From d96b4ebce5ee6245fa80d27d41b67aa56555c912 Mon Sep 17 00:00:00 2001 From: LucaSas Date: Thu, 4 Nov 2021 16:14:58 +0200 Subject: Changed the template to now download raylib instead of having it in the repo. --- libs/raylib/src/external/par_shapes.h | 2051 --------------------------------- 1 file changed, 2051 deletions(-) delete mode 100644 libs/raylib/src/external/par_shapes.h (limited to 'libs/raylib/src/external/par_shapes.h') diff --git a/libs/raylib/src/external/par_shapes.h b/libs/raylib/src/external/par_shapes.h deleted file mode 100644 index 8b65e38..0000000 --- a/libs/raylib/src/external/par_shapes.h +++ /dev/null @@ -1,2051 +0,0 @@ -// SHAPES :: https://github.com/prideout/par -// Simple C library for creation and manipulation of triangle meshes. -// -// The API is divided into three sections: -// -// - Generators. Create parametric surfaces, platonic solids, etc. -// - Queries. Ask a mesh for its axis-aligned bounding box, etc. -// - Transforms. Rotate a mesh, merge it with another, add normals, etc. -// -// In addition to the comment block above each function declaration, the API -// has informal documentation here: -// -// https://prideout.net/shapes -// -// For our purposes, a "mesh" is a list of points and a list of triangles; the -// former is a flattened list of three-tuples (32-bit floats) and the latter is -// also a flattened list of three-tuples (16-bit uints). Triangles are always -// oriented such that their front face winds counter-clockwise. -// -// Optionally, meshes can contain 3D normals (one per vertex), and 2D texture -// coordinates (one per vertex). That's it! If you need something fancier, -// look elsewhere. -// -// The MIT License -// Copyright (c) 2015 Philip Rideout - -#ifndef PAR_SHAPES_H -#define PAR_SHAPES_H - -#ifdef __cplusplus -extern "C" { -#endif - -#include - -// Ray: commented to avoid conflict with raylib bool -/* -#if !defined(_MSC_VER) -# include -#else // MSVC -# if _MSC_VER >= 1800 -# include -# else // stdbool.h missing prior to MSVC++ 12.0 (VS2013) -//# define bool int -//# define true 1 -//# define false 0 -# endif -#endif -*/ - -#ifndef PAR_SHAPES_T -#define PAR_SHAPES_T uint16_t -#endif - -typedef struct par_shapes_mesh_s { - float* points; // Flat list of 3-tuples (X Y Z X Y Z...) - int npoints; // Number of points - PAR_SHAPES_T* triangles; // Flat list of 3-tuples (I J K I J K...) - int ntriangles; // Number of triangles - float* normals; // Optional list of 3-tuples (X Y Z X Y Z...) - float* tcoords; // Optional list of 2-tuples (U V U V U V...) -} par_shapes_mesh; - -void par_shapes_free_mesh(par_shapes_mesh*); - -// Generators ------------------------------------------------------------------ - -// Instance a cylinder that sits on the Z=0 plane using the given tessellation -// levels across the UV domain. Think of "slices" like a number of pizza -// slices, and "stacks" like a number of stacked rings. Height and radius are -// both 1.0, but they can easily be changed with par_shapes_scale. -par_shapes_mesh* par_shapes_create_cylinder(int slices, int stacks); - -// Create a donut that sits on the Z=0 plane with the specified inner radius. -// The outer radius can be controlled with par_shapes_scale. -par_shapes_mesh* par_shapes_create_torus(int slices, int stacks, float radius); - -// Create a sphere with texture coordinates and small triangles near the poles. -par_shapes_mesh* par_shapes_create_parametric_sphere(int slices, int stacks); - -// Approximate a sphere with a subdivided icosahedron, which produces a nice -// distribution of triangles, but no texture coordinates. Each subdivision -// level scales the number of triangles by four, so use a very low number. -par_shapes_mesh* par_shapes_create_subdivided_sphere(int nsubdivisions); - -// More parametric surfaces. -par_shapes_mesh* par_shapes_create_klein_bottle(int slices, int stacks); -par_shapes_mesh* par_shapes_create_trefoil_knot(int slices, int stacks, - float radius); -par_shapes_mesh* par_shapes_create_hemisphere(int slices, int stacks); -par_shapes_mesh* par_shapes_create_plane(int slices, int stacks); - -// Create a parametric surface from a callback function that consumes a 2D -// point in [0,1] and produces a 3D point. -typedef void (*par_shapes_fn)(float const*, float*, void*); -par_shapes_mesh* par_shapes_create_parametric(par_shapes_fn, int slices, - int stacks, void* userdata); - -// Generate points for a 20-sided polyhedron that fits in the unit sphere. -// Texture coordinates and normals are not generated. -par_shapes_mesh* par_shapes_create_icosahedron(); - -// Generate points for a 12-sided polyhedron that fits in the unit sphere. -// Again, texture coordinates and normals are not generated. -par_shapes_mesh* par_shapes_create_dodecahedron(); - -// More platonic solids. -par_shapes_mesh* par_shapes_create_octahedron(); -par_shapes_mesh* par_shapes_create_tetrahedron(); -par_shapes_mesh* par_shapes_create_cube(); - -// Generate an orientable disk shape in 3-space. Does not include normals or -// texture coordinates. -par_shapes_mesh* par_shapes_create_disk(float radius, int slices, - float const* center, float const* normal); - -// Create an empty shape. Useful for building scenes with merge_and_free. -par_shapes_mesh* par_shapes_create_empty(); - -// Generate a rock shape that sits on the Y=0 plane, and sinks into it a bit. -// This includes smooth normals but no texture coordinates. Each subdivision -// level scales the number of triangles by four, so use a very low number. -par_shapes_mesh* par_shapes_create_rock(int seed, int nsubdivisions); - -// Create trees or vegetation by executing a recursive turtle graphics program. -// The program is a list of command-argument pairs. See the unit test for -// an example. Texture coordinates and normals are not generated. -par_shapes_mesh* par_shapes_create_lsystem(char const* program, int slices, - int maxdepth); - -// Queries --------------------------------------------------------------------- - -// Dump out a text file conforming to the venerable OBJ format. -void par_shapes_export(par_shapes_mesh const*, char const* objfile); - -// Take a pointer to 6 floats and set them to min xyz, max xyz. -void par_shapes_compute_aabb(par_shapes_mesh const* mesh, float* aabb); - -// Make a deep copy of a mesh. To make a brand new copy, pass null to "target". -// To avoid memory churn, pass an existing mesh to "target". -par_shapes_mesh* par_shapes_clone(par_shapes_mesh const* mesh, - par_shapes_mesh* target); - -// Transformations ------------------------------------------------------------- - -void par_shapes_merge(par_shapes_mesh* dst, par_shapes_mesh const* src); -void par_shapes_translate(par_shapes_mesh*, float x, float y, float z); -void par_shapes_rotate(par_shapes_mesh*, float radians, float const* axis); -void par_shapes_scale(par_shapes_mesh*, float x, float y, float z); -void par_shapes_merge_and_free(par_shapes_mesh* dst, par_shapes_mesh* src); - -// Reverse the winding of a run of faces. Useful when drawing the inside of -// a Cornell Box. Pass 0 for nfaces to reverse every face in the mesh. -void par_shapes_invert(par_shapes_mesh*, int startface, int nfaces); - -// Remove all triangles