsigned char)(materials[m].diffuse[1]*255.0f), (unsigned char)(materials[m].diffuse[2]*255.0f), 255 }; //float diffuse[3];
- model.materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
-
- if (materials[m].specular_texname != NULL) model.materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(materials[m].specular_texname); //char *specular_texname; // map_Ks
- model.materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(materials[m].specular[0]*255.0f), (unsigned char)(materials[m].specular[1]*255.0f), (unsigned char)(materials[m].specular[2]*255.0f), 255 }; //float specular[3];
- model.materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f;
-
- if (materials[m].bump_texname != NULL) model.materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(materials[m].bump_texname); //char *bump_texname; // map_bump, bump
- model.materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE;
- model.materials[m].maps[MATERIAL_MAP_NORMAL].value = materials[m].shininess;
-
- model.materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(materials[m].emission[0]*255.0f), (unsigned char)(materials[m].emission[1]*255.0f), (unsigned char)(materials[m].emission[2]*255.0f), 255 }; //float emission[3];
-
- if (materials[m].displacement_texname != NULL) model.materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(materials[m].displacement_texname); //char *displacement_texname; // disp
- }
-
- tinyobj_attrib_free(&attrib);
- tinyobj_shapes_free(meshes, meshCount);
- tinyobj_materials_free(materials, materialCount);
-
- RL_FREE(fileData);
- RL_FREE(matFaces);
-
- RL_FREE(vCount);
- RL_FREE(vtCount);
- RL_FREE(vnCount);
- RL_FREE(faceCount);
-
- if (CHDIR(currentDir) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir);
- }
- }
-
- return model;
-}
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_IQM)
-// Load IQM mesh data
-static Model LoadIQM(const char *fileName)
-{
- #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
- #define IQM_VERSION 2 // only IQM version 2 supported
-
- #define BONE_NAME_LENGTH 32 // BoneInfo name string length
- #define MESH_NAME_LENGTH 32 // Mesh name string length
- #define MATERIAL_NAME_LENGTH 32 // Material name string length
-
- unsigned int fileSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &fileSize);
- unsigned char *fileDataPtr = fileData;
-
- // IQM file structs
- //-----------------------------------------------------------------------------------
- typedef struct IQMHeader {
- char magic[16];
- unsigned int version;
- unsigned int filesize;
- unsigned int flags;
- unsigned int num_text, ofs_text;
- unsigned int num_meshes, ofs_meshes;
- unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
- unsigned int num_triangles, ofs_triangles, ofs_adjacency;
- unsigned int num_joints, ofs_joints;
- unsigned int num_poses, ofs_poses;
- unsigned int num_anims, ofs_anims;
- unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
- unsigned int num_comment, ofs_comment;
- unsigned int num_extensions, ofs_extensions;
- } IQMHeader;
-
- typedef struct IQMMesh {
- unsigned int name;
- unsigned int material;
- unsigned int first_vertex, num_vertexes;
- unsigned int first_triangle, num_triangles;
- } IQMMesh;
-
- typedef struct IQMTriangle {
- unsigned int vertex[3];
- } IQMTriangle;
-
- typedef struct IQMJoint {
- unsigned int name;
- int parent;
- float translate[3], rotate[4], scale[3];
- } IQMJoint;
-
- typedef struct IQMVertexArray {
- unsigned int type;
- unsigned int flags;
- unsigned int format;
- unsigned int size;
- unsigned int offset;
- } IQMVertexArray;
-
- // NOTE: Below IQM structures are not used but listed for reference
- /*
- typedef struct IQMAdjacency {
- unsigned int triangle[3];
- } IQMAdjacency;
-
- typedef struct IQMPose {
- int parent;
- unsigned int mask;
- float channeloffset[10];
- float channelscale[10];
- } IQMPose;
-
- typedef struct IQMAnim {
- unsigned int name;
- unsigned int first_frame, num_frames;
- float framerate;
- unsigned int flags;
- } IQMAnim;
-
- typedef struct IQMBounds {
- float bbmin[3], bbmax[3];
- float xyradius, radius;
- } IQMBounds;
- */
- //-----------------------------------------------------------------------------------
-
- // IQM vertex data types
- enum {
- IQM_POSITION = 0,
- IQM_TEXCOORD = 1,
- IQM_NORMAL = 2,
- IQM_TANGENT = 3, // NOTE: Tangents unused by default
- IQM_BLENDINDEXES = 4,
- IQM_BLENDWEIGHTS = 5,
- IQM_COLOR = 6, // NOTE: Vertex colors unused by default
- IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default
- };
-
- Model model = { 0 };
-
- IQMMesh *imesh = NULL;
- IQMTriangle *tri = NULL;
- IQMVertexArray *va = NULL;
- IQMJoint *ijoint = NULL;
-
- float *vertex = NULL;
- float *normal = NULL;
- float *text = NULL;
- char *blendi = NULL;
- unsigned char *blendw = NULL;
-
- // In case file can not be read, return an empty model
- if (fileDataPtr == NULL) return model;
-
- // Read IQM header
- IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
-
- if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
- return model;
- }
-
- if (iqmHeader->version != IQM_VERSION)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
- return model;
- }
-
- //fileDataPtr += sizeof(IQMHeader); // Move file data pointer
-
- // Meshes data processing
- imesh = RL_MALLOC(sizeof(IQMMesh)*iqmHeader->num_meshes);
- //fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET);
- //fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile);
- memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh));
-
- model.meshCount = iqmHeader->num_meshes;
- model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
-
- model.materialCount = model.meshCount;
- model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
- model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
-
- char name[MESH_NAME_LENGTH] = { 0 };
- char material[MATERIAL_NAME_LENGTH] = { 0 };
-
- for (int i = 0; i < model.meshCount; i++)
- {
- //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET);
- //fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile);
- memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char));
-
- //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET);
- //fread(material, sizeof(char)*MATERIAL_NAME_LENGTH, 1, iqmFile);
- memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char));
-
- model.materials[i] = LoadMaterialDefault();
-
- TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material);
-
- model.meshes[i].vertexCount = imesh[i].num_vertexes;
-
- model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions
- model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals
- model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords
-
- model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
- model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
-
- model.meshes[i].triangleCount = imesh[i].num_triangles;
- model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short));
-
- // Animated verted data, what we actually process for rendering
- // NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
- model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
- model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
- }
-
- // Triangles data processing
- tri = RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle));
- //fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET);
- //fread(tri, iqmHeader->num_triangles*sizeof(IQMTriangle), 1, iqmFile);
- memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle));
-
- for (int m = 0; m < model.meshCount; m++)
- {
- int tcounter = 0;
-
- for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++)
- {
- // IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order,
- // expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes
- // NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default
- model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex;
- model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex;
- model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
- tcounter += 3;
- }
- }
-
- // Vertex arrays data processing
- va = RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
- //fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET);
- //fread(va, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray), 1, iqmFile);
- memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
-
- for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++)
- {
- switch (va[i].type)
- {
- case IQM_POSITION:
- {
- vertex = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
- memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int vCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
- {
- model.meshes[m].vertices[vCounter] = vertex[i];
- model.meshes[m].animVertices[vCounter] = vertex[i];
- vCounter++;
- }
- }
- } break;
- case IQM_NORMAL:
- {
- normal = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
- memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int vCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
- {
- model.meshes[m].normals[vCounter] = normal[i];
- model.meshes[m].animNormals[vCounter] = normal[i];
- vCounter++;
- }
- }
- } break;
- case IQM_TEXCOORD:
- {
- text = RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile);
- memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int vCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
- {
- model.meshes[m].texcoords[vCounter] = text[i];
- vCounter++;
- }
- }
- } break;
- case IQM_BLENDINDEXES:
- {
- blendi = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile);
- memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int boneCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
- {
- model.meshes[m].boneIds[boneCounter] = blendi[i];
- boneCounter++;
- }
- }
- } break;
- case IQM_BLENDWEIGHTS:
- {
- blendw = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
- //fseek(iqmFile, va[i].offset, SEEK_SET);
- //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
- memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
-
- for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
- {
- int boneCounter = 0;
- for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
- {
- model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f;
- boneCounter++;
- }
- }
- } break;
- }
- }
-
- // Bones (joints) data processing
- ijoint = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
- //fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET);
- //fread(ijoint, iqmHeader->num_joints*sizeof(IQMJoint), 1, iqmFile);
- memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
-
- model.boneCount = iqmHeader->num_joints;
- model.bones = RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo));
- model.bindPose = RL_MALLOC(iqmHeader->num_joints*sizeof(Transform));
-
- for (unsigned int i = 0; i < iqmHeader->num_joints; i++)
- {
- // Bones
- model.bones[i].parent = ijoint[i].parent;
- //fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET);
- //fread(model.bones[i].name, BONE_NAME_LENGTH*sizeof(char), 1, iqmFile);
- memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char));
-
- // Bind pose (base pose)
- model.bindPose[i].translation.x = ijoint[i].translate[0];
- model.bindPose[i].translation.y = ijoint[i].translate[1];
- model.bindPose[i].translation.z = ijoint[i].translate[2];
-
- model.bindPose[i].rotation.x = ijoint[i].rotate[0];
- model.bindPose[i].rotation.y = ijoint[i].rotate[1];
- model.bindPose[i].rotation.z = ijoint[i].rotate[2];
- model.bindPose[i].rotation.w = ijoint[i].rotate[3];
-
- model.bindPose[i].scale.x = ijoint[i].scale[0];
- model.bindPose[i].scale.y = ijoint[i].scale[1];
- model.bindPose[i].scale.z = ijoint[i].scale[2];
- }
-
- // Build bind pose from parent joints
- for (int i = 0; i < model.boneCount; i++)
- {
- if (model.bones[i].parent >= 0)
- {
- model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation);
- model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation);
- model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation);
- model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale);
- }
- }
-
- RL_FREE(fileData);
-
- RL_FREE(imesh);
- RL_FREE(tri);
- RL_FREE(va);
- RL_FREE(vertex);
- RL_FREE(normal);
- RL_FREE(text);
- RL_FREE(blendi);
- RL_FREE(blendw);
- RL_FREE(ijoint);
-
- return model;
-}
-
-// Load IQM animation data
-static ModelAnimation* LoadIQMModelAnimations(const char* fileName, int* animCount)
-{
-#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
-#define IQM_VERSION 2 // only IQM version 2 supported
-
- unsigned int fileSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &fileSize);
- unsigned char *fileDataPtr = fileData;
-
- typedef struct IQMHeader {
- char magic[16];
- unsigned int version;
- unsigned int filesize;
- unsigned int flags;
- unsigned int num_text, ofs_text;
- unsigned int num_meshes, ofs_meshes;
- unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
- unsigned int num_triangles, ofs_triangles, ofs_adjacency;
- unsigned int num_joints, ofs_joints;
- unsigned int num_poses, ofs_poses;
- unsigned int num_anims, ofs_anims;
- unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
- unsigned int num_comment, ofs_comment;
- unsigned int num_extensions, ofs_extensions;
- } IQMHeader;
-
- typedef struct IQMPose {
- int parent;
- unsigned int mask;
- float channeloffset[10];
- float channelscale[10];
- } IQMPose;
-
- typedef struct IQMAnim {
- unsigned int name;
- unsigned int first_frame, num_frames;
- float framerate;
- unsigned int flags;
- } IQMAnim;
-
- // In case file can not be read, return an empty model
- if (fileDataPtr == NULL) return NULL;
-
- // Read IQM header
- IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
-
- if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
- return NULL;
- }
-
- if (iqmHeader->version != IQM_VERSION)
- {
- TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
- return NULL;
- }
-
- // Get bones data
- IQMPose *poses = RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose));
- //fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET);
- //fread(poses, iqmHeader->num_poses*sizeof(IQMPose), 1, iqmFile);
- memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose));
-
- // Get animations data
- *animCount = iqmHeader->num_anims;
- IQMAnim *anim = RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim));
- //fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET);
- //fread(anim, iqmHeader->num_anims*sizeof(IQMAnim), 1, iqmFile);
- memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim));
-
- ModelAnimation *animations = RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation));
-
- // frameposes
- unsigned short *framedata = RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
- //fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET);
- //fread(framedata, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short), 1, iqmFile);
- memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
-
- for (unsigned int a = 0; a < iqmHeader->num_anims; a++)
- {
- animations[a].frameCount = anim[a].num_frames;
- animations[a].boneCount = iqmHeader->num_poses;
- animations[a].bones = RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo));
- animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *));
- // animations[a].framerate = anim.framerate; // TODO: Use framerate?
