From 3a1d97f556bc4c5384799ac121640984b590c05c Mon Sep 17 00:00:00 2001 From: Thomas Date: Sun, 15 Aug 2021 10:03:09 +0200 Subject: Updated to raylib 3.7 --- libs/raylib/src/external/jar_xm.h | 1960 +++++++++++++++++-------------------- 1 file changed, 872 insertions(+), 1088 deletions(-) (limited to 'libs/raylib/src/external/jar_xm.h') diff --git a/libs/raylib/src/external/jar_xm.h b/libs/raylib/src/external/jar_xm.h index 1839e61..36d6fb3 100644 --- a/libs/raylib/src/external/jar_xm.h +++ b/libs/raylib/src/external/jar_xm.h @@ -1,9 +1,26 @@ -// jar_xm.h - v0.01 - public domain - Joshua Reisenauer, MAR 2016 +// jar_xm.h // -// HISTORY: +// ORIGINAL LICENSE - FOR LIBXM: // -// v0.01 2016-02-22 Setup +// Author: Romain "Artefact2" Dalmaso +// Contributor: Dan Spencer +// Repackaged into jar_xm.h By: Joshua Adam Reisenauer +// This program is free software. It comes without any warranty, to the +// extent permitted by applicable law. You can redistribute it and/or +// modify it under the terms of the Do What The Fuck You Want To Public +// License, Version 2, as published by Sam Hocevar. See +// http://sam.zoy.org/wtfpl/COPYING for more details. // +// HISTORY: +// v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016 +// v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling) +// v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included) +// v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop +// v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability +// v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments +// v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation +// v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code +// v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments // // USAGE: // @@ -36,27 +53,14 @@ // return 0; // } // -// -// LISCENSE - FOR LIBXM: -// -// Author: Romain "Artefact2" Dalmaso -// Contributor: Dan Spencer -// Repackaged into jar_xm.h By: Joshua Adam Reisenauer -// This program is free software. It comes without any warranty, to the -// extent permitted by applicable law. You can redistribute it and/or -// modify it under the terms of the Do What The Fuck You Want To Public -// License, Version 2, as published by Sam Hocevar. See -// http://sam.zoy.org/wtfpl/COPYING for more details. - #ifndef INCLUDE_JAR_XM_H #define INCLUDE_JAR_XM_H #include #define JAR_XM_DEBUG 0 -#define JAR_XM_LINEAR_INTERPOLATION 1 // speed increase with decrease in quality #define JAR_XM_DEFENSIVE 1 -#define JAR_XM_RAMPING 1 +#define JAR_XM_RAYLIB 1 // set to 0 to disable the RayLib visualizer extension // Allow custom memory allocators #ifndef JARXM_MALLOC @@ -74,224 +78,145 @@ typedef struct jar_xm_context_s jar_xm_context_t; extern "C" { #endif -/** Create a XM context. - * - * @param moddata the contents of the module - * @param rate play rate in Hz, recommended value of 48000 - * - * @returns 0 on success - * @returns 1 if module data is not sane - * @returns 2 if memory allocation failed - * @returns 3 unable to open input file - * @returns 4 fseek() failed - * @returns 5 fread() failed - * @returns 6 unkown error - * - * @deprecated This function is unsafe! - * @see jar_xm_create_context_safe() - */ +//** Create a XM context. +// * @param moddata the contents of the module +// * @param rate play rate in Hz, recommended value of 48000 +// * @returns 0 on success +// * @returns 1 if module data is not sane +// * @returns 2 if memory allocation failed +// * @returns 3 unable to open input file +// * @returns 4 fseek() failed +// * @returns 5 fread() failed +// * @returns 6 unkown error +// * @deprecated This function is unsafe! +// * @see jar_xm_create_context_safe() int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename); -/** Create a XM context. - * - * @param moddata the contents of the module - * @param rate play rate in Hz, recommended value of 48000 - * - * @returns 0 on success - * @returns 1 if module data is not sane - * @returns 2 if memory allocation failed - * - * @deprecated This function is unsafe! - * @see jar_xm_create_context_safe() - */ +//** Create a XM context. +// * @param moddata the contents of the module +// * @param rate play rate in Hz, recommended value of 48000 +// * @returns 0 on success +// * @returns 1 if module data is not sane +// * @returns 2 if memory allocation failed +// * @deprecated This function is unsafe! +// * @see jar_xm_create_context_safe() int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate); -/** Create a XM context. - * - * @param moddata the contents of the module - * @param moddata_length the length of the contents of the module, in bytes - * @param rate play rate in Hz, recommended value of 48000 - * - * @returns 0 on success - * @returns 1 if module data is not sane - * @returns 2 if memory allocation failed - */ +//** Create a XM context. +// * @param moddata the contents of the module +// * @param moddata_length the length of the contents of the module, in bytes +// * @param rate play rate in Hz, recommended value of 48000 +// * @returns 0 on success +// * @returns 1 if module data is not sane +// * @returns 2 if memory allocation failed int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate); -/** Free a XM context created by jar_xm_create_context(). */ +//** Free a XM context created by jar_xm_create_context(). */ void jar_xm_free_context(jar_xm_context_t* ctx); -/** Play the module and put the sound samples in an output buffer. - * - * @param output buffer of 2*numsamples elements (A left and right value for each sample) - * @param numsamples number of samples to generate - */ +//** Play the module and put the sound samples in an output buffer. +// * @param output buffer of 2*numsamples elements (A left and right value for each sample) +// * @param numsamples number of samples to generate void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples); -/** Play the module, resample from 32 bit to 16 bit, and put the sound samples in an output buffer. - * - * @param output buffer of 2*numsamples elements (A left and right value for each sample) - * @param numsamples number of samples to generate - */ -void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) -{ +//** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer. +// * @param output buffer of 2*numsamples elements (A left and right value for each sample) +// * @param numsamples number of samples to generate +void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) { float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); jar_xm_generate_samples(ctx, musicBuffer, numsamples); if(output){ - int x; - for(x=0;x<2*numsamples;x++) - output[x] = musicBuffer[x] * SHRT_MAX; + for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int } - JARXM_FREE(musicBuffer); } -/** Play the module, resample from 32 bit to 8 bit, and put the sound samples in an output buffer. - * - * @param output buffer of 2*numsamples elements (A left and right value for each sample) - * @param numsamples number of samples to generate - */ -void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) -{ +//** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer. +// * @param output buffer of 2*numsamples elements (A left and right value for each sample) +// * @param numsamples number of samples to generate +void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) { float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); jar_xm_generate_samples(ctx, musicBuffer, numsamples); if(output){ - int x; - for(x=0;x<2*numsamples;x++) - output[x] = musicBuffer[x] * CHAR_MAX; + for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit } - JARXM_FREE(musicBuffer); } - - -/** Set the maximum number of times a module can loop. After the - * specified number of loops, calls to jar_xm_generate_samples will only - * generate silence. You can control the current number of loops with - * jar_xm_get_loop_count(). - * - * @param loopcnt maximum number of loops. Use 0 to loop - * indefinitely. */ +//** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count(). +// * @param loopcnt maximum number of loops. Use 0 to loop indefinitely. void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt); -/** Get the loop count of the currently playing module. This value is - * 0 when the module is still playing, 1 when the module has looped - * once, etc. */ +//** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc. uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx); - - -/** Mute or unmute a channel. - * - * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). - * - * @return whether the channel was muted. - */ +//** Mute or unmute a channel. +// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). +// * @return whether the channel was muted. bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool); -/** Mute or unmute an instrument. - * - * @note Instrument numbers go from 1 to - * jar_xm_get_number_of_instruments(...). - * - * @return whether the instrument was muted. - */ +//** Mute or unmute an instrument. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). +// * @return whether the instrument was muted. bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool); - - -/** Get the module name as a NUL-terminated string. */ +//** Get the module name as a NUL-terminated string. const char* jar_xm_get_module_name(jar_xm_context_t* ctx); -/** Get the tracker name as a NUL-terminated string. */ +//** Get the tracker name as a NUL-terminated string. const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx); - - -/** Get the number of channels. */ +//** Get the number of channels. uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx); -/** Get the module length (in patterns). */ +//** Get the module length (in patterns). uint16_t jar_xm_get_module_length(jar_xm_context_t*); -/** Get the number of patterns. */ +//** Get the number of patterns. uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx); -/** Get the number of rows of a pattern. - * - * @note Pattern numbers go from 0 to - * jar_xm_get_number_of_patterns(...)-1. - */ +//** Get the number of rows of a pattern. +// * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1. uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t); -/** Get the number of instruments. */ +//** Get the number of instruments. uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx); -/** Get the number of samples of an instrument. - * - * @note Instrument numbers go from 1 to - * jar_xm_get_number_of_instruments(...). - */ +//** Get the number of samples of an instrument. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t); - - -/** Get the current module speed. - * - * @param bpm will receive the current BPM - * @param tempo will receive the current tempo (ticks per line) - */ +//** Get the current module speed. +// * @param bpm will receive the current BPM +// * @param tempo will receive the current tempo (ticks per line) void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo); -/** Get the current position in the module being played. - * - * @param pattern_index if not NULL, will receive the current pattern - * index in the POT (pattern order table) - * - * @param pattern if not NULL, will receive the current pattern number - * - * @param row if not NULL, will receive the current row - * - * @param samples if not NULL, will receive the total number of - * generated samples (divide by sample rate to get seconds of - * generated audio) - */ +//** Get the current position in the module being played. +// * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table) +// * @param pattern if not NULL, will receive the current pattern number +// * @param row if not NULL, will receive the current row +// * @param samples if not NULL, will receive the total number of +// * generated samples (divide by sample rate to get seconds of generated audio) void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples); -/** Get the latest time (in number of generated samples) when a - * particular instrument was triggered in any channel. - * - * @note Instrument numbers go from 1 to - * jar_xm_get_number_of_instruments(...). - */ +//** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t); -/** Get the latest time (in number of generated samples) when a - * particular sample was triggered in any channel. - * - * @note Instrument numbers go from 1 to - * jar_xm_get_number_of_instruments(...). - * - * @note Sample numbers go from 0 to - * jar_xm_get_nubmer_of_samples(...,instr)-1. - */ +//** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel. +// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). +// * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1. uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample); -/** Get the latest time (in number of generated samples) when any - * instrument was triggered in a given channel. - * - * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). - */ +//** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel. +// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t); -/** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples. - * - * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass. - * @note This function is very slow and should only be run once, if at all. - */ +//** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples. +// * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass. +// * @note This function is very slow and should only be run once, if at all. uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx); #ifdef __cplusplus @@ -299,12 +224,6 @@ uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx); #endif //------------------------------------------------------------------------------- - - - - - -//Function Definitions----------------------------------------------------------- #ifdef JAR_XM_IMPLEMENTATION #include @@ -330,19 +249,16 @@ extern int __fail[-1]; #endif /* ----- XM constants ----- */ - #define SAMPLE_NAME_LENGTH 22 #define INSTRUMENT_NAME_LENGTH 22 #define MODULE_NAME_LENGTH 20 #define TRACKER_NAME_LENGTH 20 #define PATTERN_ORDER_TABLE_LENGTH 256 -#define NUM_NOTES 96 -#define NUM_ENVELOPE_POINTS 12 +#define NUM_NOTES 96 // from 1 to 96, where 1 = C-0 +#define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max #define MAX_NUM_ROWS 256 -#if JAR_XM_RAMPING -#define jar_xm_SAMPLE_RAMPING_POINTS 0x20 -#endif +#define jar_xm_SAMPLE_RAMPING_POINTS 8 /* ----- Data types ----- */ @@ -389,7 +305,7 @@ typedef struct jar_xm_envelope_s jar_xm_envelope_t; struct jar_xm_sample_s { char name[SAMPLE_NAME_LENGTH + 1]; int8_t bits; /* Either 8 or 16 */ - + int8_t stereo; uint32_t length; uint32_t loop_start; uint32_t loop_length; @@ -446,12 +362,13 @@ struct jar_xm_sample_s { uint16_t num_channels; uint16_t num_patterns; uint16_t num_instruments; + uint16_t linear_interpolation; + uint16_t ramping; jar_xm_frequency_type_t frequency_type; uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH]; jar_xm_pattern_t* patterns; - jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, - * instrument 2 has index 1, etc. */ + jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */ }; typedef struct jar_xm_module_s jar_xm_module_t; @@ -517,15 +434,15 @@ struct jar_xm_sample_s { uint64_t latest_trigger; bool muted; -#if JAR_XM_RAMPING - /* These values are updated at the end of each tick, to save - * a couple of float operations on every generated sample. */ + //* These values are updated at the end of each tick, to save a couple of float operations on every generated sample. float target_panning; float target_volume; unsigned long frame_count; - float end_of_previous_sample[jar_xm_SAMPLE_RAMPING_POINTS]; -#endif + float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS]; + float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS]; + float curr_left; + float curr_right; float actual_panning; float actual_volume; @@ -537,18 +454,16 @@ struct jar_xm_sample_s { jar_xm_module_t module; uint32_t rate; - uint16_t tempo; + uint16_t default_tempo; // Number of ticks per row + uint16_t default_bpm; + float default_global_volume; + + uint16_t tempo; // Number of ticks per row uint16_t bpm; float global_volume; - float amplification; -#if JAR_XM_RAMPING - /* How much is a channel final volume allowed to change per - * sample; this is used to avoid abrubt volume changes which - * manifest as "clicks" in the generated sound. */ - float volume_ramp; + float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */ float panning_ramp; /* Same for panning. */ -#endif uint8_t current_table_index; uint8_t current_row; @@ -561,9 +476,7 @@ struct jar_xm_sample_s { uint8_t jump_dest; uint8_t jump_row; - /* Extra ticks to be played before going to the next row - - * Used for EEy effect */ - uint16_t extra_ticks; + uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */ uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */ uint8_t loop_count; @@ -572,45 +485,33 @@ struct jar_xm_sample_s { jar_xm_channel_context_t* channels; }; -/* ----- Internal API ----- */ - #if JAR_XM_DEFENSIVE -/** Check the module data for errors/inconsistencies. - * - * @returns 0 if everything looks OK. Module should be safe to load. - */ +//** Check the module data for errors/inconsistencies. +// * @returns 0 if everything looks OK. Module should be safe to load. int jar_xm_check_sanity_preload(const char*, size_t); -/** Check a loaded module for errors/inconsistencies. - * - * @returns 0 if everything looks OK. - */ +//** Check a loaded module for errors/inconsistencies. +// * @returns 0 if everything looks OK. int jar_xm_check_sanity_postload(jar_xm_context_t*); #endif -/** Get the number of bytes needed to store the module data in a - * dynamically allocated blank context. - * - * Things that are dynamically allocated: - * - sample data - * - sample structures in instruments - * - pattern data - * - row loop count arrays - * - pattern structures in module - * - instrument structures in module - * - channel contexts - * - context structure itself - - * @returns 0 if everything looks OK. - */ +//** Get the number of bytes needed to store the module data in a dynamically allocated blank context. +// * Things that are dynamically allocated: +// * - sample data +// * - sample structures in instruments +// * - pattern data +// * - row loop count arrays +// * - pattern structures in module +// * - instrument structures in module +// * - channel contexts +// * - context structure itself +// * @returns 0 if everything looks OK. size_t jar_xm_get_memory_needed_for_context(const char*, size_t); -/** Populate the context from module data. - * - * @returns pointer to the memory pool - */ +//** Populate the context from module data. +// * @returns pointer to the memory pool char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*); int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) { @@ -636,8 +537,7 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length); mempool = JARXM_MALLOC(bytes_needed); - if(mempool == NULL && bytes_needed > 0) { - /* JARXM_MALLOC() failed, trouble ahead */ + if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */ DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool); return 2; } @@ -657,23 +557,19 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t); mempool = ALIGN_PTR(mempool, 16); - ctx->global_volume = 1.f; - ctx->amplification = .25f; /* XXX: some bad modules may still clip. Find out something better. */ + ctx->default_global_volume = 1.f; + ctx->global_volume = ctx->default_global_volume; -#if JAR_XM_RAMPING ctx->volume_ramp = (1.f / 128.f); ctx->panning_ramp = (1.f / 128.f); -#endif for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { - jar_xm_channel_context_t* ch = ctx->channels + i; - + jar_xm_channel_context_t *ch = ctx->channels + i; ch->ping = true; ch->vibrato_waveform = jar_xm_SINE_WAVEFORM; ch->vibrato_waveform_retrigger = true; ch->tremolo_waveform = jar_xm_SINE_WAVEFORM; ch->tremolo_waveform_retrigger = true; - ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f; ch->panning = ch->panning_envelope_panning = .5f; ch->actual_volume = .0f; @@ -681,12 +577,11 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz } mempool = ALIGN_PTR(mempool, 16); - ctx->row_loop_count = (uint8_t*)mempool; + ctx->row_loop_count = (uint8_t *)mempool; mempool += MAX_NUM_ROWS * sizeof(uint8_t); #if JAR_XM_DEFENSIVE - if((ret = jar_xm_check_sanity_postload(ctx))) { - DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret); + if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret); jar_xm_free_context(ctx); return 1; } @@ -695,106 +590,98 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz return 0; } -void jar_xm_free_context(jar_xm_context_t* ctx) { - JARXM_FREE(ctx->allocated_memory); +void jar_xm_free_context(jar_xm_context_t *ctx) { + if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); } } -void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt) { +void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) { ctx->max_loop_count = loopcnt; } -uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx) { +uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) { return ctx->loop_count; } -bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t channel, bool mute) { +bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) { bool old = ctx->channels[channel - 1].muted; ctx->channels[channel - 1].muted = mute; return old; } -bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t instr, bool mute) { +bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) { bool old = ctx->module.instruments[instr - 1].muted; ctx->module.instruments[instr - 1].muted = mute; return old; } - - -const char* jar_xm_get_module_name(jar_xm_context_t* ctx) { +const char* jar_xm_get_module_name(jar_xm_context_t *ctx) { return ctx->module.name; } -const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx) { +const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) { return ctx->module.trackername; } - - -uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx) { +uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) { return ctx->module.num_channels; } -uint16_t jar_xm_get_module_length(jar_xm_context_t* ctx) { +uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) { return ctx->module.length; } -uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx) { +uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) { return ctx->module.num_patterns; } -uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t pattern) { +uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) { return ctx->module.patterns[pattern].num_rows; } -uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx) { +uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) { return ctx->module.num_instruments; } -uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t instrument) { +uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) { return ctx->module.instruments[instrument - 1].num_samples; } - - -void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo) { +void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) { if(bpm) *bpm = ctx->bpm; if(tempo) *tempo = ctx->tempo; } -void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples) { +void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) { if(pattern_index) *pattern_index = ctx->current_table_index; if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index]; if(row) *row = ctx->current_row; if(samples) *samples = ctx->generated_samples; } -uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t instr) { +uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) { return ctx->module.instruments[instr - 1].latest_trigger; } -uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample) { +uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) { return ctx->module.instruments[instr - 1].samples[sample].latest_trigger; } -uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t chn) { +uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) { return ctx->channels[chn - 1].latest_trigger; } -/* .xm files are little-endian. (XXX: Are they really?) */ +//* .xm files are little-endian. (XXX: Are they really?) -/* Bounded reader macros. - * If we attempt to read the buffer out-of-bounds, pretend that the buffer is - * infinitely padded with zeroes. - */ +//* Bound reader macros. +//* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes. #define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0) #define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8)) #define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16)) #define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset) -static void memcpy_pad(void* dst, size_t dst_len, const void* src, size_t src_len, size_t offset) { - uint8_t* dst_c = dst; - const uint8_t* src_c = src; +static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) { + uint8_t *dst_c = dst; + const uint8_t *src_c = src; /* how many bytes can be copied without overrunning `src` */ size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0; @@ -808,40 +695,22 @@ static void memcpy_pad(void* dst, size_t dst_len, const void* src, size_t src_le #if JAR_XM_DEFENSIVE int jar_xm_check_sanity_preload(const char* module, size_t module_length) { - if(module_length < 60) { - return 4; - } - - if(memcmp("Extended Module: ", module, 17) != 0) { - return 1; - } - - if(module[37] != 0x1A) { - return 2; - } - - if(module[59] != 0x01 || module[58] != 0x04) { - /* Not XM 1.04 */ - return 3; - } - + if(module_length < 60) { return 4; } + if(memcmp("Extended Module: ", module, 17) != 0) { return 1; } + if(module[37] != 0x1A) { return 2; } + if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */ return 0; } int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) { - /* @todo: plenty of stuff to do here… */ - /* Check the POT */ for(uint8_t i = 0; i < ctx->module.length; ++i) { if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) { if(i+1 == ctx->module.length && ctx->module.length > 1) { - /* Cheap fix */ - --ctx->module.length; DEBUG("trimming invalid POT at pos %X", i); + --ctx->module.length; } else { - DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", - i, - ctx->module.pattern_table[i]); + DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]); return 1; } } @@ -854,36 +723,29 @@ int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) { size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) { size_t memory_needed = 0; - size_t offset = 60; /* Skip the first header */ + size_t offset = 60; /* 60 = Skip the first header */ uint16_t num_channels; uint16_t num_patterns; uint16_t num_instruments; /* Read the module header */ num_channels = READ_U16(offset + 8); - num_patterns = READ_U16(offset + 10); memory_needed += num_patterns * sizeof(jar_xm_pattern_t); memory_needed = ALIGN(memory_needed, 16); - num_instruments = READ_U16(offset + 12); memory_needed += num_instruments * sizeof(jar_xm_instrument_t); memory_needed = ALIGN(memory_needed, 16); - memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */ - /* Header size */ - offset += READ_U32(offset); + offset += READ_U32(offset); /* Header size */ /* Read pattern headers */ for(uint16_t i = 0; i < num_patterns; ++i) { uint16_t num_rows; - num_rows = READ_U16(offset + 5); memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t); - - /* Pattern header length + packed pattern data size */ - offset += READ_U32(offset) + READ_U16(offset + 7); + offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */ } memory_needed = ALIGN(memory_needed, 16); @@ -892,42 +754,30 @@ size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_ uint16_t num_samples; uint32_t sample_header_size = 0; uint32_t sample_size_aggregate = 0; - num_samples = READ_U16(offset + 27); memory_needed += num_samples * sizeof(jar_xm_sample_t); + if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); } - if(num_samples > 0) { - sample_header_size = READ_U32(offset + 29); - } - - /* Instrument header size */ - offset += READ_U32(offset); - + offset += READ_U32(offset); /* Instrument header size */ for(uint16_t j = 0; j < num_samples; ++j) { uint32_t sample_size; uint8_t flags; - sample_size = READ_U32(offset); flags = READ_U8(offset + 14); sample_size_aggregate += sample_size; - if(flags & (1 << 4)) { - /* 16 bit sample */ + if(flags & (1 << 4)) { /* 16 bit sample */ memory_needed += sample_size * (sizeof(float) >> 1); - } else { - /* 8 bit sample */ + } else { /* 8 bit sample */ memory_needed += sample_size * sizeof(float); } - offset += sample_header_size; } - offset += sample_size_aggregate; } memory_needed += num_channels * sizeof(jar_xm_channel_context_t); memory_needed += sizeof(jar_xm_context_t); - return memory_needed; } @@ -942,26 +792,25 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd /* Read module header */ uint32_t header_size = READ_U32(offset); - mod->length = READ_U16(offset + 4); mod->restart_position = READ_U16(offset + 6); mod->num_channels = READ_U16(offset + 8); mod->num_patterns = READ_U16(offset + 10); mod->num_instruments = READ_U16(offset + 12); - mod->patterns = (jar_xm_pattern_t*)mempool; + mod->linear_interpolation = 0; // Linear interpolation can be set after loading + mod->ramping = 1; // ramping can be set after loading mempool += mod->num_patterns * sizeof(jar_xm_pattern_t); mempool = ALIGN_PTR(mempool, 16); - mod->instruments = (jar_xm_instrument_t*)mempool; mempool += mod->num_instruments * sizeof(jar_xm_instrument_t); mempool = ALIGN_PTR(mempool, 16); - uint16_t flags = READ_U32(offset + 14); mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES; - - ctx->tempo = READ_U16(offset + 16); - ctx->bpm = READ_U16(offset + 18); + ctx->default_tempo = READ_U16(offset + 16); + ctx->default_bpm = READ_U16(offset + 18); + ctx->tempo =ctx->default_tempo; + ctx->bpm = ctx->default_bpm; READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH); offset += header_size; @@ -970,69 +819,52 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd for(uint16_t i = 0; i < mod->num_patterns; ++i) { uint16_t packed_patterndata_size = READ_U16(offset + 7); jar_xm_pattern_t* pat = mod->patterns + i; - pat->num_rows = READ_U16(offset + 5); - pat->slots = (jar_xm_pattern_slot_t*)mempool; mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t); - - /* Pattern header length */ - offset += READ_U32(offset); - - if(packed_patterndata_size == 0) { - /* No pattern data is present */ + offset += READ_U32(offset); /* Pattern header length */ + + if(packed_patterndata_size == 0) { /* No pattern data is present */ memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels); } else { /* This isn't your typical for loop */ for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) { uint8_t note = READ_U8(offset + j); jar_xm_pattern_slot_t* slot = pat->slots + k; - if(note & (1 << 7)) { /* MSB is set, this is a compressed packet */ ++j; - - if(note & (1 << 0)) { - /* Note follows */ + if(note & (1 << 0)) { /* Note follows */ slot->note = READ_U8(offset + j); ++j; } else { slot->note = 0; } - - if(note & (1 << 1)) { - /* Instrument follows */ + if(note & (1 << 1)) { /* Instrument follows */ slot->instrument = READ_U8(offset + j); ++j; } else { slot->instrument = 0; } - - if(note & (1 << 2)) { - /* Volume column follows */ + if(note & (1 << 2)) { /* Volume column follows */ slot->volume_column = READ_U8(offset + j); ++j; } else { slot->volume_column = 0; } - - if(note & (1 << 3)) { - /* Effect follows */ + if(note & (1 << 3)) { /* Effect follows */ slot->effect_type = READ_U8(offset + j); ++j; } else { slot->effect_type = 0; } - - if(note & (1 << 4)) { - /* Effect parameter follows */ + if(note & (1 << 4)) { /* Effect parameter follows */ slot->effect_param = READ_U8(offset + j); ++j; } else { slot->effect_param = 0; } - } else { - /* Uncompressed packet */ + } else { /* Uncompressed packet */ slot->note = note; slot->instrument = READ_U8(offset + j + 1); slot->volume_column = READ_U8(offset + j + 2); @@ -1076,7 +908,6 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd instr->volume_envelope.sustain_point = READ_U8(offset + 227); instr->volume_envelope.loop_start_point = READ_U8(offset + 228); instr->volume_envelope.loop_end_point = READ_U8(offset + 229); - instr->panning_envelope.sustain_point = READ_U8(offset + 230); instr->panning_envelope.loop_start_point = READ_U8(offset + 231); instr->panning_envelope.loop_end_point = READ_U8(offset + 232); @@ -1090,7 +921,6 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd instr->panning_envelope.enabled = flags & (1 << 0); instr->panning_envelope.sustain_enabled = flags & (1 << 1); instr->panning_envelope.loop_enabled = flags & (1 << 2); - instr->vibrato_type = READ_U8(offset + 235); if(instr->vibrato_type == 2) { instr->vibrato_type = 1; @@ -1101,7 +931,6 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd instr->vibrato_depth = READ_U8(offset + 237); instr->vibrato_rate = READ_U8(offset + 238); instr->volume_fadeout = READ_U16(offset + 239); - instr->samples = (jar_xm_sample_t*)mempool; mempool += instr->num_samples * sizeof(jar_xm_sample_t); } else { @@ -1111,7 +940,7 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd /* Instrument header size */ offset += READ_U32(offset); - for(uint16_t j = 0; j < instr->num_samples; ++j) { + for(int j = 0; j < instr->num_samples; ++j) { /* Read sample header */ jar_xm_sample_t* sample = instr->samples + j; @@ -1119,25 +948,28 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd sample->loop_start = READ_U32(offset + 4); sample->loop_length = READ_U32(offset + 8); sample->loop_end = sample->loop_start + sample->loop_length; - sample->volume = (float)READ_U8(offset + 12) / (float)0x40; + sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f; + if (sample->volume > 1.0f) {sample->volume = 1.f;}; sample->finetune = (int8_t)READ_U8(offset + 13); uint8_t flags = READ_U8(offset + 14); - if((flags & 3) == 0) { - sample->loop_type = jar_xm_NO_LOOP; - } else if((flags & 3) == 1) { - sample->loop_type = jar_xm_FORWARD_LOOP; - } else { + switch (flags & 3) { + case 2: + case 3: sample->loop_type = jar_xm_PING_PONG_LOOP; - } - - sample->bits = (flags & (1 << 4)) ? 16 : 8; - - sample->panning = (float)READ_U8(offset + 15) / (float)0xFF; + case 1: + sample->loop_type = jar_xm_FORWARD_LOOP; + break; + default: + sample->loop_type = jar_xm_NO_LOOP; + break; + }; + sample->bits = (flags & 0x10) ? 16 : 8; + sample->stereo = (flags & 0x20) ? 