whose area is less than minarea. -void par_shapes_remove_degenerate(par_shapes_mesh*, float minarea); - -// Dereference the entire index buffer and replace the point list. -// This creates an inefficient structure, but is useful for drawing facets. -// If create_indices is true, a trivial "0 1 2 3..." index buffer is generated. -void par_shapes_unweld(par_shapes_mesh* mesh, bool create_indices); - -// Merge colocated verts, build a new index buffer, and return the -// optimized mesh. Epsilon is the maximum distance to consider when -// welding vertices. The mapping argument can be null, or a pointer to -// npoints integers, which gets filled with the mapping from old vertex -// indices to new indices. -par_shapes_mesh* par_shapes_weld(par_shapes_mesh const*, float epsilon, - PAR_SHAPES_T* mapping); - -// Compute smooth normals by averaging adjacent facet normals. -void par_shapes_compute_normals(par_shapes_mesh* m); - -#ifndef PAR_PI -#define PAR_PI (3.14159265359) -#define PAR_MIN(a, b) (a > b ? b : a) -#define PAR_MAX(a, b) (a > b ? a : b) -#define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v)) -#define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; } -#define PAR_SQR(a) ((a) * (a)) -#endif - -#ifndef PAR_MALLOC -#define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T))) -#define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1)) -#define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N))) -#define PAR_FREE(BUF) free(BUF) -#endif - -#ifdef __cplusplus -} -#endif - -// ----------------------------------------------------------------------------- -// END PUBLIC API -// ----------------------------------------------------------------------------- - -#ifdef PAR_SHAPES_IMPLEMENTATION -#include -#include -#include -#include -#include -#include -#include - -static void par_shapes__sphere(float const* uv, float* xyz, void*); -static void par_shapes__hemisphere(float const* uv, float* xyz, void*); -static void par_shapes__plane(float const* uv, float* xyz, void*); -static void par_shapes__klein(float const* uv, float* xyz, void*); -static void par_shapes__cylinder(float const* uv, float* xyz, void*); -static void par_shapes__torus(float const* uv, float* xyz, void*); -static void par_shapes__trefoil(float const* uv, float* xyz, void*); - -struct osn_context; -static int par__simplex_noise(int64_t seed, struct osn_context** ctx); -static void par__simplex_noise_free(struct osn_context* ctx); -static double par__simplex_noise2(struct osn_context* ctx, double x, double y); - -static void par_shapes__copy3(float* result, float const* a) -{ - result[0] = a[0]; - result[1] = a[1]; - result[2] = a[2]; -} - -static float par_shapes__dot3(float const* a, float const* b) -{ - return b[0] * a[0] + b[1] * a[1] + b[2] * a[2]; -} - -static void par_shapes__transform3(float* p, float const* x, float const* y, - float const* z) -{ - float px = par_shapes__dot3(p, x); - float py = par_shapes__dot3(p, y); - float pz = par_shapes__dot3(p, z); - p[0] = px; - p[1] = py; - p[2] = pz; -} - -static void par_shapes__cross3(float* result, float const* a, float const* b) -{ - float x = (a[1] * b[2]) - (a[2] * b[1]); - float y = (a[2] * b[0]) - (a[0] * b[2]); - float z = (a[0] * b[1]) - (a[1] * b[0]); - result[0] = x; - result[1] = y; - result[2] = z; -} - -static void par_shapes__mix3(float* d, float const* a, float const* b, float t) -{ - float x = b[0] * t + a[0] * (1 - t); - float y = b[1] * t + a[1] * (1 - t); - float z = b[2] * t + a[2] * (1 - t); - d[0] = x; - d[1] = y; - d[2] = z; -} - -static void par_shapes__scale3(float* result, float a) -{ - result[0] *= a; - result[1] *= a; - result[2] *= a; -} - -static void par_shapes__normalize3(float* v) -{ - float lsqr = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); - if (lsqr > 0) { - par_shapes__scale3(v, 1.0f / lsqr); - } -} - -static void par_shapes__subtract3(float* result, float const* a) -{ - result[0] -= a[0]; - result[1] -= a[1]; - result[2] -= a[2]; -} - -static void par_shapes__add3(float* result, float const* a) -{ - result[0] += a[0]; - result[1] += a[1]; - result[2] += a[2]; -} - -static float par_shapes__sqrdist3(float const* a, float const* b) -{ - float dx = a[0] - b[0]; - float dy = a[1] - b[1]; - float dz = a[2] - b[2]; - return dx * dx + dy * dy + dz * dz; -} - -static void par_shapes__compute_welded_normals(par_shapes_mesh* m) -{ - m->normals = PAR_MALLOC(float, m->npoints * 3); - PAR_SHAPES_T* weldmap = PAR_MALLOC(PAR_SHAPES_T, m->npoints); - par_shapes_mesh* welded = par_shapes_weld(m, 0.01, weldmap); - par_shapes_compute_normals(welded); - float* pdst = m->normals; - for (int i = 0; i < m->npoints; i++, pdst += 3) { - int d = weldmap[i]; - float const* pnormal = welded->normals + d * 3; - pdst[0] = pnormal[0]; - pdst[1] = pnormal[1]; - pdst[2] = pnormal[2]; - } - PAR_FREE(weldmap); - par_shapes_free_mesh(welded); -} - -par_shapes_mesh* par_shapes_create_cylinder(int slices, int stacks) -{ - if (slices < 3 || stacks < 1) { - return 0; - } - return par_shapes_create_parametric(par_shapes__cylinder, slices, - stacks, 0); -} - -par_shapes_mesh* par_shapes_create_parametric_sphere(int slices, int stacks) -{ - if (slices < 3 || stacks < 3) { - return 0; - } - par_shapes_mesh* m = par_shapes_create_parametric(par_shapes__sphere, - slices, stacks, 0); - par_shapes_remove_degenerate(m, 0.0001); - return m; -} - -par_shapes_mesh* par_shapes_create_hemisphere(int slices, int stacks) -{ - if (slices < 3 || stacks < 3) { - return 0; - } - par_shapes_mesh* m = par_shapes_create_parametric(par_shapes__hemisphere, - slices, stacks, 0); - par_shapes_remove_degenerate(m, 0.0001); - return m; -} - -par_shapes_mesh* par_shapes_create_torus(int slices, int stacks, float radius) -{ - if (slices < 3 || stacks < 3) { - return 0; - } - assert(radius <= 1.0 && "Use smaller radius to avoid self-intersection."); - assert(radius >= 0.1 && "Use larger radius to avoid self-intersection."); - void* userdata = (void*) &radius; - return par_shapes_create_parametric(par_shapes__torus, slices, - stacks, userdata); -} - -par_shapes_mesh* par_shapes_create_klein_bottle(int slices, int stacks) -{ - if (slices < 3 || stacks < 3) { - return 0; - } - par_shapes_mesh* mesh = par_shapes_create_parametric( - par_shapes__klein, slices, stacks, 0); - int face = 0; - for (int stack = 0; stack < stacks; stack++) { - for (int slice = 0; slice < slices; slice++, face += 2) { - if (stack < 27 * stacks / 32) { - par_shapes_invert(mesh, face, 2); - } - } - } - par_shapes__compute_welded_normals(mesh); - return mesh; -} - -par_shapes_mesh* par_shapes_create_trefoil_knot(int slices, int stacks, - float radius) -{ - if (slices < 3 || stacks < 3) { - return 0; - } - assert(radius <= 3.0 && "Use smaller radius to avoid self-intersection."); - assert(radius >= 0.5 && "Use larger radius to avoid self-intersection."); - void* userdata = (void*) &radius; - return par_shapes_create_parametric(par_shapes__trefoil, slices, - stacks, userdata); -} - -par_shapes_mesh* par_shapes_create_plane(int slices, int stacks) -{ - if (slices < 1 || stacks < 1) { - return 0; - } - return par_shapes_create_parametric(par_shapes__plane, slices, - stacks, 