-
- for (unsigned int j = 0; j < iqmHeader->num_poses; j++)
- {
- strcpy(animations[a].bones[j].name, "ANIMJOINTNAME");
- animations[a].bones[j].parent = poses[j].parent;
- }
-
- for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqmHeader->num_poses*sizeof(Transform));
-
- int dcounter = anim[a].first_frame*iqmHeader->num_framechannels;
-
- for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
- {
- for (unsigned int i = 0; i < iqmHeader->num_poses; i++)
- {
- animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0];
-
- if (poses[i].mask & 0x01)
- {
- animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1];
-
- if (poses[i].mask & 0x02)
- {
- animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2];
-
- if (poses[i].mask & 0x04)
- {
- animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
-
- if (poses[i].mask & 0x08)
- {
- animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
-
- if (poses[i].mask & 0x10)
- {
- animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
-
- if (poses[i].mask & 0x20)
- {
- animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
-
- if (poses[i].mask & 0x40)
- {
- animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7];
-
- if (poses[i].mask & 0x80)
- {
- animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8];
-
- if (poses[i].mask & 0x100)
- {
- animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9];
-
- if (poses[i].mask & 0x200)
- {
- animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
- dcounter++;
- }
-
- animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation);
- }
- }
-
- // Build frameposes
- for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
- {
- for (int i = 0; i < animations[a].boneCount; i++)
- {
- if (animations[a].bones[i].parent >= 0)
- {
- animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation);
- animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation);
- animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation);
- animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale);
- }
- }
- }
- }
-
- RL_FREE(fileData);
-
- RL_FREE(framedata);
- RL_FREE(poses);
- RL_FREE(anim);
-
- return animations;
-}
-
-#endif
-
-#if defined(SUPPORT_FILEFORMAT_GLTF)
-
-static const unsigned char base64Table[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 62, 0, 0, 0, 63, 52, 53,
- 54, 55, 56, 57, 58, 59, 60, 61, 0, 0,
- 0, 0, 0, 0, 0, 0, 1, 2, 3, 4,
- 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
- 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
- 25, 0, 0, 0, 0, 0, 0, 26, 27, 28,
- 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
- 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
- 49, 50, 51
-};
-
-static int GetSizeBase64(char *input)
-{
- int size = 0;
-
- for (int i = 0; input[4*i] != 0; i++)
- {
- if (input[4*i + 3] == '=')
- {
- if (input[4*i + 2] == '=') size += 1;
- else size += 2;
- }
- else size += 3;
- }
-
- return size;
-}
-
-static unsigned char *DecodeBase64(char *input, int *size)
-{
- *size = GetSizeBase64(input);
-
- unsigned char *buf = (unsigned char *)RL_MALLOC(*size);
- for (int i = 0; i < *size/3; i++)
- {
- unsigned char a = base64Table[(int)input[4*i]];
- unsigned char b = base64Table[(int)input[4*i + 1]];
- unsigned char c = base64Table[(int)input[4*i + 2]];
- unsigned char d = base64Table[(int)input[4*i + 3]];
-
- buf[3*i] = (a << 2) | (b >> 4);
- buf[3*i + 1] = (b << 4) | (c >> 2);
- buf[3*i + 2] = (c << 6) | d;
- }
-
- if (*size%3 == 1)
- {
- int n = *size/3;
- unsigned char a = base64Table[(int)input[4*n]];
- unsigned char b = base64Table[(int)input[4*n + 1]];
- buf[*size - 1] = (a << 2) | (b >> 4);
- }
- else if (*size%3 == 2)
- {
- int n = *size/3;
- unsigned char a = base64Table[(int)input[4*n]];
- unsigned char b = base64Table[(int)input[4*n + 1]];
- unsigned char c = base64Table[(int)input[4*n + 2]];
- buf[*size - 2] = (a << 2) | (b >> 4);
- buf[*size - 1] = (b << 4) | (c >> 2);
- }
- return buf;
-}
-
-// Load texture from cgltf_image
-static Image LoadImageFromCgltfImage(cgltf_image *image, const char *texPath, Color tint)
-{
- Image rimage = { 0 };
-
- if (image->uri)
- {
- if ((strlen(image->uri) > 5) &&
- (image->uri[0] == 'd') &&
- (image->uri[1] == 'a') &&
- (image->uri[2] == 't') &&
- (image->uri[3] == 'a') &&
- (image->uri[4] == ':'))
- {
- // Data URI
- // Format: data:<mediatype>;base64,<data>
-
- // Find the comma
- int i = 0;
- while ((image->uri[i] != ',') && (image->uri[i] != 0)) i++;
-
- if (image->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image");
- else
- {
- int size = 0;
- unsigned char *data = DecodeBase64(image->uri + i + 1, &size);
-
- int width, height;
- unsigned char *raw = stbi_load_from_memory(data, size, &width, &height, NULL, 4);
- RL_FREE(data);
-
- rimage.data = raw;
- rimage.width = width;
- rimage.height = height;
- rimage.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
- rimage.mipmaps = 1;
-
- // TODO: Tint shouldn't be applied here!
- ImageColorTint(&rimage, tint);
- }
- }
- else
- {
- rimage = LoadImage(TextFormat("%s/%s", texPath, image->uri));
-
- // TODO: Tint shouldn't be applied here!