1 : 0; + sample->panning = (float)READ_U8(offset + 15) / 255.f; sample->relative_note = (int8_t)READ_U8(offset + 16); READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH); sample->data = (float*)mempool; - if(sample->bits == 16) { /* 16 bit sample */ mempool += sample->length * (sizeof(float) >> 1); @@ -1149,42 +981,72 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd /* 8 bit sample */ mempool += sample->length * sizeof(float); } + // Adjust loop points to reflect half of the reported length (stereo) + if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) { + div_t lstart = div(READ_U32(offset + 4), 2); + sample->loop_start = lstart.quot; + div_t llength = div(READ_U32(offset + 8), 2); + sample->loop_length = llength.quot; + sample->loop_end = sample->loop_start + sample->loop_length; + }; offset += sample_header_size; } - for(uint16_t j = 0; j < instr->num_samples; ++j) { + // Read all samples and convert them to float values + for(int j = 0; j < instr->num_samples; ++j) { /* Read sample data */ jar_xm_sample_t* sample = instr->samples + j; - uint32_t length = sample->length; - - if(sample->bits == 16) { - int16_t v = 0; - for(uint32_t k = 0; k < length; ++k) { - v = v + (int16_t)READ_U16(offset + (k << 1)); - sample->data[k] = (float)v / (float)(1 << 15); - } - offset += sample->length << 1; + int length = sample->length; + if (sample->stereo) { + // Since it is stereo, we cut the sample in half (treated as single channel) + div_t result = div(sample->length, 2); + if(sample->bits == 16) { + int16_t v = 0; + for(int k = 0; k < length; ++k) { + if (k == result.quot) { v = 0;}; + v = v + (int16_t)READ_U16(offset + (k << 1)); + sample->data[k] = (float) v / 32768.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length << 1; + } else { + int8_t v = 0; + for(int k = 0; k < length; ++k) { + if (k == result.quot) { v = 0;}; + v = v + (int8_t)READ_U8(offset + k); + sample->data[k] = (float)v / 128.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length; + }; + sample->length = result.quot; } else { - int8_t v = 0; - for(uint32_t k = 0; k < length; ++k) { - v = v + (int8_t)READ_U8(offset + k); - sample->data[k] = (float)v / (float)(1 << 7); + if(sample->bits == 16) { + int16_t v = 0; + for(int k = 0; k < length; ++k) { + v = v + (int16_t)READ_U16(offset + (k << 1)); + sample->data[k] = (float) v / 32768.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length << 1; + } else { + int8_t v = 0; + for(int k = 0; k < length; ++k) { + v = v + (int8_t)READ_U8(offset + k); + sample->data[k] = (float)v / 128.f ;//* sign; + if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; + } + offset += sample->length; } - offset += sample->length; } - } - } - + }; + }; return mempool; -} +}; //------------------------------------------------------------------------------- //THE FOLLOWING IS FOR PLAYING -//------------------------------------------------------------------------------- - -/* ----- Static functions ----- */ - static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t); static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*); static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); @@ -1216,35 +1078,21 @@ static void jar_xm_post_pattern_change(jar_xm_context_t*); static void jar_xm_row(jar_xm_context_t*); static void jar_xm_tick(jar_xm_context_t*); -static float jar_xm_next_of_sample(jar_xm_channel_context_t*); -static void jar_xm_sample(jar_xm_context_t*, float*, float*); - -/* ----- Other oddities ----- */ +static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int); +static void jar_xm_mixdown(jar_xm_context_t*, float*, float*); #define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0) #define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1) #define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2) -static const uint16_t amiga_frequencies[] = { - 1712, 1616, 1525, 1440, /* C-2, C#2, D-2, D#2 */ - 1357, 1281, 1209, 1141, /* E-2, F-2, F#2, G-2 */ - 1077, 1017, 961, 907, /* G#2, A-2, A#2, B-2 */ - 856, /* C-3 */ -}; + // C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3 +static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 }; -static const float multi_retrig_add[] = { - 0.f, -1.f, -2.f, -4.f, /* 0, 1, 2, 3 */ - -8.f, -16.f, 0.f, 0.f, /* 4, 5, 6, 7 */ - 0.f, 1.f, 2.f, 4.f, /* 8, 9, A, B */ - 8.f, 16.f, 0.f, 0.f /* C, D, E, F */ -}; + // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f +static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f }; -static const float multi_retrig_multiply[] = { - 1.f, 1.f, 1.f, 1.f, /* 0, 1, 2, 3 */ - 1.f, 1.f, .6666667f, .5f, /* 4, 5, 6, 7 */ - 1.f, 1.f, 1.f, 1.f, /* 8, 9, A, B */ - 1.f, 1.f, 1.5f, 2.f /* C, D, E, F */ -}; + // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f +static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f }; #define jar_xm_CLAMP_UP1F(vol, limit) do { \ if((vol) > (limit)) (vol) = (limit); \ @@ -1284,43 +1132,26 @@ static const float multi_retrig_multiply[] = { || (s)->effect_param == 6 \ || ((s)->volume_column >> 4) == 0xB) #define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97) - -/* ----- Function definitions ----- */ +#define NOTE_OFF 97 static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) { static unsigned int next_rand = 24492; step %= 0x40; - switch(waveform) { - - case jar_xm_SINE_WAVEFORM: - /* Why not use a table? For saving space, and because there's - * very very little actual performance gain. */ + case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */ return -sinf(2.f * 3.141592f * (float)step / (float)0x40); - - case jar_xm_RAMP_DOWN_WAVEFORM: - /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */ + case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */ return (float)(0x20 - step) / 0x20; - - case jar_xm_SQUARE_WAVEFORM: - /* Square with a 50% duty */ + case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */ return (step >= 0x20) ? 1.f : -1.f; - - case jar_xm_RANDOM_WAVEFORM: - /* Use the POSIX.1-2001 example, just to be deterministic - * across different machines */ + case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */ next_rand = next_rand * 1103515245 + 12345; return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f; - - case jar_xm_RAMP_UP_WAVEFORM: - /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */ + case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */ return (float)(step - 0x20) / 0x20; - default: break; - } - return .0f; } @@ -1328,33 +1159,21 @@ static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return; jar_xm_instrument_t* instr = ch->instrument; float sweep = 1.f; - - if(ch->autovibrato_ticks < instr->vibrato_sweep) { - /* No idea if this is correct, but it sounds close enough… */ - sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); - } - + if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); } unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2; - ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) - * (float)instr->vibrato_depth / (float)0xF * sweep; + ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep; jar_xm_update_frequency(ctx, ch); } static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { unsigned int step = pos * (param >> 4); - ch->vibrato_note_offset = - 2.f - * jar_xm_waveform(ch->vibrato_waveform, step) - * (float)(param & 0x0F) / (float)0xF; + ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF; jar_xm_update_frequency(ctx, ch); } static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { unsigned int step = pos * (param >> 4); - /* Not so sure about this, it sounds correct by ear compared with - * MilkyTracker, but it could come from other bugs */ - ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) - * (float)(param & 0x0F) / (float)0xF; + ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF; } static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) { @@ -1372,80 +1191,36 @@ static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, ch->arp_note_offset = param & 0x0F; break; } - jar_xm_update_frequency(ctx, ch); } static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { - /* 3xx called without a note, wait until we get an actual - * target note. */ - if(ch->tone_portamento_target_period == 0.f) return; - + /* 3xx called without a note, wait until we get an actual target note. */ + if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */ if(ch->period != ch->tone_portamento_target_period) { - jar_xm_SLIDE_TOWARDS(ch->period, - ch->tone_portamento_target_period, - (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? - 4.f : 1.f) * ch->tone_portamento_param - ); + jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param); jar_xm_update_frequency(ctx, ch); } } static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) { - /* Don't ask about the 4.f coefficient. I found mention of it - * nowhere. Found by ear™. */ - if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) { - period_offset *= 4.f; - } - + /* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear™. */ + if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; } ch->period += period_offset; jar_xm_CLAMP_DOWN(ch->period); /* XXX: upper bound of period ? */ - jar_xm_update_frequency(ctx, ch); } static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { - float f; - - if((rawval & 0xF0) && (rawval & 0x0F)) { - /* Illegal state */ - return; - } - - if(rawval & 0xF0) { - /* Slide right */ - f = (float)(rawval >> 4) / (float)0xFF; - ch->panning += f; - jar_xm_CLAMP_UP(ch->panning); - } else { - /* Slide left */ - f = (float)(rawval & 0x0F) / (float)0xFF; - ch->panning -= f; - jar_xm_CLAMP_DOWN(ch->panning); - } -} + if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;}; + if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;}; +}; static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { - float f; - - if((rawval & 0xF0) && (rawval & 0x0F)) { - /* Illegal state */ - return; - } - - if(rawval & 0xF0) { - /* Slide up */ - f = (float)(rawval >> 4) / (float)0x40; - ch->volume += f; - jar_xm_CLAMP_UP(ch->volume); - } else { - /* Slide down */ - f = (float)(rawval & 0x0F) / (float)0x40; - ch->volume -= f; - jar_xm_CLAMP_DOWN(ch->volume); - } -} + if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;}; + if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;}; +}; static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) { /* Linear interpolation between two envelope points */ @@ -1461,6 +1236,9 @@ static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) { /* Loop if necessary */ if(ctx->current_table_index >= ctx->module.length) { ctx->current_table_index = ctx->module.restart_position; + ctx->tempo =ctx->default_tempo; // reset to file default value + ctx->bpm = ctx->default_bpm; // reset to file default value + ctx->global_volume = ctx->default_global_volume; // reset to file default value } } @@ -1477,24 +1255,19 @@ static float jar_xm_amiga_period(float note) { uint8_t a = intnote % 12; int8_t octave = note / 12.f - 2; uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1]; - if(octave > 0) { p1 >>= octave; p2 >>= octave; } else if(octave < 0) { - p1 <<= (-octave); - p2 <<= (-octave); + p1 <<= -octave; + p2 <<= -octave; } - return jar_xm_LERP(p1, p2, note - intnote); } static float jar_xm_amiga_frequency(float period) { if(period == .0f) return .0f; - - /* This is the PAL value. No reason to choose this one over the - * NTSC value. */ - return 7093789.2f / (period * 2.f); + return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */ } static float jar_xm_period(jar_xm_context_t* ctx, float note) { @@ -1508,29 +1281,20 @@ static float