0); -} - -par_shapes_mesh* par_shapes_create_parametric(par_shapes_fn fn, - int slices, int stacks, void* userdata) -{ - par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); - - // Generate verts. - mesh->npoints = (slices + 1) * (stacks + 1); - mesh->points = PAR_CALLOC(float, 3 * mesh->npoints); - float uv[2]; - float xyz[3]; - float* points = mesh->points; - for (int stack = 0; stack < stacks + 1; stack++) { - uv[0] = (float) stack / stacks; - for (int slice = 0; slice < slices + 1; slice++) { - uv[1] = (float) slice / slices; - fn(uv, xyz, userdata); - *points++ = xyz[0]; - *points++ = xyz[1]; - *points++ = xyz[2]; - } - } - - // Generate texture coordinates. - mesh->tcoords = PAR_CALLOC(float, 2 * mesh->npoints); - float* uvs = mesh->tcoords; - for (int stack = 0; stack < stacks + 1; stack++) { - uv[0] = (float) stack / stacks; - for (int slice = 0; slice < slices + 1; slice++) { - uv[1] = (float) slice / slices; - *uvs++ = uv[0]; - *uvs++ = uv[1]; - } - } - - // Generate faces. - mesh->ntriangles = 2 * slices * stacks; - mesh->triangles = PAR_CALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); - int v = 0; - PAR_SHAPES_T* face = mesh->triangles; - for (int stack = 0; stack < stacks; stack++) { - for (int slice = 0; slice < slices; slice++) { - int next = slice + 1; - *face++ = v + slice + slices + 1; - *face++ = v + next; - *face++ = v + slice; - *face++ = v + slice + slices + 1; - *face++ = v + next + slices + 1; - *face++ = v + next; - } - v += slices + 1; - } - - par_shapes__compute_welded_normals(mesh); - return mesh; -} - -void par_shapes_free_mesh(par_shapes_mesh* mesh) -{ - PAR_FREE(mesh->points); - PAR_FREE(mesh->triangles); - PAR_FREE(mesh->normals); - PAR_FREE(mesh->tcoords); - PAR_FREE(mesh); -} - -void par_shapes_export(par_shapes_mesh const* mesh, char const* filename) -{ - FILE* objfile = fopen(filename, "wt"); - float const* points = mesh->points; - float const* tcoords = mesh->tcoords; - float const* norms = mesh->normals; - PAR_SHAPES_T const* indices = mesh->triangles; - if (tcoords && norms) { - for (int nvert = 0; nvert < mesh->npoints; nvert++) { - fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); - fprintf(objfile, "vt %f %f\n", tcoords[0], tcoords[1]); - fprintf(objfile, "vn %f %f %f\n", norms[0], norms[1], norms[2]); - points += 3; - norms += 3; - tcoords += 2; - } - for (int nface = 0; nface < mesh->ntriangles; nface++) { - int a = 1 + *indices++; - int b = 1 + *indices++; - int c = 1 + *indices++; - fprintf(objfile, "f %d/%d/%d %d/%d/%d %d/%d/%d\n", - a, a, a, b, b, b, c, c, c); - } - } else if (norms) { - for (int nvert = 0; nvert < mesh->npoints; nvert++) { - fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); - fprintf(objfile, "vn %f %f %f\n", norms[0], norms[1], norms[2]); - points += 3; - norms += 3; - } - for (int nface = 0; nface < mesh->ntriangles; nface++) { - int a = 1 + *indices++; - int b = 1 + *indices++; - int c = 1 + *indices++; - fprintf(objfile, "f %d//%d %d//%d %d//%d\n", a, a, b, b, c, c); - } - } else if (tcoords) { - for (int nvert = 0; nvert < mesh->npoints; nvert++) { - fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); - fprintf(objfile, "vt %f %f\n", tcoords[0], tcoords[1]); - points += 3; - tcoords += 2; - } - for (int nface = 0; nface < mesh->ntriangles; nface++) { - int a = 1 + *indices++; - int b = 1 + *indices++; - int c = 1 + *indices++; - fprintf(objfile, "f %d/%d %d/%d %d/%d\n", a, a, b, b, c, c); - } - } else { - for (int nvert = 0; nvert < mesh->npoints; nvert++) { - fprintf(objfile, "v %f %f %f\n", points[0], points[1], points[2]); - points += 3; - } - for (int nface = 0; nface < mesh->ntriangles; nface++) { - int a = 1 + *indices++; - int b = 1 + *indices++; - int c = 1 + *indices++; - fprintf(objfile, "f %d %d %d\n", a, b, c); - } - } - fclose(objfile); -} - -static void par_shapes__sphere(float const* uv, float* xyz, void* userdata) -{ - float phi = uv[0] * PAR_PI; - float theta = uv[1] * 2 * PAR_PI; - xyz[0] = cosf(theta) * sinf(phi); - xyz[1] = sinf(theta) * sinf(phi); - xyz[2] = cosf(phi); -} - -static void par_shapes__hemisphere(float const* uv, float* xyz, void* userdata) -{ - float phi = uv[0] * PAR_PI; - float theta = uv[1] * PAR_PI; - xyz[0] = cosf(theta) * sinf(phi); - xyz[1] = sinf(theta) * sinf(phi); - xyz[2] = cosf(phi); -} - -static void par_shapes__plane(float const* uv, float* xyz, void* userdata) -{ - xyz[0] = uv[0]; - xyz[1] = uv[1]; - xyz[2] = 0; -} - -static void par_shapes__klein(float const* uv, float* xyz, void* userdata) -{ - float u = uv[0] * PAR_PI; - float v = uv[1] * 2 * PAR_PI; - u = u * 2; - if (u < PAR_PI) { - xyz[0] = 3 * cosf(u) * (1 + sinf(u)) + (2 * (1 - cosf(u) / 2)) * - cosf(u) * cosf(v); - xyz[2] = -8 * sinf(u) - 2 * (1 - cosf(u) / 2) * sinf(u) * cosf(v); - } else { - xyz[0] = 3 * cosf(u) * (1 + sinf(u)) + (2 * (1 - cosf(u) / 2)) * - cosf(v + PAR_PI); - xyz[2] = -8 * sinf(u); - } - xyz[1] = -2 * (1 - cosf(u) / 2) * sinf(v); -} - -static void par_shapes__cylinder(float const* uv, float* xyz, void* userdata) -{ - float theta = uv[1] * 2 * PAR_PI; - xyz[0] = sinf(theta); - xyz[1] = cosf(theta); - xyz[2] = uv[0]; -} - -static void par_shapes__torus(float const* uv, float* xyz, void* userdata) -{ - float major = 1; - float minor = *((float*) userdata); - float theta = uv[0] * 2 * PAR_PI; - float phi = uv[1] * 2 * PAR_PI; - float beta = major + minor * cosf(phi); - xyz[0] = cosf(theta) * beta; - xyz[1] = sinf(theta) * beta; - xyz[2] = sinf(phi) * minor; -} - -static void par_shapes__trefoil(float const* uv, float* xyz, void* userdata) -{ - float minor = *((float*) userdata); - const float a = 0.5f; - const float b = 0.3f; - const float c = 0.5f; - const float d = minor * 0.1f; - const float u = (1 - uv[0]) * 4 * PAR_PI; - const float v = uv[1] * 2 * PAR_PI; - const float r = a + b * cos(1.5f * u); - const float x = r * cos(u); - const float y = r * sin(u); - const float z = c * sin(1.5f * u); - float q[3]; - q[0] = - -1.5f * b * sin(1.5f * u) * cos(u) - (a + b * cos(1.5f * u)) * sin(u); - q[1] = - -1.5f * b * sin(1.5f * u) * sin(u) + (a + b * cos(1.5f * u)) * cos(u); - q[2] = 1.5f * c * cos(1.5f * u); - par_shapes__normalize3(q); - float qvn[3] = {q[1], -q[0], 0}; - par_shapes__normalize3(qvn); - float ww[3]; - par_shapes__cross3(ww, q, qvn); - xyz[0] = x + d * (qvn[0] * cos(v) + ww[0] * sin(v)); - xyz[1] = y + d * (qvn[1] * cos(v) + ww[1] * sin(v)); - xyz[2] = z + d * ww[2] * sin(v); -} - -void par_shapes_merge(par_shapes_mesh* dst, par_shapes_mesh const* src) -{ - PAR_SHAPES_T offset = dst->npoints; - int npoints = dst->npoints + src->npoints; - int vecsize = sizeof(float) * 3; - dst->points = PAR_REALLOC(float, dst->points, 3 * npoints); - memcpy(dst->points + 3 * dst->npoints, src->points, vecsize * src->npoints); - dst->npoints = npoints; - if (src->normals || dst->normals) { - dst->normals = PAR_REALLOC(float, dst->normals, 3 * npoints); - if (src->normals) { - memcpy(dst->normals + 3 * offset, src->normals, - vecsize * src->npoints); - } - } - if (src->tcoords || dst->tcoords) { - int uvsize = sizeof(float) * 2; - dst->tcoords = PAR_REALLOC(float, dst->tcoords, 2 * npoints); - if (src->tcoords) { - memcpy(dst->tcoords + 2 * offset, src->tcoords, - uvsize * src->npoints); - } - } - int ntriangles = dst->ntriangles + src->ntriangles; - dst->triangles = PAR_REALLOC(PAR_SHAPES_T, dst->triangles, 3 * ntriangles); - PAR_SHAPES_T* ptriangles = dst->triangles + 3 * dst->ntriangles; - PAR_SHAPES_T const* striangles = src->triangles; - for (int i = 0; i < src->ntriangles; i++) { - *ptriangles++ = offset + *striangles++; - *ptriangles++ = offset + *striangles++; - *ptriangles++ = offset + *striangles++; - } - dst->ntriangles = ntriangles; -} - -par_shapes_mesh* par_shapes_create_disk(float radius, int slices, - float const* center, float const* normal) -{ - par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); - mesh->npoints = slices + 1; - mesh->points = PAR_MALLOC(float, 3 * mesh->npoints); - float* points = mesh->points; - *points++ = 0; - *points++ = 0; - *points++ = 0; - for (int i = 0; i < slices; i++) { - float theta = i * PAR_PI * 2 / slices; - *points++ = radius * cos(theta); - *points++ = radius * sin(theta); - *points++ = 0; - } - float nnormal[3] = {normal[0], normal[1], normal[2]}; - par_shapes__normalize3(nnormal); - mesh->normals = PAR_MALLOC(float, 3 * mesh->npoints); - float* norms = mesh->normals; - for (int i = 0; i < mesh->npoints; i++) { - *norms++ = nnormal[0]; - *norms++ = nnormal[1]; - *norms++ = nnormal[2]; - } - mesh->ntriangles = slices; - mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); - PAR_SHAPES_T* triangles = mesh->triangles; - for (int i = 0; i < slices; i++) { - *triangles++ = 0; - *triangles++ = 1 + i; - *triangles++ = 1 + (i + 1) % slices; - } - float k[3] = {0, 0, -1}; - float axis[3]; - par_shapes__cross3(axis, nnormal, k); - par_shapes__normalize3(axis); - par_shapes_rotate(mesh, acos(nnormal[2]), axis); - par_shapes_translate(mesh, center[0], center[1], center[2]); - return mesh; -} - -par_shapes_mesh* par_shapes_create_empty() -{ - return PAR_CALLOC(par_shapes_mesh, 1); -} - -void par_shapes_translate(par_shapes_mesh* m, float x, float y, float z) -{ - float* points = m->points; - for (int i = 0; i < m->npoints; i++) { - *points++ += x; - *points++ += y; - *points++ += z; - } -} - -void par_shapes_rotate(par_shapes_mesh* mesh, float radians, float const* axis) -{ - float s = sinf(radians); - float c = cosf(radians); - float x = axis[0]; - float y = axis[1]; - float z = axis[2]; - float xy = x * y; - float yz = y * z; - float zx = z * x; - float oneMinusC = 1.0f - c; - float col0[3] = { - (((x * x) * oneMinusC) + c), - ((xy * oneMinusC) + (z * s)), ((zx * oneMinusC) - (y * s)) - }; - float col1[3] = { - ((xy * oneMinusC) - (z * s)), - (((y * y) * oneMinusC) + c), ((yz * oneMinusC) + (x * s)) - }; - float col2[3] = { - ((zx * oneMinusC) + (y * s)), - ((yz * oneMinusC) - (x * s)), (((z * z) * oneMinusC) + c) - }; - float* p = mesh->points; - for (int i = 0; i < mesh->npoints; i++, p += 3) { - float x = col0[0] * p[0] + col1[0] * p[1] + col2[0] * p[2]; - float y = col0[1] * p[0] + col1[1] * p[1] + col2[1] * p[2]; - float z = col0[2] * p[0] + col1[2] * p[1] + col2[2] * p[2]; - p[0] = x; - p[1] = y; - p[2] = z; - } - p = mesh->normals; - if (p) { - for (int i = 0; i < mesh->npoints; i++, p += 3) { - float x = col0[0] * p[0] + col1[0] * p[1] + col2[0] * p[2]; - float y = col0[1] * p[0] + col1[1] * p[1] + col2[1] * p[2]; - float z = col0[2] * p[0] + col1[2] * p[1] + col2[2] * p[2]; - p[0] = x; - p[1] = y; - p[2] = z; - } - } -} - -void par_shapes_scale(par_shapes_mesh* m, float x, float y, float z) -{ - float* points = m->points; - for (int i = 0; i < m->npoints; i++) { - *points++ *= x; - *points++ *= y; - *points++ *= z; - } -} - -void par_shapes_merge_and_free(par_shapes_mesh* dst, par_shapes_mesh* src) -{ - par_shapes_merge(dst, src); - par_shapes_free_mesh(src); -} - -void par_shapes_compute_aabb(par_shapes_mesh const* m, float* aabb) -{ - float* points = m->points; - aabb[0] = aabb[3] = points[0]; - aabb[1] = aabb[4] = points[1]; - aabb[2] = aabb[5] = points[2]; - points += 3; - for (int i = 1; i < m->npoints; i++, points += 3) { - aabb[0] = PAR_MIN(points[0], aabb[0]); - aabb[1] = PAR_MIN(points[1], aabb[1]); - aabb[2] = PAR_MIN(points[2], aabb[2]); - aabb[3] = PAR_MAX(points[0], aabb[3]); - aabb[4] = PAR_MAX(points[1], aabb[4]); - aabb[5] = PAR_MAX(points[2], aabb[5]); - } -} - -void par_shapes_invert(par_shapes_mesh* m, int face, int nfaces) -{ - nfaces = nfaces ? nfaces : m->ntriangles; - PAR_SHAPES_T* tri = m->triangles + face * 3; - for (int i = 0; i < nfaces; i++) { - PAR_SWAP(PAR_SHAPES_T, tri[0], tri[2]); - tri += 3; - } -} - -par_shapes_mesh* par_shapes_create_icosahedron() -{ - static float verts[] = { - 0.000, 0.000, 1.000, - 0.894, 0.000, 0.447, - 0.276, 0.851, 0.447, - -0.724, 0.526, 0.447, - -0.724, -0.526, 0.447, - 0.276, -0.851, 0.447, - 0.724, 0.526, -0.447, - -0.276, 0.851, -0.447, - -0.894, 0.000, -0.447, - -0.276, -0.851, -0.447, - 0.724, -0.526, -0.447, - 0.000, 0.000, -1.000 - }; - static PAR_SHAPES_T faces[] = { - 0,1,2, - 0,2,3, - 0,3,4, - 0,4,5, - 0,5,1, - 7,6,11, - 8,7,11, - 9,8,11, - 10,9,11, - 6,10,11, - 6,2,1, - 7,3,2, - 8,4,3, - 9,5,4, - 10,1,5, - 6,7,2, - 7,8,3, - 8,9,4, - 9,10,5, - 10,6,1 - }; - par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); - mesh->npoints = sizeof(verts) / sizeof(verts[0]) / 3; - mesh->points = PAR_MALLOC(float, sizeof(verts) / 4); - memcpy(mesh->points, verts, sizeof(verts)); - mesh->ntriangles = sizeof(faces) / sizeof(faces[0]) / 3; - mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, sizeof(faces) / 2); - memcpy(mesh->triangles, faces, sizeof(faces)); - return mesh; -} - -par_shapes_mesh* par_shapes_create_dodecahedron() -{ - static float verts[20 * 3] = { - 0.607, 0.000, 0.795, - 0.188, 0.577, 0.795, - -0.491, 0.357, 0.795, - -0.491, -0.357, 0.795, - 0.188, -0.577, 0.795, - 0.982, 0.000, 0.188, - 0.304, 0.934, 0.188, - -0.795, 0.577, 0.188, - -0.795, -0.577, 0.188, - 0.304, -0.934, 0.188, - 0.795, 0.577, -0.188, - -0.304, 0.934, -0.188, - -0.982, 0.000, -0.188, - -0.304, -0.934, -0.188, - 0.795, -0.577, -0.188, - 0.491, 0.357, -0.795, - -0.188, 0.577, -0.795, - -0.607, 0.000, -0.795, - -0.188, -0.577, -0.795, - 0.491, -0.357, -0.795, - }; - static PAR_SHAPES_T pentagons[12 * 5] = { - 0,1,2,3,4, - 5,10,6,1,0, - 6,11,7,2,1, - 7,12,8,3,2, - 8,13,9,4,3, - 9,14,5,0,4, - 15,16,11,6,10, - 16,17,12,7,11, - 17,18,13,8,12, - 18,19,14,9,13, - 19,15,10,5,14, - 19,18,17,16,15 - }; - int npentagons = sizeof(pentagons) / sizeof(pentagons[0]) / 5; - par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); - int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; - mesh->npoints = ncorners; - mesh->points = PAR_MALLOC(float, mesh->npoints * 3); - memcpy(mesh->points, verts, sizeof(verts)); - PAR_SHAPES_T const* pentagon = pentagons; - mesh->ntriangles = npentagons * 3; - mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); - PAR_SHAPES_T* tris = mesh->triangles; - for (int p = 0; p < npentagons; p++, pentagon += 5) { - *tris++ = pentagon[0]; - *tris++ = pentagon[1]; - *tris++ = pentagon[2]; - *tris++ = pentagon[0]; - *tris++ = pentagon[2]; - *tris++ = pentagon[3]; - *tris++ = pentagon[0]; - *tris++ = pentagon[3]; - *tris++ = pentagon[4]; - } - return mesh; -} - -par_shapes_mesh* par_shapes_create_octahedron() -{ - static float verts[6 * 3] = { - 0.000, 0.000, 1.000, - 1.000, 0.000, 0.000, - 0.000, 1.000, 0.000, - -1.000, 0.000, 0.000, - 0.000, -1.000, 0.000, - 0.000, 0.000, -1.000 - }; - static PAR_SHAPES_T triangles[8 * 3] = { - 0,1,2, - 0,2,3, - 0,3,4, - 0,4,1, - 2,1,5, - 3,2,5, - 4,3,5, - 1,4,5, - }; - int ntris = sizeof(triangles) / sizeof(triangles[0]) / 3; - par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); - int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; - mesh->npoints = ncorners; - mesh->points = PAR_MALLOC(float, mesh->npoints * 3); - memcpy(mesh->points, verts, sizeof(verts)); - PAR_SHAPES_T const* triangle = triangles; - mesh->ntriangles = ntris; - mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); - PAR_SHAPES_T* tris = mesh->triangles; - for (int p = 0; p < ntris; p++) { - *tris++ = *triangle++; - *tris++ = *triangle++; - *tris++ = *triangle++; - } - return mesh; -} - -par_shapes_mesh* par_shapes_create_tetrahedron() -{ - static float verts[4 * 3] = { - 0.000, 1.333, 0, - 0.943, 0, 0, - -0.471, 0, 0.816, - -0.471, 0, -0.816, - }; - static PAR_SHAPES_T triangles[4 * 3] = { - 2,1,0, - 3,2,0, - 1,3,0, - 1,2,3, - }; - int ntris = sizeof(triangles) / sizeof(triangles[0]) / 3; - par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); - int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; - mesh->npoints = ncorners; - mesh->points = PAR_MALLOC(float, mesh->npoints * 3); - memcpy(mesh->points, verts, sizeof(verts)); - PAR_SHAPES_T const* triangle = triangles; - mesh->ntriangles = ntris; - mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); - PAR_SHAPES_T* tris = mesh->triangles; - for (int p = 0; p < ntris; p++) { - *tris++ = *triangle++; - *tris++ = *triangle++; - *tris++ = *triangle++; - } - return mesh; -} - -par_shapes_mesh* par_shapes_create_cube() -{ - static float verts[8 * 3] = { - 0, 0, 0, // 0 - 0, 1, 0, // 1 - 1, 1, 0, // 2 - 1, 0, 0, // 3 - 0, 0, 1, // 4 - 0, 1, 1, // 5 - 1, 1, 1, // 6 - 1, 0, 1, // 7 - }; - static PAR_SHAPES_T quads[6 * 4] = { - 7,6,5,4, // front - 0,1,2,3, // back - 6,7,3,2, // right - 5,6,2,1, // top - 4,5,1,0, // left - 7,4,0,3, // bottom - }; - int nquads = sizeof(quads) / sizeof(quads[0]) / 4; - par_shapes_mesh* mesh = PAR_CALLOC(par_shapes_mesh, 1); - int ncorners = sizeof(verts) / sizeof(verts[0]) / 3; - mesh->npoints = ncorners; - mesh->points = PAR_MALLOC(float, mesh->npoints * 3); - memcpy(mesh->points, verts, sizeof(verts)); - PAR_SHAPES_T const* quad = quads; - mesh->ntriangles = nquads * 2; - mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); - PAR_SHAPES_T* tris = mesh->triangles; - for (int p = 0; p < nquads; p++, quad += 4) { - *tris++ = quad[0]; - *tris++ = quad[1]; - *tris++ = quad[2]; - *tris++ = quad[2]; - *tris++ = quad[3]; - *tris++ = quad[0]; - } - return mesh; -} - -typedef struct { - char* cmd; - char* arg; -} par_shapes__command; - -typedef struct { - char const* name; - int weight; - int ncommands; - par_shapes__command* commands; -} par_shapes__rule; - -typedef struct { - int pc; - float position[3]; - float scale[3]; - par_shapes_mesh* orientation; - par_shapes__rule* rule; -} par_shapes__stackframe; - -static par_shapes__rule* par_shapes__pick_rule(const char* name, - par_shapes__rule* rules, int nrules) -{ - par_shapes__rule* rule = 0; - int total = 0; - for (int i = 0; i < nrules; i++) { - rule = rules + i; - if (!strcmp(rule->name, name)) { - total += rule->weight; - } - } - float r = (float) rand() / RAND_MAX; - float t = 0; - for (int i = 0; i < nrules; i++) { - rule = rules + i; - if (!strcmp(rule->name, name)) { - t += (float) rule->weight / total; - if (t >= r) { - return rule; - } - } - } - return rule; -} - -static par_shapes_mesh* par_shapes__create_turtle() -{ - const float xaxis[] = {1, 0, 0}; - const float yaxis[] = {0, 1, 0}; - const float zaxis[] = {0, 0, 1}; - par_shapes_mesh* turtle = PAR_CALLOC(par_shapes_mesh, 1); - turtle->npoints = 3; - turtle->points = PAR_CALLOC(float, turtle->npoints * 3); - par_shapes__copy3(turtle->points + 0, xaxis); - par_shapes__copy3(turtle->points + 3, yaxis); - par_shapes__copy3(turtle->points + 6, zaxis); - return turtle; -} - -static par_shapes_mesh* par_shapes__apply_turtle(par_shapes_mesh* mesh, - par_shapes_mesh* turtle, float const* pos, float const* scale) -{ - par_shapes_mesh* m = par_shapes_clone(mesh, 0); - for (int p = 0; p < m->npoints; p++) { - float* pt = m->points + p * 3; - pt[0] *= scale[0]; - pt[1] *= scale[1]; - pt[2] *= scale[2]; - par_shapes__transform3(pt, - turtle->points + 0, turtle->points + 3, turtle->points + 6); - pt[0] += pos[0]; - pt[1] += pos[1]; - pt[2] += pos[2]; - } - return m; -} - -static void par_shapes__connect(par_shapes_mesh* scene, - par_shapes_mesh* cylinder, int slices) -{ - int stacks = 1; - int npoints = (slices + 1) * (stacks + 1); - assert(scene->npoints >= npoints && "Cannot connect to empty scene."); - - // Create the new point list. - npoints = scene->npoints + (slices + 1); - float* points = PAR_MALLOC(float, npoints * 3); - memcpy(points, scene->points, sizeof(float) * scene->npoints * 3); - float* newpts = points + scene->npoints * 3; - memcpy(newpts, cylinder->points + (slices + 1) * 3, - sizeof(float) * (slices + 1) * 3); - PAR_FREE(scene->points); - scene->points = points; - - // Create the new triangle list. - int ntriangles = scene->ntriangles + 2 * slices * stacks; - PAR_SHAPES_T* triangles = PAR_MALLOC(PAR_SHAPES_T, ntriangles * 3); - memcpy(triangles, scene->triangles, 2 * scene->ntriangles * 3); - int v = scene->npoints - (slices + 1); - PAR_SHAPES_T* face = triangles + scene->ntriangles * 3; - for (int stack = 0; stack < stacks; stack++) { - for (int slice = 0; slice < slices; slice++) { - int next = slice + 1; - *face++ = v + slice + slices + 1; - *face++ = v + next; - *face++ = v + slice; - *face++ = v + slice + slices + 1; - *face++ = v + next + slices + 1; - *face++ = v + next; - } - v += slices + 1; - } - PAR_FREE(scene->triangles); - scene->triangles = triangles; - - scene->npoints = npoints; - scene->ntriangles = ntriangles; -} - -par_shapes_mesh* par_shapes_create_lsystem(char const* text, int slices, - int maxdepth) -{ - char* program; - program = PAR_MALLOC(char, strlen(text) + 1); - - // The first pass counts the number of rules and commands. - strcpy(program, text); - char *cmd = strtok(program, " "); - int nrules = 1; - int ncommands = 0; - while (cmd) { - char *arg = strtok(0, " "); - if (!arg) { - //puts("lsystem error: unexpected end of program."); - break; - } - if (!strcmp(cmd, "rule")) { - nrules++; - } else { - ncommands++; - } - cmd = strtok(0, " "); - } - - // Allocate space. - par_shapes__rule* rules = PAR_MALLOC(par_shapes__rule, nrules); - par_shapes__command* commands = PAR_MALLOC(par_shapes__command, ncommands); - - // Initialize the entry rule. - par_shapes__rule* current_rule = &rules[0]; - par_shapes__command* current_command = &commands[0]; - current_rule->name = "entry"; - current_rule->weight = 1; - current_rule->ncommands = 0; - current_rule->commands = current_command; - - // The second pass fills in the structures. - strcpy(program, text); - cmd = strtok(program, " "); - while (cmd) { - char *arg = strtok(0, " "); - if (!strcmp(cmd, "rule")) { - current_rule++; - - // Split the argument into a rule name and weight. - char* dot = strchr(arg, '.'); - if (dot) { - current_rule->weight = atoi(dot + 1); - *dot = 0; - } else { - current_rule->weight = 1; - } - - current_rule->name = arg; - current_rule->ncommands = 0; - current_rule->commands = current_command; - } else { - current_rule->ncommands++; - current_command->cmd = cmd; - current_command->arg = arg; - current_command++; - } - cmd = strtok(0, " "); - } - - // For testing purposes, dump out the parsed program. - #ifdef TEST_PARSE - /* - for (int i = 0; i < nrules; i++) { - par_shapes__rule rule = rules[i]; - printf("rule %s.