- ImageColorTint(&rimage, tint);
- }
- }
- else if (image->buffer_view)
- {
- unsigned char *data = RL_MALLOC(image->buffer_view->size);
- int n = (int)image->buffer_view->offset;
- int stride = (int)image->buffer_view->stride ? (int)image->buffer_view->stride : 1;
-
- for (unsigned int i = 0; i < image->buffer_view->size; i++)
- {
- data[i] = ((unsigned char *)image->buffer_view->buffer->data)[n];
- n += stride;
- }
-
- int width, height;
- unsigned char *raw = stbi_load_from_memory(data, (int)image->buffer_view->size, &width, &height, NULL, 4);
- RL_FREE(data);
-
- rimage.data = raw;
- rimage.width = width;
- rimage.height = height;
- rimage.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
- rimage.mipmaps = 1;
-
- // TODO: Tint shouldn't be applied here!
- ImageColorTint(&rimage, tint);
- }
- else rimage = GenImageColor(1, 1, tint);
-
- return rimage;
-}
-
-
-static bool GLTFReadValue(cgltf_accessor* acc, unsigned int index, void *variable, unsigned int elements, unsigned int size)
-{
- if (acc->count == 2)
- {
- if (index > 1) return false;
-
- memcpy(variable, index == 0 ? acc->min : acc->max, elements*size);
- return true;
- }
-
- unsigned int stride = size*elements;
- memset(variable, 0, stride);
-
- if (acc->buffer_view == NULL || acc->buffer_view->buffer == NULL || acc->buffer_view->buffer->data == NULL) return false;
-
- void* readPosition = ((char *)acc->buffer_view->buffer->data) + (index*stride) + acc->buffer_view->offset + acc->offset;
- memcpy(variable, readPosition, stride);
- return true;
-}
-
-// LoadGLTF loads in model data from given filename, supporting both .gltf and .glb
-static Model LoadGLTF(const char *fileName)
-{
- /***********************************************************************************
-
- Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend) and Hristo Stamenov(@object71)
-
- Features:
- - Supports .gltf and .glb files
- - Supports embedded (base64) or external textures
- - Loads all raylib supported material textures, values and colors
- - Supports multiple mesh per model and multiple primitives per model
-
- Some restrictions (not exhaustive):
- - Triangle-only meshes
- - Not supported node hierarchies or transforms
- - Only supports unsigned short indices (no byte/unsigned int)
- - Only supports float for texture coordinates (no byte/unsigned short)
-
- *************************************************************************************/
-
- Model model = { 0 };
-
- // glTF file loading
- unsigned int dataSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &dataSize);
-
- if (fileData == NULL) return model;
-
- // glTF data loading
- cgltf_options options = { 0 };
- cgltf_data *data = NULL;
- cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
-
- if (result == cgltf_result_success)
- {
- TRACELOG(LOG_INFO, "MODEL: [%s] glTF meshes (%s) count: %i", fileName, (data->file_type == 2)? "glb" : "gltf", data->meshes_count);
- TRACELOG(LOG_INFO, "MODEL: [%s] glTF materials (%s) count: %i", fileName, (data->file_type == 2)? "glb" : "gltf", data->materials_count);
-
- // Read data buffers
- result = cgltf_load_buffers(&options, data, fileName);
- if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName);
-
- int primitivesCount = 0;
-
- for (unsigned int i = 0; i < data->meshes_count; i++)
- primitivesCount += (int)data->meshes[i].primitives_count;
-
- // Process glTF data and map to model
- model.meshCount = primitivesCount;
- model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
- model.materialCount = (int)data->materials_count + 1;
- model.materials = RL_MALLOC(model.materialCount*sizeof(Material));
- model.meshMaterial = RL_MALLOC(model.meshCount*sizeof(int));
- model.boneCount = (int)data->nodes_count;
- model.bones = RL_CALLOC(model.boneCount, sizeof(BoneInfo));
- model.bindPose = RL_CALLOC(model.boneCount, sizeof(Transform));
-
- InitGLTFBones(&model, data);
- LoadGLTFMaterial(&model, fileName, data);
-
- int primitiveIndex = 0;
-
- for (unsigned int i = 0; i < data->meshes_count; i++)
- {
- for (unsigned int p = 0; p < data->meshes[i].primitives_count; p++)
- {
- for (unsigned int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++)
- {
- if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_position)
- {
- cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
- model.meshes[primitiveIndex].vertexCount = (int)acc->count;
- int bufferSize = model.meshes[primitiveIndex].vertexCount*3*sizeof(float);
- model.meshes[primitiveIndex].vertices = RL_MALLOC(bufferSize);
- model.meshes[primitiveIndex].animVertices = RL_MALLOC(bufferSize);
-
- if (acc->component_type == cgltf_component_type_r_32f)
- {
- for (int a = 0; a < acc->count; a++)
- {
- GLTFReadValue(acc, a, model.meshes[primitiveIndex].vertices + (a*3), 3, sizeof(float));
- }
- }
- else if (acc->component_type == cgltf_component_type_r_32u)
- {
- int readValue[3];
- for (int a = 0; a < acc->count; a++)
- {
- GLTFReadValue(acc, a, readValue, 3, sizeof(int));
- model.meshes[primitiveIndex].vertices[(a*3) + 0] = (float)readValue[0];
- model.meshes[primitiveIndex].vertices[(a*3) + 1] = (float)readValue[1];
- model.meshes[primitiveIndex].vertices[(a*3) + 2] = (float)readValue[2];
- }
- }
- else
- {