jar_xm_period(jar_xm_context_t* ctx, float note) { } static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) { - uint8_t a; - int8_t octave; - float note; - uint16_t p1, p2; - switch(ctx->module.frequency_type) { - case jar_xm_LINEAR_FREQUENCIES: return jar_xm_linear_frequency(period - 64.f * note_offset); - case jar_xm_AMIGA_FREQUENCIES: - if(note_offset == 0) { - /* A chance to escape from insanity */ - return jar_xm_amiga_frequency(period); - } - - /* FIXME: this is very crappy at best */ - a = octave = 0; + if(note_offset == 0) { return jar_xm_amiga_frequency(period); }; + int8_t octave; + float note; + uint16_t p1, p2; + uint8_t a = octave = 0; /* Find the octave of the current period */ if(period > amiga_frequencies[0]) { --octave; - while(period > (amiga_frequencies[0] << (-octave))) --octave; + while(period > (amiga_frequencies[0] << -octave)) --octave; } else if(period < amiga_frequencies[12]) { ++octave; while(period < (amiga_frequencies[12] >> octave)) ++octave; @@ -1539,7 +1303,6 @@ static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_of /* Find the smallest note closest to the current period */ for(uint8_t i = 0; i < 12; ++i) { p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1]; - if(octave > 0) { p1 >>= octave; p2 >>= octave; @@ -1547,51 +1310,36 @@ static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_of p1 <<= (-octave); p2 <<= (-octave); } - if(p2 <= period && period <= p1) { a = i; break; } } - - if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { - DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); - } - + if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); } note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period); - return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset)); - } return .0f; } static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { - ch->frequency = jar_xm_frequency( - ctx, ch->period, - (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( - ch->vibrato_note_offset + ch->autovibrato_note_offset - )) - ); + ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) ); ch->step = ch->frequency / ctx->rate; } -static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, - jar_xm_pattern_slot_t* s) { +static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) { + jar_xm_module_t* mod = &(ctx->module); if(s->instrument > 0) { - if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { - /* Tone portamento in effect, unclear stuff happens */ + if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); - } else if(s->instrument > ctx->module.num_instruments) { - /* Invalid instrument, Cut current note */ + } else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */ jar_xm_cut_note(ch); ch->instrument = NULL; ch->sample = NULL; } else { ch->instrument = ctx->module.instruments + (s->instrument - 1); - if(s->note == 0 && ch->sample != NULL) { - /* Ghost instrument, trigger note */ + if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */ /* Sample position is kept, but envelopes are reset */ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); } @@ -1599,270 +1347,174 @@ static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_chan } if(NOTE_IS_VALID(s->note)) { - /* Yes, the real note number is s->note -1. Try finding - * THAT in any of the specs! :-) */ - + // note value is s->note -1 jar_xm_instrument_t* instr = ch->instrument; - if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) { /* Tone portamento in effect */ ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note); - } else if(instr == NULL || ch->instrument->num_samples == 0) { - /* Bad instrument */ + } else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */ jar_xm_cut_note(ch); } else { if(instr->sample_of_notes[s->note - 1] < instr->num_samples) { -#if JAR_XM_RAMPING - for(unsigned int z = 0; z < jar_xm_SAMPLE_RAMPING_POINTS; ++z) { - ch->end_of_previous_sample[z] = jar_xm_next_of_sample(ch); - } - ch->frame_count = 0; -#endif + if (mod->ramping) { + for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) { + jar_xm_next_of_sample(ctx, ch, i); + } + ch->frame_count = 0; + }; ch->sample = instr->samples + instr->sample_of_notes[s->note - 1]; - ch->orig_note = ch->note = s->note + ch->sample->relative_note - + ch->sample->finetune / 128.f - 1.f; + ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; if(s->instrument > 0) { jar_xm_trigger_note(ctx, ch, 0); - } else { - /* Ghost note: keep old volume */ + } else { /* Ghost note: keep old volume */ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME); } } else { - /* Bad sample */ jar_xm_cut_note(ch); } } - } else if(s->note == 97) { - /* Key Off */ + } else if(s->note == NOTE_OFF) { jar_xm_key_off(ch); } - switch(s->volume_column >> 4) { - - case 0x5: - if(s->volume_column > 0x50) break; - case 0x1: - case 0x2: - case 0x3: - case 0x4: - /* Set volume */ - ch->volume = (float)(s->volume_column - 0x10) / (float)0x40; - break; - - case 0x8: /* Fine volume slide down */ - jar_xm_volume_slide(ch, s->volume_column & 0x0F); - break; - - case 0x9: /* Fine volume slide up */ - jar_xm_volume_slide(ch, s->volume_column << 4); - break; - - case 0xA: /* Set vibrato speed */ - ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((s->volume_column & 0x0F) << 4); - break; - - case 0xC: /* Set panning */ - ch->panning = (float)( - ((s->volume_column & 0x0F) << 4) | (s->volume_column & 0x0F) - ) / (float)0xFF; - break; - - case 0xF: /* Tone portamento */ - if(s->volume_column & 0x0F) { - ch->tone_portamento_param = ((s->volume_column & 0x0F) << 4) - | (s->volume_column & 0x0F); - } - break; - - default: - break; - - } - + // Interpret Effect column switch(s->effect_type) { - case 1: /* 1xx: Portamento up */ - if(s->effect_param > 0) { - ch->portamento_up_param = s->effect_param; - } + if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; } break; - case 2: /* 2xx: Portamento down */ - if(s->effect_param > 0) { - ch->portamento_down_param = s->effect_param; - } + if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; } break; - case 3: /* 3xx: Tone portamento */ - if(s->effect_param > 0) { - ch->tone_portamento_param = s->effect_param; - } + if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; } break; - case 4: /* 4xy: Vibrato */ - if(s->effect_param & 0x0F) { - /* Set vibrato depth */ - ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); - } - if(s->effect_param >> 4) { - /* Set vibrato speed */ - ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); - } + if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */ + if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */ break; - case 5: /* 5xy: Tone portamento + Volume slide */ - if(s->effect_param > 0) { - ch->volume_slide_param = s->effect_param; - } + if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } break; - case 6: /* 6xy: Vibrato + Volume slide */ - if(s->effect_param > 0) { - ch->volume_slide_param = s->effect_param; - } + if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } break; - case 7: /* 7xy: Tremolo */ - if(s->effect_param & 0x0F) { - /* Set tremolo depth */ - ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); - } - if(s->effect_param >> 4) { - /* Set tremolo speed */ - ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); - } + if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */ + if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */ break; - case 8: /* 8xx: Set panning */ - ch->panning = (float)s->effect_param / (float)0xFF; + ch->panning = (float)s->effect_param / 255.f; break; - case 9: /* 9xx: Sample offset */ - if(ch->sample != NULL && NOTE_IS_VALID(s->note)) { + if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) { uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8); - if(final_offset >= ch->sample->length) { - /* Pretend the sample dosen't loop and is done playing */ - ch->sample_position = -1; + switch (ch->sample->loop_type) { + case jar_xm_NO_LOOP: + if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */ + ch->sample_position = -1; + } else { + ch->sample_position = final_offset; + } + break; + case jar_xm_FORWARD_LOOP: + if (final_offset >= ch->sample->loop_end) { + ch->sample_position -= ch->sample->loop_length; + } else if(final_offset >= ch->sample->length) { + ch->sample_position = ch->sample->loop_start; + } else { + ch->sample_position = final_offset; + } + break; + case jar_xm_PING_PONG_LOOP: + if(final_offset >= ch->sample->loop_end) { + ch->ping = false; + ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; + } else if(final_offset >= ch->sample->length) { + ch->ping = false; + ch->sample_position -= ch->sample->length - 1; + } else { + ch->sample_position = final_offset; + }; break; } - ch->sample_position = final_offset; } break; - case 0xA: /* Axy: Volume slide */ - if(s->effect_param > 0) { - ch->volume_slide_param = s->effect_param; - } + if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } break; - case 0xB: /* Bxx: Position jump */ if(s->effect_param < ctx->module.length) { ctx->position_jump = true; ctx->jump_dest = s->effect_param; } break; - case 0xC: /* Cxx: Set volume */ - ch->volume = (float)((s->effect_param > 0x40) - ? 0x40 : s->effect_param) / (float)0x40; + ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; break; - case 0xD: /* Dxx: Pattern break */ /* Jump after playing this line */ ctx->pattern_break = true; ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F); break; - case 0xE: /* EXy: Extended command */ switch(s->effect_param >> 4) { - case 1: /* E1y: Fine portamento up */ - if(s->effect_param & 0x0F) { - ch->fine_portamento_up_param = s->effect_param & 0x0F; - } + if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param); break; - case 2: /* E2y: Fine portamento down */ - if(s->effect_param & 0x0F) { - ch->fine_portamento_down_param = s->effect_param & 0x0F; - } + if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param); break; - case 4: /* E4y: Set vibrato control */ ch->vibrato_waveform = s->effect_param & 3; ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1); break; - case 5: /* E5y: Set finetune */ if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) { - ch->note = ch->current->note + ch->sample->relative_note + - (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f; + ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f; ch->period = jar_xm_period(ctx, ch->note); jar_xm_update_frequency(ctx, ch); } break; - case 6: /* E6y: Pattern loop */ if(s->effect_param & 0x0F) { - if((s->effect_param & 0x0F) == ch->pattern_loop_count) { - /* Loop is over */ + if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */ ch->pattern_loop_count = 0; - break; + ctx->position_jump = false; + } else { /* Jump to the beginning of the loop */ + ch->pattern_loop_count++; + ctx->position_jump = true; + ctx->jump_row = ch->pattern_loop_origin; + ctx->jump_dest = ctx->current_table_index; } - - /* Jump to the beginning of the loop */ - ch->pattern_loop_count++; - ctx->position_jump = true; - ctx->jump_row = ch->pattern_loop_origin; - ctx->jump_dest = ctx->current_table_index; } else { - /* Set loop start point */ - ch->pattern_loop_origin = ctx->current_row; - /* Replicate FT2 E60 bug */ - ctx->jump_row = ch->pattern_loop_origin; + ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */ + ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */ } break; - case 7: /* E7y: Set tremolo control */ ch->tremolo_waveform = s->effect_param & 3; ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1); break; - case 0xA: /* EAy: Fine volume slide up */ - if(s->effect_param & 0x0F) { - ch->fine_volume_slide_param = s->effect_param & 0x0F; - } + if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4); break; - case 0xB: /* EBy: Fine volume slide down */ - if(s->effect_param & 0x0F) { - ch->fine_volume_slide_param = s->effect_param & 0x0F; - } + if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } jar_xm_volume_slide(ch, ch->fine_volume_slide_param); break; - case 0xD: /* EDy: Note delay */ - /* XXX: figure this out better. EDx triggers - * the note even when there no note and no - * instrument. But ED0 acts like like a ghost - * note, EDx (x ≠ 0) does not. */ + /* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠ 0) does not. */ if(s->note == 0 && s->instrument == 0) { unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME; - if(ch->current->effect_param & 0x0F) { ch->note = ch->orig_note; jar_xm_trigger_note(ctx, ch, flags); } else { - jar_xm_trigger_note( - ctx, ch, - flags - | jar_xm_TRIGGER_KEEP_PERIOD - | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION - ); + jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION ); } } break; @@ -1870,106 +1522,77 @@ static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_chan case 0xE: /* EEy: Pattern delay */ ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo; break; - default: break; - } break; case 0xF: /* Fxx: Set tempo/BPM */ if(s->effect_param > 0) { - if(s->effect_param <= 0x1F) { + if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo) ctx->tempo = s->effect_param; - } else { + } else { //32 and greater values adjust the BPM ctx->bpm = s->effect_param; } } break; case 16: /* Gxx: Set global volume */ - ctx->global_volume = (float)((s->effect_param > 0x40) - ? 0x40 : s->effect_param) / (float)0x40; + ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; break; - case 17: /* Hxy: Global volume slide */ - if(s->effect_param > 0) { - ch->global_volume_slide_param = s->effect_param; - } + if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; } break; - case 21: /* Lxx: Set envelope position */ ch->volume_envelope_frame_count = s->effect_param; ch->panning_envelope_frame_count = s->effect_param; break; - case 25: /* Pxy: Panning slide */ - if(s->effect_param > 0) { - ch->panning_slide_param = s->effect_param; - } + if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; } break; - case 27: /* Rxy: Multi retrig note */ if(s->effect_param > 0) { - if((s->effect_param >> 4) == 0) { - /* Keep previous x value */ + if((s->effect_param >> 4) == 0) { /* Keep previous x value */ ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F); } else { ch->multi_retrig_param = s->effect_param; } } break; - case 29: /* Txy: Tremor */ - if(s->effect_param > 0) { - /* Tremor x and y params do not appear to be separately - * kept in memory, unlike Rxy */ - ch->tremor_param = s->effect_param; - } + if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */ break; - case 33: /* Xxy: Extra stuff */ switch(s->effect_param >> 4) { case 1: /* X1y: Extra fine portamento up */ - if(s->effect_param & 0x0F) { - ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; - } + if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param); break; - case 2: /* X2y: Extra fine portamento down */ - if(s->effect_param & 0x0F) { - ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; - } + if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; } jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param); break; - default: break; - } break; - default: break; - } } static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) { - if(!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) { + if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) { ch->sample_position = 0.f; ch->ping = true; - } - - if(ch->sample != NULL) { - if(!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) { - ch->volume = ch->sample->volume; - } - - ch->panning = ch->sample->panning; - } - + }; + + if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) { + if(ch->sample != NULL) { + ch->volume = ch->sample->volume; + }; + }; + ch->panning = ch->sample->panning; ch->sustained = true; ch->fadeout_volume = ch->volume_envelope_volume = 1.0f; ch->panning_envelope_panning = .5f; @@ -1977,44 +1600,28 @@ static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch->vibrato_note_offset = 0.f; ch->tremolo_volume = 0.f; ch->tremor_on = false; - ch->autovibrato_ticks = 0; - if(ch->vibrato_waveform_retrigger) { - ch->vibrato_ticks = 0; /* XXX: should the waveform itself also - * be reset to sine? */ - } - if(ch->tremolo_waveform_retrigger) { - ch->tremolo_ticks = 0; - } - + if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */ + if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; } if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) { ch->period = jar_xm_period(ctx, ch->note); jar_xm_update_frequency(ctx, ch); } - ch->latest_trigger = ctx->generated_samples; - if(ch->instrument != NULL) { - ch->instrument->latest_trigger = ctx->generated_samples; - } - if(ch->sample != NULL) { - ch->sample->latest_trigger = ctx->generated_samples; - } + if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; } + if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; } } static void jar_xm_cut_note(jar_xm_channel_context_t* ch) { - /* NB: this is not the same as Key Off */ - ch->volume = .0f; + ch->volume = .0f; /* NB: this is not the same as Key Off */ +// ch->curr_left = .0f; +// ch->curr_right = .0f; } static void jar_xm_key_off(jar_xm_channel_context_t* ch) { - /* Key Off */ - ch->sustained = false; - - /* If no volume envelope is used, also cut the note */ - if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { - jar_xm_cut_note(ch); - } + ch->sustained = false; /* Key Off */ + if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */ } static void jar_xm_row(jar_xm_context_t* ctx) { @@ -2032,24 +1639,24 @@ static void jar_xm_row(jar_xm_context_t* ctx) { ctx->jump_row = 0; jar_xm_post_pattern_change(ctx); } - jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; bool in_a_loop = false; - /* Read notes… */ + /* Read notes information for all channels into temporary pattern slot */ for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i; jar_xm_channel_context_t* ch = ctx->channels + i; - ch->current = s; - + // If there is no note delay effect (0xED) then... if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) { + //********** Process the channel slot information ********** jar_xm_handle_note_and_instrument(ctx, ch, s); } else { + // read the note delay information ch->note_delay_param = s->effect_param & 0x0F; } - if(!in_a_loop && ch->pattern_loop_count > 0) { + // clarify if in a loop or not in_a_loop = true; } } @@ -2058,101 +1665,68 @@ static void jar_xm_row(jar_xm_context_t* ctx) { /* No E6y loop is in effect (or we are in the first pass) */ ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++); } - - ctx->current_row++; /* Since this is an uint8, this line can - * increment from 255 to 0, in which case it - * is still necessary to go the next - * pattern. */ - if(!ctx->position_jump && !ctx->pattern_break && - (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) { + + /// Move to next row + ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */ + if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) { ctx->current_table_index++; - ctx->current_row = ctx->jump_row; /* This will be 0 most of - * the time, except when E60 - * is used */ + ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */ ctx->jump_row = 0; jar_xm_post_pattern_change(ctx); } } -static void jar_xm_envelope_tick(jar_xm_channel_context_t* ch, - jar_xm_envelope_t* env, - uint16_t* counter, - float* outval) { +static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) { if(env->num_points < 2) { - /* Don't really know what to do… */ if(env->num_points == 1) { - /* XXX I am pulling this out of my ass */ *outval = (float)env->points[0].value / (float)0x40; - if(*outval > 1) { - *outval = 1; - } - } - - return; + if(*outval > 1) { *outval = 1; }; + } else {; + return; + }; } else { - uint8_t j; - if(env->loop_enabled) { uint16_t loop_start = env->points[env->loop_start_point].frame; uint16_t loop_end = env->points[env->loop_end_point].frame; uint16_t loop_length = loop_end - loop_start; - - if(*counter >= loop_end) { - *counter -= loop_length; - } - } - - for(j = 0; j < (env->num_points - 2); ++j) { - if(env->points[j].frame <= *counter && - env->points[j+1].frame >= *counter) { + if(*counter >= loop_end) { *counter -= loop_length; }; + }; + for(uint8_t j = 0; j < (env->num_points - 1); ++j) { + if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) { + *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40; break; - } - } - - *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40; - + }; + }; /* Make sure it is safe to increment frame count */ - if(!ch->sustained || !env->sustain_enabled || - *counter != env->points[env->sustain_point].frame) { - (*counter)++; - } - } -} + if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; }; + }; +}; -static void jar_xm_envelopes(jar_xm_channel_context_t* ch) { +static void jar_xm_envelopes(jar_xm_channel_context_t *ch) { if(ch->instrument != NULL) { if(ch->instrument->volume_envelope.enabled) { if(!ch->sustained) { ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f; jar_xm_CLAMP_DOWN(ch->fadeout_volume); - } - - jar_xm_envelope_tick(ch, - &(ch->instrument->volume_envelope), - &(ch->volume_envelope_frame_count), - &(ch->volume_envelope_volume)); - } - + }; + jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume)); + }; if(ch->instrument->panning_envelope.enabled) { - jar_xm_envelope_tick(ch, - &(ch->instrument->panning_envelope), - &(ch->panning_envelope_frame_count), - &(ch->panning_envelope_panning)); - } - } -} + jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning)); + }; + }; +}; static void jar_xm_tick(jar_xm_context_t* ctx) { if(ctx->current_tick == 0) { - jar_xm_row(ctx); + jar_xm_row(ctx); // We have processed all ticks and we run the row } - + + jar_xm_module_t* mod = &(ctx->module); for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { jar_xm_channel_context_t* ch = ctx->channels + i; - jar_xm_envelopes(ch); jar_xm_autovibrato(ctx, ch); - if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) { ch->arp_in_progress = false; ch->arp_note_offset = 0; @@ -2164,46 +1738,59 @@ static void jar_xm_tick(jar_xm_context_t* ctx) { jar_xm_update_frequency(ctx, ch); } - switch(ch->current->volume_column >> 4) { - - case 0x6: /* Volume slide down */ - if(ctx->current_tick == 0) break; + // Effects in volumne column mostly handled on a per tick basis + switch(ch->current->volume_column & 0xF0) { + case 0x50: // Checks for volume = 64 + if(ch->current->volume_column != 0x50) break; + case 0x10: // Set volume 0-15 + case 0x20: // Set volume 16-32 + case 0x30: // Set volume 32-48 + case 0x40: // Set volume 48-64 + ch->volume = (float)(ch->current->volume_column - 16) / 64.0f; + break; + case 0x60: // Volume slide down jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); break; - - case 0x7: /* Volume slide up */ - if(ctx->current_tick == 0) break; + case 0x70: // Volume slide up jar_xm_volume_slide(ch, ch->current->volume_column << 4); break; - - case 0xB: /* Vibrato */ - if(ctx->current_tick == 0) break; + case 0x80: // Fine volume slide down + jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); + break; + case 0x90: // Fine volume slide up + jar_xm_volume_slide(ch, ch->current->volume_column << 4); + break; + case 0xA0: // Set vibrato speed + ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4); + break; + case 0xB0: // Vibrato ch->vibrato_in_progress = false; jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); break; - - case 0xD: /* Panning slide left */ - if(ctx->current_tick == 0) break; + case 0xC0: // Set panning + if(!ctx->current_tick ) { + ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f; + } + break; + case 0xD0: // Panning slide left jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F); break; - - case 0xE: /* Panning slide right */ - if(ctx->current_tick == 0) break; + case 0xE0: // Panning slide right jar_xm_panning_slide(ch, ch->current->volume_column << 4); break; - - case 0xF: /* Tone portamento */ - if(ctx->current_tick == 0) break; + case 0xF0: // Tone portamento + if(!ctx->current_tick ) { + if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); } + }; jar_xm_tone_portamento(ctx, ch); break; - default: break; - } + // Only some standard effects handled on a per tick basis + // see jar_xm_handle_note_and_instrument for all effects handling on a per row basis switch(ch->current->effect_type) { - case 0: /* 0xy: Arpeggio */ if(ch->current->effect_param > 0) { char arp_offset = ctx->tempo % 3; @@ -2236,49 +1823,44 @@ static void jar_xm_tick(jar_xm_context_t* ctx) { if(ctx->current_tick == 0) break; jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param); break; - case 2: /* 2xx: Portamento down */ if(ctx->current_tick == 0) break; jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param); break; - case 3: /* 3xx: Tone portamento */ if(ctx->current_tick == 0) break; jar_xm_tone_portamento(ctx, ch); break; - case 4: /* 4xy: Vibrato */ if(ctx->current_tick == 0) break; ch->vibrato_in_progress = true; jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); break; - case 5: /* 5xy: Tone portamento + Volume slide */ if(ctx->current_tick == 0) break; jar_xm_tone_portamento(ctx, ch); jar_xm_volume_slide(ch, ch->volume_slide_param); break; - case 6: /* 6xy: Vibrato + Volume slide */ if(ctx->current_tick == 0) break; ch->vibrato_in_progress = true; jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); jar_xm_volume_slide(ch, ch->volume_slide_param); break; - case 7: /* 7xy: Tremolo */ if(ctx->current_tick == 0) break; jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++); break; - + case 8: /* 8xy: Set panning */ + break; + case 9: /* 9xy: Sample offset */ + break; case 0xA: /* Axy: Volume slide */ if(ctx->current_tick == 0) break; jar_xm_volume_slide(ch, ch->volume_slide_param); break; - case 0xE: /* EXy: Extended command */ switch(ch->current->effect_param >> 4) { - case 0x9: /* E9y: Retrigger note */ if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) { if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) { @@ -2287,59 +1869,46 @@ static void jar_xm_tick(jar_xm_context_t* ctx) { } } break; - case 0xC: /* ECy: Note cut */ if((ch->current->effect_param & 0x0F) == ctx->current_tick) { jar_xm_cut_note(ch); } break; - case 0xD: /* EDy: Note delay */ if(ch->note_delay_param == ctx->current_tick) { jar_xm_handle_note_and_instrument(ctx, ch, ch->current); jar_xm_envelopes(ch); } break; - default: break; - } break; - + case 16: /* Fxy: Set tempo/BPM */ + break; case 17: /* Hxy: Global volume slide */ if(ctx->current_tick == 0) break; - if((ch->global_volume_slide_param & 0xF0) && - (ch->global_volume_slide_param & 0x0F)) { - /* Illegal state */ - break; - } - if(ch->global_volume_slide_param & 0xF0) { - /* Global slide up */ + if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */ + if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */ float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40; ctx->global_volume += f; jar_xm_CLAMP_UP(ctx->global_volume); - } else { - /* Global slide down */ + } else { /* Global slide down */ float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40; ctx->global_volume -= f; jar_xm_CLAMP_DOWN(ctx->global_volume); - } + }; break; case 20: /* Kxx: Key off */ - /* Most documentations will tell you the parameter has no - * use. Don't be fooled. */ - if(ctx->current_tick == ch->current->effect_param) { - jar_xm_key_off(ch); - } + if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); }; break; - + case 21: /* Lxx: Set envelope position */ + break; case 25: /* Pxy: Panning slide */ if(ctx->current_tick == 0) break; jar_xm_panning_slide(ch, ch->panning_slide_param); break; - case 27: /* Rxy: Multi retrig note */ if(ctx->current_tick == 0) break; if(((ch->multi_retrig_param) & 0x0F) == 0) break; @@ -2349,228 +1918,251 @@ static void jar_xm_tick(jar_xm_context_t* ctx) { jar_xm_CLAMP(v); jar_xm_trigger_note(ctx, ch, 0); ch->volume = v; - } + }; break; case 29: /* Txy: Tremor */ if(ctx->current_tick == 0) break; - ch->tremor_on = ( - (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) - > - (ch->tremor_param >> 4) - ); + ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) ); break; - default: break; - - } + }; float panning, volume; - - panning = ch->panning + - (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f; - + panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f; if(ch->tremor_on) { - volume = .0f; + volume = .0f; } else { volume = ch->volume + ch->tremolo_volume; jar_xm_CLAMP(volume); volume *= ch->fadeout_volume * ch->volume_envelope_volume; - } + }; -#if JAR_XM_RAMPING - ch->target_panning = panning; - ch->target_volume = volume; -#else - ch->actual_panning = panning; - ch->actual_volume = volume; -#endif - } + if (mod->ramping) { + ch->target_panning = panning; + ch->target_volume = volume; + } else { + ch->actual_panning = panning; + ch->actual_volume = volume; + }; + }; - ctx->current_tick++; + ctx->current_tick++; // ok so we understand that ticks increment within the row if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) { + // This means it reached the end of the row and we reset ctx->current_tick = 0; ctx->extra_ticks = 0; - } + }; - /* FT2 manual says number of ticks / second = BPM * 0.4 */ + // Number of ticks / second = BPM * 0.4 ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f); -} +}; + +static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) { + jar_xm_module_t* mod = &(ctx->module); -static float jar_xm_next_of_sample(jar_xm_channel_context_t* ch) { +// ch->curr_left = 0.f; +// ch->curr_right = 0.f; if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) { -#if JAR_XM_RAMPING - if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { - return jar_xm_LERP(ch->end_of_previous_sample[ch->frame_count], .0f, - (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); - } -#endif - return .0f; - } + ch->curr_left = 0.f; + ch->curr_right = 0.f; + if (mod->ramping) { + if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { + if (previous > -1) { + ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + } else { + ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + }; + }; + }; + return; + }; if(ch->sample->length == 0) { - return .0f; - } - - float u, v, t; - uint32_t a, b; - a = (uint32_t)ch->sample_position; /* This cast is fine, - * sample_position will not - * go above integer - * ranges */ - if(JAR_XM_LINEAR_INTERPOLATION) { - b = a + 1; - t = ch->sample_position - a; /* Cheaper than fmodf(., 1.f) */ - } - u = ch->sample->data[a]; - + return; + }; + + float t = 0.f; + uint32_t b = 0; + if(mod->linear_interpolation) { + b = ch->sample_position + 1; + t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */ + }; + + float u_left, u_right; + u_left = ch->sample->data[(uint32_t)ch->sample_position]; + if (ch->sample->stereo) { + u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length]; + } else { + u_right = u_left; + }; + float v_left = 0.f, v_right = 0.f; switch(ch->sample->loop_type) { - case jar_xm_NO_LOOP: - if(JAR_XM_LINEAR_INTERPOLATION) { - v = (b < ch->sample->length) ? ch->sample->data[b] : .0f; - } + if(mod->linear_interpolation) { + v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f; + if (ch->sample->stereo) { + v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f; + } else { + v_right = v_left; + }; + }; ch->sample_position += ch->step; - if(ch->sample_position >= ch->sample->length) { - ch->sample_position = -1; - } + if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample break; - case jar_xm_FORWARD_LOOP: - if(JAR_XM_LINEAR_INTERPOLATION) { - v = ch->sample->data[ - (b == ch->sample->loop_end) ? ch->sample->loop_start : b - ]; - } + if(mod->linear_interpolation) { + v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ]; + if (ch->sample->stereo) { + v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length]; + } else { + v_right = v_left; + }; + }; ch->sample_position += ch->step; - while(ch->sample_position >= ch->sample->loop_end) { + if (ch->sample_position >= ch->sample->loop_end) { ch->sample_position -= ch->sample->loop_length; - } + }; + if(ch->sample_position >= ch->sample->length) { + ch->sample_position = ch->sample->loop_start; + }; break; - case jar_xm_PING_PONG_LOOP: if(ch->ping) { + if(mod->linear_interpolation) { + v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b]; + if (ch->sample->stereo) { + v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length]; + } else { + v_right = v_left; + }; + }; ch->sample_position += ch->step; - } else { - ch->sample_position -= ch->step; - } - /* XXX: this may not work for very tight ping-pong loops - * (ie switches direction more than once per sample */ - if(ch->ping) { - if(JAR_XM_LINEAR_INTERPOLATION) { - v = (b >= ch->sample->loop_end) ? ch->sample->data[a] : ch->sample->data[b]; - } if(ch->sample_position >= ch->sample->loop_end) { ch->ping = false; ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; - } - /* sanity checking */ + }; if(ch->sample_position >= ch->sample->length) { ch->ping = false; ch->sample_position -= ch->sample->length - 1; - } + }; } else { - if(JAR_XM_LINEAR_INTERPOLATION) { - v = u; - u = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[a] : ch->sample->data[b - 2]; - } + if(mod->linear_interpolation) { + v_left = u_left; + v_right = u_right; + u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2]; + if (ch->sample->stereo) { + u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2]; + } else { + u_right = u_left; + }; + }; + ch->sample_position -= ch->step; if(ch->sample_position <= ch->sample->loop_start) { ch->ping = true; ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position; - } - /* sanity checking */ - if(ch->sample_position <= .0f) { + }; + if (ch->sample_position <= .0f) { ch->ping = true; ch->sample_position = .0f; - } - } + }; + }; break; default: - v = .0f; + v_left = .0f; + v_right = .0f; break; - } - - float endval = JAR_XM_LINEAR_INTERPOLATION ? jar_xm_LERP(u, v, t) : u; + }; -#if JAR_XM_RAMPING - if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { - /* Smoothly transition between old and new sample. */ - return jar_xm_LERP(ch->end_of_previous_sample[ch->frame_count], endval, - (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); - } -#endif + float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left; + float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right; - return endval; -} + if (mod->ramping) { + if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { + /* Smoothly transition between old and new sample. */ + if (previous > -1) { + ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + } else { + ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); + }; + }; + }; + + if (previous > -1) { + ch->end_of_previous_sample_left[previous] = endval_left; + ch->end_of_previous_sample_right[previous] = endval_right; + } else { + ch->curr_left = endval_left; + ch->curr_right = endval_right; + }; +}; -static void jar_xm_sample(jar_xm_context_t* ctx, float* left, float* right) { +// gather all channel audio into stereo float +static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) { + jar_xm_module_t* mod = &(ctx->module); + if(ctx->remaining_samples_in_tick <= 0) { jar_xm_tick(ctx); - } + }; ctx->remaining_samples_in_tick--; - *left = 0.f; *right = 0.f; - - if(ctx->max_loop_count > 0 && ctx->loop_count >= ctx->max_loop_count) { - return; - } + if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; } for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { jar_xm_channel_context_t* ch = ctx->channels + i; - - if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) { - continue; - } - - const float fval = jar_xm_next_of_sample(ch); - - if(!ch->muted && !ch->instrument->muted) { - *left += fval * ch->actual_volume * (1.f - ch->actual_panning); - *right += fval * ch->actual_volume * ch->actual_panning; - } - -#if JAR_XM_RAMPING - ch->frame_count++; - jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp); - jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp); -#endif - } - - const float fgvol = ctx->global_volume * ctx->amplification; - *left *= fgvol; - *right *= fgvol; - -#if JAR_XM_DEBUG - if(fabs(*left) > 1 || fabs(*right) > 1) { - DEBUG("clipping frame: %f %f, this is a bad module or a libxm bug", *left, *right); - } -#endif -} + if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) { + jar_xm_next_of_sample(ctx, ch, -1); + if(!ch->muted && !ch->instrument->muted) { + *left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning); + *right += ch->curr_right * ch->actual_volume * ch->actual_panning; + }; + + if (mod->ramping) { + ch->frame_count++; + jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp); + jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp); + }; + }; + }; + if (ctx->global_volume != 1.0f) { + *left *= ctx->global_volume; + *right *= ctx->global_volume; + }; + + // experimental +// float counter = (float)ctx->generated_samples * 0.0001f +// *left = tan(&left + sin(counter)); +// *right = tan(&right + cos(counter)); + + // apply brick wall limiter when audio goes beyond bounderies + if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;}; + if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;}; +}; void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) { if(ctx && output) { ctx->generated_samples += numsamples; for(size_t i = 0; i < numsamples; i++) { - jar_xm_sample(ctx, output + (2 * i), output + (2 * i + 1)); - } - } -} + jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1)); + }; + }; +}; -uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) -{ +uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) { uint64_t total = 0; uint8_t currentLoopCount = jar_xm_get_loop_count(ctx); jar_xm_set_max_loop_count(ctx, 0); - - while(jar_xm_get_loop_count(ctx) == currentLoopCount) - { + while(jar_xm_get_loop_count(ctx) == currentLoopCount) { total += ctx->remaining_samples_in_tick; ctx->remaining_samples_in_tick = 0; jar_xm_tick(ctx); } - ctx->loop_count = currentLoopCount; return total; } @@ -2578,7 +2170,6 @@ uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) //-------------------------------------------- //FILE LOADER - TODO - NEEDS TO BE CLEANED UP //-------------------------------------------- - #undef DEBUG #define DEBUG(...) do { \ fprintf(stderr, __VA_ARGS__); \ @@ -2642,43 +2233,236 @@ int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const switch(ret) { case 0: break; - - case 1: - DEBUG("could not create context: module is not sane\n"); + case 1: DEBUG("could not create context: module is not sane\n"); *ctx = NULL; return 1; break; - - case 2: - FATAL("could not create context: malloc failed\n"); + case 2: FATAL("could not create context: malloc failed\n"); return 2; break; - - default: - FATAL("could not create context: unknown error\n"); + default: FATAL("could not create context: unknown error\n"); return 6; break; - } - + return 0; } // not part of the original library -void jar_xm_reset(jar_xm_context_t* ctx) -{ - // I don't know what I am doing - // this is probably very broken - // but it kinda works - for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) - { +void jar_xm_reset(jar_xm_context_t* ctx) { + for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { jar_xm_cut_note(&ctx->channels[i]); } ctx->current_row = 0; ctx->current_table_index = 0; ctx->current_tick = 0; + ctx->tempo =ctx->default_tempo; // reset to file default value + ctx->bpm = ctx->default_bpm; // reset to file default value + ctx->global_volume = ctx->default_global_volume; // reset to file default value +} + + +void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) { + if (ctx->module.linear_interpolation) { + ctx->module.linear_interpolation = 0; + } else { + ctx->module.linear_interpolation = 1; + } +} + +void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) { + for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { + jar_xm_cut_note(&ctx->channels[i]); + } + ctx->current_row = 0; + ctx->current_tick = 0; + if(table_ptr > 0 && table_ptr < ctx->module.length) { + ctx->current_table_index = table_ptr; + ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track + } else { + ctx->current_table_index = 0; + ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track + ctx->tempo =ctx->default_tempo; // reset to file default value + ctx->bpm = ctx->default_bpm; // reset to file default value + ctx->global_volume = ctx->default_global_volume; // reset to file default value + }; +} + + +// TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... ) +const char* xm_note_chr(int number) { + if (number == NOTE_OFF) { + return "=="; + }; + number = number % 12; + switch(number) { + case 1: return "C-"; + case 2: return "C#"; + case 3: return "D-"; + case 4: return "D#"; + case 5: return "E-"; + case 6: return "F-"; + case 7: return "F#"; + case 8: return "G-"; + case 9: return "G#"; + case 10: return "A-"; + case 11: return "A#"; + case 12: return "B-"; + }; + return "??"; +}; + +const char* xm_octave_chr(int number) { + if (number == NOTE_OFF) { + return "="; + }; + + int number2 = number - number % 12; + int result = floor(number2 / 12) + 1; + switch(result) { + case 1: return "1"; + case 2: return "2"; + case 3: return "3"; + case 4: return "4"; + case 5: return "5"; + case 6: return "6"; + case 7: return "7"; + case 8: return "8"; + default: return "?"; /* UNKNOWN */ + }; + +}; + +// TRANSLATE NOTE EFFECT CODE INTO USER VALUE +const char* xm_effect_chr(int fx) { + switch(fx) { + case 0: return "0"; /* ZERO = NO EFFECT */ + case 1: return "1"; /* 1xx: Portamento up */ + case 2: return "2"; /* 2xx: Portamento down */ + case 3: return "3"; /* 3xx: Tone portamento */ + case 4: return "4"; /* 4xy: Vibrato */ + case 5: return "5"; /* 5xy: Tone portamento + Volume slide */ + case 6: return "6"; /* 6xy: Vibrato + Volume slide */ + case 7: return "7"; /* 7xy: Tremolo */ + case 8: return "8"; /* 8xx: Set panning */ + case 9: return "9"; /* 9xx: Sample offset */ + case 0xA: return "A";/* Axy: Volume slide */ + case 0xB: return "B";/* Bxx: Position jump */ + case 0xC: return "C";/* Cxx: Set volume */ + case 0xD: return "D";/* Dxx: Pattern break */ + case 0xE: return "E";/* EXy: Extended command */ + case 0xF: return "F";/* Fxx: Set tempo/BPM */ + case 16: return "G"; /* Gxx: Set global volume */ + case 17: return "H"; /* Hxy: Global volume slide */ + case 21: return "L"; /* Lxx: Set envelope position */ + case 25: return "P"; /* Pxy: Panning slide */ + case 27: return "R"; /* Rxy: Multi retrig note */ + case 29: return "T"; /* Txy: Tremor */ + case 33: return "X"; /* Xxy: Extra stuff */ + default: return "?"; /* UNKNOWN */ + }; } +#ifdef JAR_XM_RAYLIB + +#include "raylib.h" // Need RayLib API calls for the DEBUG display + +void jar_xm_debug(jar_xm_context_t *ctx) { + int size=40; + int x = 0, y = 0; + + // DEBUG VARIABLES + y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE); + y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE); + y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE); + y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE); + y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE); + y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE); + y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE); + y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE); + y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE); + y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE); + x = size * 12; y = 0; + + y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE); + y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE); + y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE); + y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE); + y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE); + y += size * 7; + + x = 0; + size=16; + // TIMELINE OF MODULE + for (int i=0; i < ctx->module.length; i++) { + if (i == ctx->jump_dest) { + if (ctx->position_jump) { + DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD); + } else { + DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN); + }; + }; + if (i == ctx->current_table_index) { +// DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE); + DrawRectangle(i * size * 2, y, size * 2, size, RED); + DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW); + } else { + DrawRectangle(i * size * 2, y, size * 2, size, ORANGE); + }; + DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE); + }; + y += size; + + jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; + + /* DISPLAY CURRENTLY PLAYING PATTERN */ + + x += 2 * size; + for(uint8_t i = 0; i < ctx->module.num_channels; i++) { + DrawRectangle(x, y, 8 * size, size, PURPLE); + DrawText("N", x, y, size, YELLOW); + DrawText("I", x + size * 2, y, size, YELLOW); + DrawText("V", x + size * 4, y, size, YELLOW); + DrawText("FX", x + size * 6, y, size, YELLOW); + x += 9 * size; + }; + x += size; + for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) { + y += size; + x = 0; + if (j >=0 && j < (cur->num_rows)) { + DrawRectangle(x, y, size * 2, size, BROWN); + DrawText(TextFormat("%02X",j), x, y, size, WHITE); + x += 2 * size; + for(uint8_t i = 0; i < ctx->module.num_channels; i++) { + if (j==(ctx->current_row)) { + DrawRectangle(x, y, 8 * size, size, DARKGREEN); + } else { + DrawRectangle(x, y, 8 * size, size, DARKGRAY); + }; + jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i; + // jar_xm_channel_context_t *ch = ctx->channels + i; + if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);}; + if (s->instrument > 0) { + DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE); + if (s->volume_column == 0) { + DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW); + }; + } else { + DrawText("..", x + size * 2, y, size, GRAY); + if (s->volume_column == 0) { + DrawText("..", x + size * 4, y, size, GRAY); + }; + }; + if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);}; + if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);}; + x += 9 * size; + }; + }; + }; + +} +#endif // RayLib extension #endif//end of JAR_XM_IMPLEMENTATION //------------------------------------------------------------------------------- -- cgit v1.2.3