%d\n", rule.name, rule.weight); - for (int c = 0; c < rule.ncommands; c++) { - par_shapes__command cmd = rule.commands[c]; - printf("\t%s %s\n", cmd.cmd, cmd.arg); - } - } - */ - #endif - - // Instantiate the aggregated shape and the template shapes. - par_shapes_mesh* scene = PAR_CALLOC(par_shapes_mesh, 1); - par_shapes_mesh* tube = par_shapes_create_cylinder(slices, 1); - par_shapes_mesh* turtle = par_shapes__create_turtle(); - - // We're not attempting to support texture coordinates and normals - // with L-systems, so remove them from the template shape. - PAR_FREE(tube->normals); - PAR_FREE(tube->tcoords); - tube->normals = 0; - tube->tcoords = 0; - - const float xaxis[] = {1, 0, 0}; - const float yaxis[] = {0, 1, 0}; - const float zaxis[] = {0, 0, 1}; - const float units[] = {1, 1, 1}; - - // Execute the L-system program until the stack size is 0. - par_shapes__stackframe* stack = - PAR_CALLOC(par_shapes__stackframe, maxdepth); - int stackptr = 0; - stack[0].orientation = turtle; - stack[0].rule = &rules[0]; - par_shapes__copy3(stack[0].scale, units); - while (stackptr >= 0) { - par_shapes__stackframe* frame = &stack[stackptr]; - par_shapes__rule* rule = frame->rule; - par_shapes_mesh* turtle = frame->orientation; - float* position = frame->position; - float* scale = frame->scale; - if (frame->pc >= rule->ncommands) { - par_shapes_free_mesh(turtle); - stackptr--; - continue; - } - - par_shapes__command* cmd = rule->commands + (frame->pc++); - #ifdef DUMP_TRACE - //printf("%5s %5s %5s:%d %03d\n", cmd->cmd, cmd->arg, rule->name, frame->pc - 1, stackptr); - #endif - - float value; - if (!strcmp(cmd->cmd, "shape")) { - par_shapes_mesh* m = par_shapes__apply_turtle(tube, turtle, - position, scale); - if (!strcmp(cmd->arg, "connect")) { - par_shapes__connect(scene, m, slices); - } else { - par_shapes_merge(scene, m); - } - par_shapes_free_mesh(m); - } else if (!strcmp(cmd->cmd, "call") && stackptr < maxdepth - 1) { - rule = par_shapes__pick_rule(cmd->arg, rules, nrules); - frame = &stack[++stackptr]; - frame->rule = rule; - frame->orientation = par_shapes_clone(turtle, 0); - frame->pc = 0; - par_shapes__copy3(frame->scale, scale); - par_shapes__copy3(frame->position, position); - continue; - } else { - value = atof(cmd->arg); - if (!strcmp(cmd->cmd, "rx")) { - par_shapes_rotate(turtle, value * PAR_PI / 180.0, xaxis); - } else if (!strcmp(cmd->cmd, "ry")) { - par_shapes_rotate(turtle, value * PAR_PI / 180.0, yaxis); - } else if (!strcmp(cmd->cmd, "rz")) { - par_shapes_rotate(turtle, value * PAR_PI / 180.0, zaxis); - } else if (!strcmp(cmd->cmd, "tx")) { - float vec[3] = {value, 0, 0}; - float t[3] = { - par_shapes__dot3(turtle->points + 0, vec), - par_shapes__dot3(turtle->points + 3, vec), - par_shapes__dot3(turtle->points + 6, vec) - }; - par_shapes__add3(position, t); - } else if (!strcmp(cmd->cmd, "ty")) { - float vec[3] = {0, value, 0}; - float t[3] = { - par_shapes__dot3(turtle->points + 0, vec), - par_shapes__dot3(turtle->points + 3, vec), - par_shapes__dot3(turtle->points + 6, vec) - }; - par_shapes__add3(position, t); - } else if (!strcmp(cmd->cmd, "tz")) { - float vec[3] = {0, 0, value}; - float t[3] = { - par_shapes__dot3(turtle->points + 0, vec), - par_shapes__dot3(turtle->points + 3, vec), - par_shapes__dot3(turtle->points + 6, vec) - }; - par_shapes__add3(position, t); - } else if (!strcmp(cmd->cmd, "sx")) { - scale[0] *= value; - } else if (!strcmp(cmd->cmd, "sy")) { - scale[1] *= value; - } else if (!strcmp(cmd->cmd, "sz")) { - scale[2] *= value; - } else if (!strcmp(cmd->cmd, "sa")) { - scale[0] *= value; - scale[1] *= value; - scale[2] *= value; - } - } - } - PAR_FREE(stack); - PAR_FREE(program); - PAR_FREE(rules); - PAR_FREE(commands); - return scene; -} - -void par_shapes_unweld(par_shapes_mesh* mesh, bool create_indices) -{ - int npoints = mesh->ntriangles * 3; - float* points = PAR_MALLOC(float, 3 * npoints); - float* dst = points; - PAR_SHAPES_T const* index = mesh->triangles; - for (int i = 0; i < npoints; i++) { - float const* src = mesh->points + 3 * (*index++); - *dst++ = src[0]; - *dst++ = src[1]; - *dst++ = src[2]; - } - PAR_FREE(mesh->points); - mesh->points = points; - mesh->npoints = npoints; - if (create_indices) { - PAR_SHAPES_T* tris = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); - PAR_SHAPES_T* index = tris; - for (int i = 0; i < mesh->ntriangles * 3; i++) { - *index++ = i; - } - PAR_FREE(mesh->triangles); - mesh->triangles = tris; - } -} - -void par_shapes_compute_normals(par_shapes_mesh* m) -{ - PAR_FREE(m->normals); - m->normals = PAR_CALLOC(float, m->npoints * 3); - PAR_SHAPES_T const* triangle = m->triangles; - float next[3], prev[3], cp[3]; - for (int f = 0; f < m->ntriangles; f++, triangle += 3) { - float const* pa = m->points + 3 * triangle[0]; - float const* pb = m->points + 3 * triangle[1]; - float const* pc = m->points + 3 * triangle[2]; - par_shapes__copy3(next, pb); - par_shapes__subtract3(next, pa); - par_shapes__copy3(prev, pc); - par_shapes__subtract3(prev, pa); - par_shapes__cross3(cp, next, prev); - par_shapes__add3(m->normals + 3 * triangle[0], cp); - par_shapes__copy3(next, pc); - par_shapes__subtract3(next, pb); - par_shapes__copy3(prev, pa); - par_shapes__subtract3(prev, pb); - par_shapes__cross3(cp, next, prev); - par_shapes__add3(m->normals + 3 * triangle[1], cp); - par_shapes__copy3(next, pa); - par_shapes__subtract3(next, pc); - par_shapes__copy3(prev, pb); - par_shapes__subtract3(prev, pc); - par_shapes__cross3(cp, next, prev); - par_shapes__add3(m->normals + 3 * triangle[2], cp); - } - float* normal = m->normals; - for (int p = 0; p < m->npoints; p++, normal += 3) { - par_shapes__normalize3(normal); - } -} - -static void par_shapes__subdivide(par_shapes_mesh* mesh) -{ - assert(mesh->npoints == mesh->ntriangles * 3 && "Must be unwelded."); - int ntriangles = mesh->ntriangles * 4; - int npoints = ntriangles * 3; - float* points = PAR_CALLOC(float, npoints * 3); - float* dpoint = points; - float const* spoint = mesh->points; - for (int t = 0; t < mesh->ntriangles; t++, spoint += 9, dpoint += 3) { - float const* a = spoint; - float const* b = spoint + 3; - float const* c = spoint + 6; - float const* p0 = dpoint; - float const* p1 = dpoint + 3; - float const* p2 = dpoint + 6; - par_shapes__mix3(dpoint, a, b, 0.5); - par_shapes__mix3(dpoint += 3, b, c, 0.5); - par_shapes__mix3(dpoint += 3, a, c, 0.5); - par_shapes__add3(dpoint += 3, a); - par_shapes__add3(dpoint += 3, p0); - par_shapes__add3(dpoint += 3, p2); - par_shapes__add3(dpoint += 3, p0); - par_shapes__add3(dpoint += 3, b); - par_shapes__add3(dpoint += 3, p1); - par_shapes__add3(dpoint += 3, p2); - par_shapes__add3(dpoint += 3, p1); - par_shapes__add3(dpoint += 3, c); - } - PAR_FREE(mesh->points); - mesh->points = points; - mesh->npoints = npoints; - mesh->ntriangles = ntriangles; -} - -par_shapes_mesh* par_shapes_create_subdivided_sphere(int nsubd) -{ - par_shapes_mesh* mesh = par_shapes_create_icosahedron(); - par_shapes_unweld(mesh, false); - PAR_FREE(mesh->triangles); - mesh->triangles = 0; - while (nsubd--) { - par_shapes__subdivide(mesh); - } - for (int i = 0; i < mesh->npoints; i++) { - par_shapes__normalize3(mesh->points + i * 3); - } - mesh->triangles = PAR_MALLOC(PAR_SHAPES_T, 3 * mesh->ntriangles); - for (int i = 0; i < mesh->ntriangles * 3; i++) { - mesh->triangles[i] = i; - } - par_shapes_mesh* tmp = mesh; - mesh = par_shapes_weld(mesh, 0.01, 0); - par_shapes_free_mesh(tmp); - par_shapes_compute_normals(mesh); - return mesh; -} - -par_shapes_mesh* par_shapes_create_rock(int seed, int subd) -{ - par_shapes_mesh* mesh = par_shapes_create_subdivided_sphere(subd); - struct osn_context* ctx; - par__simplex_noise(seed, &ctx); - for (int p = 0; p < mesh->npoints; p++) { - float* pt = mesh->points + p * 3; - float a = 0.25, f = 1.0; - double n = a * par__simplex_noise2(ctx, f * pt[0], f * pt[2]); - a *= 0.5; f *= 2; - n += a * par__simplex_noise2(ctx, f * pt[0], f * pt[2]); - pt[0] *= 1 + 2 * n; - pt[1] *= 1 + n; - pt[2] *= 1 + 2 * n; - if (pt[1] < 0) { - pt[1] = -pow(-pt[1], 0.5) / 2; - } - } - par__simplex_noise_free(ctx); - par_shapes_compute_normals(mesh); - return mesh; -} - -par_shapes_mesh* par_shapes_clone(par_shapes_mesh const* mesh, - par_shapes_mesh* clone) -{ - if (!clone) { - clone = PAR_CALLOC(par_shapes_mesh, 1); - } - clone->npoints = mesh->npoints; - clone->points = PAR_REALLOC(float, clone->points, 3 * clone->npoints); - memcpy(clone->points, mesh->points, sizeof(float) * 3 * clone->npoints); - clone->ntriangles = mesh->ntriangles; - clone->triangles = PAR_REALLOC(PAR_SHAPES_T, clone->triangles, 3 * - clone->ntriangles); - memcpy(clone->triangles, mesh->triangles, - sizeof(PAR_SHAPES_T) * 3 * clone->ntriangles); - if (mesh->normals) { - clone->normals = PAR_REALLOC(float, clone->normals, 3 * clone->npoints); - memcpy(clone->normals, mesh->normals, - sizeof(float) * 3 * clone->npoints); - } - if (mesh->tcoords) { - clone->tcoords = PAR_REALLOC(float, clone->tcoords, 2 * clone->npoints); - memcpy(clone->tcoords, mesh->tcoords, - sizeof(float) * 2 * clone->npoints); - } - return clone; -} - -static struct { - float const* points; - int gridsize; -} par_shapes__sort_context; - -static int par_shapes__cmp1(const void *arg0, const void *arg1) -{ - const int g = par_shapes__sort_context.gridsize; - - // Convert arg0 into a flattened grid index. - PAR_SHAPES_T d0 = *(const PAR_SHAPES_T*) arg0; - float const* p0 = par_shapes__sort_context.points + d0 * 3; - int i0 = (int) p0[0]; - int j0 = (int) p0[1]; - int k0 = (int) p0[2]; - int index0 = i0 + g * j0 + g * g * k0; - - // Convert arg1 into a flattened grid index. - PAR_SHAPES_T d1 = *(const PAR_SHAPES_T*) arg1; - float const* p1 = par_shapes__sort_context.points + d1 * 3; - int i1 = (int) p1[0]; - int j1 = (int) p1[1]; - int k1 = (int) p1[2]; - int index1 = i1 + g * j1 + g * g * k1; - - // Return the ordering. - if (index0 < index1) return -1; - if (index0 > index1) return 1; - return 0; -} - -static void par_shapes__sort_points(par_shapes_mesh* mesh, int gridsize, - PAR_SHAPES_T* sortmap) -{ - // Run qsort over a list of consecutive integers that get deferenced - // within the comparator function; this creates a reorder mapping. - for (int i = 0; i < mesh->npoints; i++) { - sortmap[i] = i; - } - par_shapes__sort_context.gridsize = gridsize; - par_shapes__sort_context.points = mesh->points; - qsort(sortmap, mesh->npoints, sizeof(PAR_SHAPES_T), par_shapes__cmp1); - - // Apply the reorder mapping to the XYZ coordinate data. - float* newpts = PAR_MALLOC(float, mesh->npoints * 3); - PAR_SHAPES_T* invmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); - float* dstpt = newpts; - for (int i = 0; i < mesh->npoints; i++) { - invmap[sortmap[i]] = i; - float const* srcpt = mesh->points + 3 * sortmap[i]; - *dstpt++ = *srcpt++; - *dstpt++ = *srcpt++; - *dstpt++ = *srcpt++; - } - PAR_FREE(mesh->points); - mesh->points = newpts; - - // Apply the inverse reorder mapping to the triangle indices. - PAR_SHAPES_T* newinds = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); - PAR_SHAPES_T* dstind = newinds; - PAR_SHAPES_T const* srcind = mesh->triangles; - for (int i = 0; i < mesh->ntriangles * 3; i++) { - *dstind++ = invmap[*srcind++]; - } - PAR_FREE(mesh->triangles); - mesh->triangles = newinds; - - // Cleanup. - memcpy(sortmap, invmap, sizeof(PAR_SHAPES_T) * mesh->npoints); - PAR_FREE(invmap); -} - -static void par_shapes__weld_points(par_shapes_mesh* mesh, int gridsize, - float epsilon, PAR_SHAPES_T* weldmap) -{ - // Each bin contains a "pointer" (really an index) to its first point. - // We add 1 because 0 is reserved to mean that the bin is empty. - // Since the points are spatially sorted, there's no need to store - // a point count in each bin. - PAR_SHAPES_T* bins = PAR_CALLOC(PAR_SHAPES_T, - gridsize * gridsize * gridsize); - int prev_binindex = -1; - for (int p = 0; p < mesh->npoints; p++) { - float const* pt = mesh->points + p * 3; - int i = (int) pt[0]; - int j = (int) pt[1]; - int k = (int) pt[2]; - int this_binindex = i + gridsize * j + gridsize * gridsize * k; - if (this_binindex != prev_binindex) { - bins[this_binindex] = 1 + p; - } - prev_binindex = this_binindex; - } - - // Examine all bins that intersect the epsilon-sized cube centered at each - // point, and check for colocated points within those bins. - float const* pt = mesh->points; - int nremoved = 0; - for (int p = 0; p < mesh->npoints; p++, pt += 3) { - - // Skip if this point has already been welded. - if (weldmap[p] != p) { - continue; - } - - // Build a list of bins that intersect the epsilon-sized cube. - int nearby[8]; - int nbins = 0; - int minp[3], maxp[3]; - for (int c = 0; c < 3; c++) { - minp[c] = (int) (pt[c] - epsilon); - maxp[c] = (int) (pt[c] + epsilon); - } - for (int i = minp[0]; i <= maxp[0]; i++) { - for (int j = minp[1]; j <= maxp[1]; j++) { - for (int k = minp[2]; k <= maxp[2]; k++) { - int binindex = i + gridsize * j + gridsize * gridsize * k; - PAR_SHAPES_T binvalue = *(bins + binindex); - if (binvalue > 0) { - if (nbins == 8) { - //printf("Epsilon value is too large.