- // TODO: Support normalized unsigned byte/unsigned short vertices
- TRACELOG(LOG_WARNING, "MODEL: [%s] glTF vertices must be float or int", fileName);
- }
-
- memcpy(model.meshes[primitiveIndex].animVertices, model.meshes[primitiveIndex].vertices, bufferSize);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_normal)
- {
- cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
-
- int bufferSize = (int)(acc->count*3*sizeof(float));
- model.meshes[primitiveIndex].normals = RL_MALLOC(bufferSize);
- model.meshes[primitiveIndex].animNormals = RL_MALLOC(bufferSize);
-
- if (acc->component_type == cgltf_component_type_r_32f)
- {
- for (int a = 0; a < acc->count; a++)
- {
- GLTFReadValue(acc, a, model.meshes[primitiveIndex].normals + (a*3), 3, sizeof(float));
- }
- }
- else if (acc->component_type == cgltf_component_type_r_32u)
- {
- int readValue[3];
- for (int a = 0; a < acc->count; a++)
- {
- GLTFReadValue(acc, a, readValue, 3, sizeof(int));
- model.meshes[primitiveIndex].normals[(a*3) + 0] = (float)readValue[0];
- model.meshes[primitiveIndex].normals[(a*3) + 1] = (float)readValue[1];
- model.meshes[primitiveIndex].normals[(a*3) + 2] = (float)readValue[2];
- }
- }
- else
- {
- // TODO: Support normalized unsigned byte/unsigned short normals
- TRACELOG(LOG_WARNING, "MODEL: [%s] glTF normals must be float or int", fileName);
- }
-
- memcpy(model.meshes[primitiveIndex].animNormals, model.meshes[primitiveIndex].normals, bufferSize);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_texcoord)
- {
- cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
-
- if (acc->component_type == cgltf_component_type_r_32f)
- {
- model.meshes[primitiveIndex].texcoords = RL_MALLOC(acc->count*2*sizeof(float));
-
- for (int a = 0; a < acc->count; a++)
- {
- GLTFReadValue(acc, a, model.meshes[primitiveIndex].texcoords + (a*2), 2, sizeof(float));
- }
- }
- else
- {
- // TODO: Support normalized unsigned byte/unsigned short texture coordinates
- TRACELOG(LOG_WARNING, "MODEL: [%s] glTF texture coordinates must be float", fileName);
- }
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_joints)
- {
- cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
- LoadGLTFBoneAttribute(&model, acc, data, primitiveIndex);
- }
- else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_weights)
- {
- cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
-
- model.meshes[primitiveIndex].boneWeights = RL_MALLOC(acc->count*4*sizeof(float));
-
- if (acc->component_type == cgltf_component_type_r_32f)
- {
- for (int a = 0; a < acc->count; a++)
- {
- GLTFReadValue(acc, a, model.meshes[primitiveIndex].boneWeights + (a*4), 4, sizeof(float));
- }
- }
- else if (acc->component_type == cgltf_component_type_r_32u)
- {
- unsigned int readValue[4];
- for (int a = 0; a < acc->count; a++)
- {
- GLTFReadValue(acc, a, readValue, 4, sizeof(unsigned int));
- model.meshes[primitiveIndex].normals[(a*4) + 0] = (float)readValue[0];
- model.meshes[primitiveIndex].normals[(a*4) + 1] = (float)readValue[1];
- model.meshes[primitiveIndex].normals[(a*4) + 2] = (float)readValue[2];
- model.meshes[primitiveIndex].normals[(a*4) + 3] = (float)readValue[3];
- }
- }
- else
- {
- // TODO: Support normalized unsigned byte/unsigned short weights
- TRACELOG(LOG_WARNING, "MODEL: [%s] glTF normals must be float or int", fileName);
- }
- }
- }
-
- cgltf_accessor *acc = data->meshes[i].primitives[p].indices;
- LoadGLTFModelIndices(&model, acc, primitiveIndex);
-
- if (data->meshes[i].primitives[p].material)
- {
- // Compute the offset
- model.meshMaterial[primitiveIndex] = (int)(data->meshes[i].primitives[p].material - data->materials);
- }
- else
- {
- model.meshMaterial[primitiveIndex] = model.materialCount - 1;
- }
-
- BindGLTFPrimitiveToBones(&model, data, primitiveIndex);
-
- primitiveIndex++;
- }
-
- }
-
- cgltf_free(data);
- }
- else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
-
- RL_FREE(fileData);
-
- return model;
-}
-
-static void InitGLTFBones(Model* model, const cgltf_data* data)
-{
- for (unsigned int j = 0; j < data->nodes_count; j++)
- {
- strcpy(model->bones[j].name, data->nodes[j].name == 0 ? "ANIMJOINT" : data->nodes[j].name);
- model->bones[j].parent = (data->nodes[j].parent != NULL) ? (int)(data->nodes[j].parent - data->nodes) : -1;
- }
-
- for (unsigned int i = 0; i < data->nodes_count; i++)
- {
- if (data->nodes[i].has_translation) memcpy(&model->bindPose[i].translation, data->nodes[i].translation, 3*sizeof(float));
- else model->bindPose[i].translation = Vector3Zero();
-
- if (data->nodes[i].has_rotation) memcpy(&model->bindPose[i].rotation, data->nodes[i].rotation, 4*sizeof(float));
- else model->bindPose[i].rotation = QuaternionIdentity();
-
- model->bindPose[i].rotation = QuaternionNormalize(model->bindPose[i].rotation);
-
- if (data->nodes[i].has_scale) memcpy(&model->bindPose[i].scale, data->nodes[i].scale, 3*sizeof(float));
- else model->bindPose[i].scale = Vector3One();
- }
-
- {
- bool* completedBones = RL_CALLOC(model->boneCount, sizeof(bool));
- int numberCompletedBones = 0;
-
- while (numberCompletedBones < model->boneCount) {
- for (int i = 0; i < model->boneCount; i++)
- {
- if (completedBones[i]) continue;
-
- if (model->bones[i].parent < 0) {
- completedBones[i] = true;
- numberCompletedBones++;
- continue;
- }
-
- if (!completedBones[model->bones[i].parent]) continue;
-
- Transform* currentTransform = &model->bindPose[i];
- BoneInfo* currentBone = &model->bones[i];
- int root = currentBone->parent;
- if (root >= model->boneCount)
- root = 0;
- Transform* parentTransform = &model->bindPose[root];
-
- currentTransform->rotation = QuaternionMultiply(parentTransform->rotation, currentTransform->rotation);
- currentTransform->translation = Vector3RotateByQuaternion(currentTransform->translation, parentTransform->rotation);
- currentTransform->translation = Vector3Add(currentTransform->translation, parentTransform->translation);
- currentTransform->scale = Vector3Multiply(currentTransform->scale, parentTransform->scale);
- completedBones[i] = true;
- numberCompletedBones++;
- }
- }
-
- RL_FREE(completedBones);
- }
-}
-
-static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_data* data)
-{
- for (int i = 0; i < model->materialCount - 1; i++)
- {
- model->materials[i] = LoadMaterialDefault();
- Color tint = (Color){ 255, 255, 255, 255 };
- const char *texPath = GetDirectoryPath(fileName);
-
- // Ensure material follows raylib support for PBR (metallic/roughness flow)
- if (data->materials[i].has_pbr_metallic_roughness)
- {
- tint.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255);
- tint.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255);
- tint.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255);
- tint.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255);
-
- model->materials[i].maps[MATERIAL_MAP_ALBEDO].color = tint;
-
- if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture)
- {
- Image albedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath, tint);
- model->materials[i].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(albedo);
- UnloadImage(albedo);
- }
-
- tint = WHITE; // Set tint to white after it's been used by Albedo
-
- if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture)
- {
- Image metallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath, tint);
- model->materials[i].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(metallicRoughness);
-
- float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor;
- model->materials[i].maps[MATERIAL_MAP_ROUGHNESS].value = roughness;
-
- float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor;
- model->materials[i].maps[MATERIAL_MAP_METALNESS].value = metallic;
-
- UnloadImage(metallicRoughness);
- }
-
- if (data->materials[i].normal_texture.texture)
- {
- Image normalImage = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath, tint);
- model->materials[i].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(normalImage);
- UnloadImage(normalImage);
- }
-
- if (data->materials[i].occlusion_texture.texture)
- {
- Image occulsionImage = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath, tint);
- model->materials[i].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(occulsionImage);
- UnloadImage(occulsionImage);
- }
-
- if (data->materials[i].emissive_texture.texture)
- {
- Image emissiveImage = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath, tint);
- model->materials[i].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(emissiveImage);
- tint.r = (unsigned char)(data->materials[i].emissive_factor[0]*255);
- tint.g = (unsigned char)(data->materials[i].emissive_factor[1]*255);
- tint.b = (unsigned char)(data->materials[i].emissive_factor[2]*255);
- model->materials[i].maps[MATERIAL_MAP_EMISSION].color = tint;
- UnloadImage(emissiveImage);
- }
- }
- }
-
- model->materials[model->materialCount - 1] = LoadMaterialDefault();
-}
-
-static void LoadGLTFBoneAttribute(Model* model, cgltf_accessor* jointsAccessor, const cgltf_data* data, int primitiveIndex)
-{
- if (jointsAccessor->component_type == cgltf_component_type_r_16u)
- {
- model->meshes[primitiveIndex].boneIds = RL_MALLOC(sizeof(int)*jointsAccessor->count*4);
- short* bones = RL_MALLOC(sizeof(short)*jointsAccessor->count*4);
-
- for (int a = 0; a < jointsAccessor->count; a++)
- {
- GLTFReadValue(jointsAccessor, a, bones + (a*4), 4, sizeof(short));
- }
-
- for (unsigned int a = 0; a < jointsAccessor->count*4; a++)
- {
- cgltf_node* skinJoint = data->skins->joints[bones[a]];
-
- for (unsigned int k = 0; k < data->nodes_count; k++)
- {
- if (&(data->nodes[k]) == skinJoint)
- {
- model->meshes[primitiveIndex].boneIds[a] = k;
- break;
- }
- }
- }
- RL_FREE(bones);
- }
- else if (jointsAccessor->component_type == cgltf_component_type_r_8u)
- {
- model->meshes[primitiveIndex].boneIds = RL_MALLOC(sizeof(int)*jointsAccessor->count*4);
- unsigned char* bones = RL_MALLOC(sizeof(unsigned char)*jointsAccessor->count*4);
-
- for (int a = 0; a < jointsAccessor->count; a++)
- {
- GLTFReadValue(jointsAccessor, a, bones + (a*4), 4, sizeof(unsigned char));
- }
-
- for (unsigned int a = 0; a < jointsAccessor->count*4; a++)
- {
- cgltf_node* skinJoint = data->skins->joints[bones[a]];
-
- for (unsigned int k = 0; k < data->nodes_count; k++)
- {
- if (&(data->nodes[k]) == skinJoint)
- {
- model->meshes[primitiveIndex].boneIds[a] = k;
- break;
- }
- }
- }
- RL_FREE(bones);
- }
- else
- {
- // TODO: Support other size of bone index?
- TRACELOG(LOG_WARNING, "MODEL: glTF bones in unexpected format");
- }
-}
-
-static void BindGLTFPrimitiveToBones(Model* model, const cgltf_data* data, int primitiveIndex)
-{
- if (model->meshes[primitiveIndex].boneIds == NULL && data->nodes_count > 0)
- {
- for (int nodeId = 0; nodeId < data->nodes_count; nodeId++)
- {
- if (data->nodes[nodeId].mesh == &(data->meshes[primitiveIndex]))
- {
- model->meshes[primitiveIndex].boneIds = RL_CALLOC(4*model->meshes[primitiveIndex].vertexCount, sizeof(int));
- model->meshes[primitiveIndex].boneWeights = RL_CALLOC(4*model->meshes[primitiveIndex].vertexCount, sizeof(float));
-
- for (int b = 0; b < 4*model->meshes[primitiveIndex].vertexCount; b++)
- {
- if (b%4 == 0)
- {
- model->meshes[primitiveIndex].boneIds[b] = nodeId;
- model->meshes[primitiveIndex].boneWeights[b] = 1.0f;
- }
- else
- {
- model->meshes[primitiveIndex].boneIds[b] = 0;
- model->meshes[primitiveIndex].boneWeights[b] = 0.0f;
- }
-
- }
-
- Vector3 boundVertex = { 0 };
- Vector3 boundNormal = { 0 };
-
- Vector3 outTranslation = { 0 };
- Quaternion outRotation = { 0 };
- Vector3 outScale = { 0 };
-
- int vCounter = 0;
- int boneCounter = 0;
- int boneId = 0;
-
- for (int i = 0; i < model->meshes[primitiveIndex].vertexCount; i++)
- {
- boneId = model->meshes[primitiveIndex].boneIds[boneCounter];
- outTranslation = model->bindPose[boneId].translation;
- outRotation = model->bindPose[boneId].rotation;
- outScale = model->bindPose[boneId].scale;
-
- // Vertices processing
- boundVertex = (Vector3){ model->meshes[primitiveIndex].vertices[vCounter], model->meshes[primitiveIndex].vertices[vCounter + 1], model->meshes[primitiveIndex].vertices[vCounter + 2] };
- boundVertex = Vector3Multiply(boundVertex, outScale);
- boundVertex = Vector3RotateByQuaternion(boundVertex, outRotation);
- boundVertex = Vector3Add(boundVertex, outTranslation);
- model->meshes[primitiveIndex].vertices[vCounter] = boundVertex.x;
- model->meshes[primitiveIndex].vertices[vCounter + 1] = boundVertex.y;
- model->meshes[primitiveIndex].vertices[vCounter + 2] = boundVertex.z;
-
- // Normals processing
- if (model->meshes[primitiveIndex].normals != NULL)
- {
- boundNormal = (Vector3){ model->meshes[primitiveIndex].normals[vCounter], model->meshes[primitiveIndex].normals[vCounter + 1], model->meshes[primitiveIndex].normals[vCounter + 2] };
- boundNormal = Vector3RotateByQuaternion(boundNormal, outRotation);
- model->meshes[primitiveIndex].normals[vCounter] = boundNormal.x;
- model->meshes[primitiveIndex].normals[vCounter + 1] = boundNormal.y;
- model->meshes[primitiveIndex].normals[vCounter + 2] = boundNormal.z;
- }
-
- vCounter += 3;
- boneCounter += 4;
- }
- }
- }
- }
-}
-
-static void LoadGLTFModelIndices(Model* model, cgltf_accessor* indexAccessor, int primitiveIndex)
-{
- if (indexAccessor)
- {
- if (indexAccessor->component_type == cgltf_component_type_r_16u || indexAccessor->component_type == cgltf_component_type_r_16)
- {
- model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3;
- model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short));
-
- unsigned short readValue = 0;
- for (int a = 0; a < indexAccessor->count; a++)
- {
- GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(short));
- model->meshes[primitiveIndex].indices[a] = readValue;
- }
- }
- else if (indexAccessor->component_type == cgltf_component_type_r_8u || indexAccessor->component_type == cgltf_component_type_r_8)
- {
- model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3;
- model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short));
-
- unsigned char readValue = 0;
- for (int a = 0; a < indexAccessor->count; a++)
- {
- GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(char));
- model->meshes[primitiveIndex].indices[a] = (unsigned short)readValue;
- }
- }
- else if (indexAccessor->component_type == cgltf_component_type_r_32u)
- {
- model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3;
- model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short));
-
- unsigned int readValue;
- for (int a = 0; a < indexAccessor->count; a++)
- {
- GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(unsigned int));
- model->meshes[primitiveIndex].indices[a] = (unsigned short)readValue;
- }
- }
- }
- else
- {
- // Unindexed mesh
- model->meshes[primitiveIndex].triangleCount = model->meshes[primitiveIndex].vertexCount/3;
- }
-}
-
-// LoadGLTF loads in animation data from given filename
-static ModelAnimation *LoadGLTFModelAnimations(const char *fileName, int *animCount)
-{
- /***********************************************************************************
-
- Function implemented by Hristo Stamenov (@object71)
-
- Features:
- - Supports .gltf and .glb files
-
- Some restrictions (not exhaustive):
- - ...
-
- *************************************************************************************/
-
- // glTF file loading
- unsigned int dataSize = 0;
- unsigned char *fileData = LoadFileData(fileName, &dataSize);
-
- ModelAnimation *animations = NULL;
-
- if (fileData == NULL) return animations;
-
- // glTF data loading
- cgltf_options options = { 0 };
- cgltf_data *data = NULL;
- cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
-
- if (result == cgltf_result_success)
- {
- TRACELOG(LOG_INFO, "MODEL: [%s] glTF animations (%s) count: %i", fileName, (data->file_type == 2)? "glb" :
- "gltf", data->animations_count);
-
- result = cgltf_load_buffers(&options, data, fileName);
- if (result != cgltf_result_success) TRACELOG(LOG_WARNING, "MODEL: [%s] unable to load glTF animations data", fileName);
- animations = RL_MALLOC(data->animations_count*sizeof(ModelAnimation));
- *animCount = (int)data->animations_count;
-
- for (unsigned int a = 0; a < data->animations_count; a++)
- {
- // gltf animation consists of the following structures:
- // - nodes - bones
- // - channels - single transformation type on a single bone
- // - node - bone
- // - transformation type (path) - translation, rotation, scale
- // - sampler - animation samples
- // - input - points in time this transformation happens
- // - output - the transformation amount at the given input points in time
- // - interpolation - the type of interpolation to use between the frames
-
- cgltf_animation *animation = data->animations + a;
-
- ModelAnimation *output = animations + a;
-
- // 30 frames sampled per second
- const float timeStep = (1.0f/30.0f);
- float animationDuration = 0.0f;
-
- // Getting the max animation time to consider for animation duration
- for (unsigned int i = 0; i < animation->channels_count; i++)
- {
- cgltf_animation_channel* channel = animation->channels + i;
- int frameCounts = (int)channel->sampler->input->count;
- float lastFrameTime = 0.0f;
-
- if (GLTFReadValue(channel->sampler->input, frameCounts - 1, &lastFrameTime, 1, sizeof(float)))
- {
- animationDuration = fmaxf(lastFrameTime, animationDuration);
- }
- }
-
- output->frameCount = (int)(animationDuration / timeStep);
- output->boneCount = (int)data->nodes_count;
- output->bones = RL_MALLOC(output->boneCount*sizeof(BoneInfo));
- output->framePoses = RL_MALLOC(output->frameCount*sizeof(Transform *));
- // output->framerate = // TODO: Use framerate instead of const timestep
-
- // Name and parent bones
- for (unsigned int j = 0; j < data->nodes_count; j++)
- {
- strcpy(output->bones[j].name, data->nodes[j].name == 0 ? "ANIMJOINT" : data->nodes[j].name);
- output->bones[j].parent = (data->nodes[j].parent != NULL) ? (int)(data->nodes[j].parent - data->nodes) : -1;
- }
-
- // Allocate data for frames
- // Initiate with zero bone translations
- for (int frame = 0; frame < output->frameCount; frame++)
- {
- output->framePoses[frame] = RL_MALLOC(output->frameCount*data->nodes_count*sizeof(Transform));
-
- for (unsigned int i = 0; i < data->nodes_count; i++)
- {
- output->framePoses[frame][i].translation = Vector3Zero();
- output->framePoses[frame][i].rotation = QuaternionIdentity();
- output->framePoses[frame][i].rotation = QuaternionNormalize(output->framePoses[frame][i].rotation);
- output->framePoses[frame][i].scale = Vector3One();
- }
- }
-
- // for each single transformation type on single bone
- for (unsigned int channelId = 0; channelId < animation->channels_count; channelId++)
- {
- cgltf_animation_channel* channel = animation->channels + channelId;
- cgltf_animation_sampler* sampler = channel->sampler;
-
- int boneId = (int)(channel->target_node - data->nodes);
-
- for (int frame = 0; frame < output->frameCount; frame++)
- {
- bool shouldSkipFurtherTransformation = true;
- int outputMin = 0;
- int outputMax = 0;
- float frameTime = frame*timeStep;
- float lerpPercent = 0.0f;
-
- // For this transformation:
- // getting between which input values the current frame time position
- // and also what is the percent to use in the linear interpolation later
- for (unsigned int j = 0; j < sampler->input->count; j++)
- {
- float inputFrameTime;
- if (GLTFReadValue(sampler->input, j, &inputFrameTime, 1, sizeof(float)))
- {
- if (frameTime < inputFrameTime)
- {
- shouldSkipFurtherTransformation = false;
- outputMin = (j == 0) ? 0 : j - 1;
- outputMax = j;
-
- float previousInputTime = 0.0f;
- if (GLTFReadValue(sampler->input, outputMin, &previousInputTime, 1, sizeof(float)))
- {
- if ((inputFrameTime - previousInputTime) != 0)
- {
- lerpPercent = (frameTime - previousInputTime)/(inputFrameTime - previousInputTime);
- }
- }
-
- break;
- }
- }
- else break;
- }
-
- // If the current transformation has no information for the current frame time point
- if (shouldSkipFurtherTransformation) continue;
-
- if (channel->target_path == cgltf_animation_path_type_translation)
- {
- Vector3 translationStart;
- Vector3 translationEnd;
-
- bool success = GLTFReadValue(sampler->output, outputMin, &translationStart, 3, sizeof(float));
- success = GLTFReadValue(sampler->output, outputMax, &translationEnd, 3, sizeof(float)) || success;
-
- if (success) output->framePoses[frame][boneId].translation = Vector3Lerp(translationStart, translationEnd, lerpPercent);
- }
- if (channel->target_path == cgltf_animation_path_type_rotation)
- {
- Quaternion rotationStart;
- Quaternion rotationEnd;
-
- bool success = GLTFReadValue(sampler->output, outputMin, &rotationStart, 4, sizeof(float));
- success = GLTFReadValue(sampler->output, outputMax, &rotationEnd, 4, sizeof(float)) || success;
-
- if (success)
- {
- output->framePoses[frame][boneId].rotation = QuaternionLerp(rotationStart, rotationEnd, lerpPercent);
- output->framePoses[frame][boneId].rotation = QuaternionNormalize(output->framePoses[frame][boneId].rotation);
- }
- }
- if (channel->target_path == cgltf_animation_path_type_scale)
- {
- Vector3 scaleStart;
- Vector3 scaleEnd;
-
- bool success = GLTFReadValue(sampler->output, outputMin, &scaleStart, 3, sizeof(float));
- success = GLTFReadValue(sampler->output, outputMax, &scaleEnd, 3, sizeof(float)) || success;
-
- if (success) output->framePoses[frame][boneId].scale = Vector3Lerp(scaleStart, scaleEnd, lerpPercent);
- }
- }
- }
-
- // Build frameposes
- for (int frame = 0; frame < output->frameCount; frame++)
- {
- bool *completedBones = RL_CALLOC(output->boneCount, sizeof(bool));
- int numberCompletedBones = 0;
-
- while (numberCompletedBones < output->boneCount)
- {
- for (int i = 0; i < output->boneCount; i++)
- {
- if (completedBones[i]) continue;
-
- if (output->bones[i].parent < 0)
- {
- completedBones[i] = true;
- numberCompletedBones++;
- continue;
- }
-
- if (!completedBones[output->bones[i].parent]) continue;
-
- output->framePoses[frame][i].rotation = QuaternionMultiply(output->framePoses[frame][output->bones[i].parent].rotation, output->framePoses[frame][i].rotation);
- output->framePoses[frame][i].translation = Vector3RotateByQuaternion(output->framePoses[frame][i].translation, output->framePoses[frame][output->bones[i].parent].rotation);
- output->framePoses[frame][i].translation = Vector3Add(output->framePoses[frame][i].translation, output->framePoses[frame][output->bones[i].parent].translation);
- output->framePoses[frame][i].scale = Vector3Multiply(output->framePoses[frame][i].scale, output->framePoses[frame][output->bones[i].parent].scale);
- completedBones[i] = true;
- numberCompletedBones++;
- }
- }
-
- RL_FREE(completedBones);
- }
-
- }
-
- cgltf_free(data);
- }
- else TRACELOG(LOG_WARNING, ": [%s] Failed to load glTF data", fileName);
-
- RL_FREE(fileData);
-
- return animations;
-}
-
-#endif