\n"); - break; - } - nearby[nbins++] = binindex; - } - } - } - } - - // Check for colocated points in each nearby bin. - for (int b = 0; b < nbins; b++) { - int binindex = nearby[b]; - PAR_SHAPES_T binvalue = *(bins + binindex); - PAR_SHAPES_T nindex = binvalue - 1; - while (true) { - - // If this isn't "self" and it's colocated, then weld it! - if (nindex != p && weldmap[nindex] == nindex) { - float const* thatpt = mesh->points + nindex * 3; - float dist2 = par_shapes__sqrdist3(thatpt, pt); - if (dist2 < epsilon) { - weldmap[nindex] = p; - nremoved++; - } - } - - // Advance to the next point if possible. - if (++nindex >= mesh->npoints) { - break; - } - - // If the next point is outside the bin, then we're done. - float const* nextpt = mesh->points + nindex * 3; - int i = (int) nextpt[0]; - int j = (int) nextpt[1]; - int k = (int) nextpt[2]; - int nextbinindex = i + gridsize * j + gridsize * gridsize * k; - if (nextbinindex != binindex) { - break; - } - } - } - } - PAR_FREE(bins); - - // Apply the weldmap to the vertices. - int npoints = mesh->npoints - nremoved; - float* newpts = PAR_MALLOC(float, 3 * npoints); - float* dst = newpts; - PAR_SHAPES_T* condensed_map = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); - PAR_SHAPES_T* cmap = condensed_map; - float const* src = mesh->points; - int ci = 0; - for (int p = 0; p < mesh->npoints; p++, src += 3) { - if (weldmap[p] == p) { - *dst++ = src[0]; - *dst++ = src[1]; - *dst++ = src[2]; - *cmap++ = ci++; - } else { - *cmap++ = condensed_map[weldmap[p]]; - } - } - assert(ci == npoints); - PAR_FREE(mesh->points); - memcpy(weldmap, condensed_map, mesh->npoints * sizeof(PAR_SHAPES_T)); - PAR_FREE(condensed_map); - mesh->points = newpts; - mesh->npoints = npoints; - - // Apply the weldmap to the triangle indices and skip the degenerates. - PAR_SHAPES_T const* tsrc = mesh->triangles; - PAR_SHAPES_T* tdst = mesh->triangles; - int ntriangles = 0; - for (int i = 0; i < mesh->ntriangles; i++, tsrc += 3) { - PAR_SHAPES_T a = weldmap[tsrc[0]]; - PAR_SHAPES_T b = weldmap[tsrc[1]]; - PAR_SHAPES_T c = weldmap[tsrc[2]]; - if (a != b && a != c && b != c) { - *tdst++ = a; - *tdst++ = b; - *tdst++ = c; - ntriangles++; - } - } - mesh->ntriangles = ntriangles; -} - -par_shapes_mesh* par_shapes_weld(par_shapes_mesh const* mesh, float epsilon, - PAR_SHAPES_T* weldmap) -{ - par_shapes_mesh* clone = par_shapes_clone(mesh, 0); - float aabb[6]; - int gridsize = 20; - float maxcell = gridsize - 1; - par_shapes_compute_aabb(clone, aabb); - float scale[3] = { - aabb[3] == aabb[0] ? 1.0f : maxcell / (aabb[3] - aabb[0]), - aabb[4] == aabb[1] ? 1.0f : maxcell / (aabb[4] - aabb[1]), - aabb[5] == aabb[2] ? 1.0f : maxcell / (aabb[5] - aabb[2]), - }; - par_shapes_translate(clone, -aabb[0], -aabb[1], -aabb[2]); - par_shapes_scale(clone, scale[0], scale[1], scale[2]); - PAR_SHAPES_T* sortmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); - par_shapes__sort_points(clone, gridsize, sortmap); - bool owner = false; - if (!weldmap) { - owner = true; - weldmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); - } - for (int i = 0; i < mesh->npoints; i++) { - weldmap[i] = i; - } - par_shapes__weld_points(clone, gridsize, epsilon, weldmap); - if (owner) { - PAR_FREE(weldmap); - } else { - PAR_SHAPES_T* newmap = PAR_MALLOC(PAR_SHAPES_T, mesh->npoints); - for (int i = 0; i < mesh->npoints; i++) { - newmap[i] = weldmap[sortmap[i]]; - } - memcpy(weldmap, newmap, sizeof(PAR_SHAPES_T) * mesh->npoints); - PAR_FREE(newmap); - } - PAR_FREE(sortmap); - par_shapes_scale(clone, 1.0 / scale[0], 1.0 / scale[1], 1.0 / scale[2]); - par_shapes_translate(clone, aabb[0], aabb[1], aabb[2]); - return clone; -} - -// ----------------------------------------------------------------------------- -// BEGIN OPEN SIMPLEX NOISE -// ----------------------------------------------------------------------------- - -#define STRETCH_CONSTANT_2D (-0.211324865405187) // (1 / sqrt(2 + 1) - 1 ) / 2; -#define SQUISH_CONSTANT_2D (0.366025403784439) // (sqrt(2 + 1) -1) / 2; -#define STRETCH_CONSTANT_3D (-1.0 / 6.0) // (1 / sqrt(3 + 1) - 1) / 3; -#define SQUISH_CONSTANT_3D (1.0 / 3.0) // (sqrt(3+1)-1)/3; -#define STRETCH_CONSTANT_4D (-0.138196601125011) // (1 / sqrt(4 + 1) - 1) / 4; -#define SQUISH_CONSTANT_4D (0.309016994374947) // (sqrt(4 + 1) - 1) / 4; - -#define NORM_CONSTANT_2D (47.0) -#define NORM_CONSTANT_3D (103.0) -#define NORM_CONSTANT_4D (30.0) - -#define DEFAULT_SEED (0LL) - -struct osn_context { - int16_t* perm; - int16_t* permGradIndex3D; -}; - -#define ARRAYSIZE(x) (sizeof((x)) / sizeof((x)[0])) - -/* - * Gradients for 2D. They approximate the directions to the - * vertices of an octagon from the center. - */ -static const int8_t gradients2D[] = { - 5, 2, 2, 5, -5, 2, -2, 5, 5, -2, 2, -5, -5, -2, -2, -5, -}; - -/* - * Gradients for 3D. They approximate the directions to the - * vertices of a rhombicuboctahedron from the center, skewed so - * that the triangular and square facets can be inscribed inside - * circles of the same radius. - */ -static const signed char gradients3D[] = { - -11, 4, 4, -4, 11, 4, -4, 4, 11, 11, 4, 4, 4, 11, 4, 4, 4, 11, -11, -4, 4, - -4, -11, 4, -4, -4, 11, 11, -4, 4, 4, -11, 4, 4, -4, 11, -11, 4, -4, -4, 11, - -4, -4, 4, -11, 11, 4, -4, 4, 11, -4, 4, 4, -11, -11, -4, -4, -4, -11, -4, - -4, -4, -11, 11, -4, -4, 4, -11, -4, 4, -4, -11, -}; - -/* - * Gradients for 4D. They approximate the directions to the - * vertices of a disprismatotesseractihexadecachoron from the center, - * skewed so that the tetrahedral and cubic facets can be inscribed inside - * spheres of the same radius. - */ -static const signed char gradients4D[] = { - 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, -3, 1, 1, 1, -1, 3, 1, 1, - -1, 1, 3, 1, -1, 1, 1, 3, 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, 1, 1, -1, 1, - 3, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, 3, 1, -1, 1, 1, - 3, -1, 1, 1, 1, -3, 1, 1, 1, -1, 3, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, - 1, -1, 1, -1, 3, 3, -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, 1, 1, -1, -1, 3, -3, - -1, -1, 1, -1, -3, -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, 3, 1, 1, -1, 1, 3, - 1, -1, 1, 1, 3, -1, 1, 1, 1, -3, -3, 1, 1, -1, -1, 3, 1, -1, -1, 1, 3, -1, - -1, 1, 1, -3, 3, -1, 1, -1, 1, -3, 1, -1, 1, -1, 3, -1, 1, -1, 1, -3, -3, - -1, 1, -1, -1, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, 3, 1, -1, -1, 1, 3, - -1, -1, 1, 1, -3, -1, 1, 1, -1, -3, -3, 1, -1, -1, -1, 3, -1, -1, -1, 1, -3, - -1, -1, 1, -1, -3, 3, -1, -1, -1, 1, -3, -1, -1, 1, -1, -3, -1, 1, -1, -1, - -3, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -1, -1, -1, -1, -3, -}; - -static double extrapolate2( - struct osn_context* ctx, int xsb, int ysb, double dx, double dy) -{ - int16_t* perm = ctx->perm; - int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E; - return gradients2D[index] * dx + gradients2D[index + 1] * dy; -} - -static inline int fastFloor(double x) -{ - int xi = (int) x; - return x < xi ? xi - 1 : xi; -} - -static int allocate_perm(struct osn_context* ctx, int nperm, int ngrad) -{ - PAR_FREE(ctx->perm); - PAR_FREE(ctx->permGradIndex3D); - ctx->perm = PAR_MALLOC(int16_t, nperm); - if (!ctx->perm) { - return -ENOMEM; - } - ctx->permGradIndex3D = PAR_MALLOC(int16_t, ngrad); - if (!ctx->permGradIndex3D) { - PAR_FREE(ctx->perm); - return -ENOMEM; - } - return 0; -} - -static int par__simplex_noise(int64_t seed, struct osn_context** ctx) -{ - int rc; - int16_t source[256]; - int i; - int16_t* perm; - int16_t* permGradIndex3D; - *ctx = PAR_MALLOC(struct osn_context, 1); - if (!(*ctx)) { - return -ENOMEM; - } - (*ctx)->perm = NULL; - (*ctx)->permGradIndex3D = NULL; - rc = allocate_perm(*ctx, 256, 256); - if (rc) { - PAR_FREE(*ctx); - return rc; - } - perm = (*ctx)->perm; - permGradIndex3D = (*ctx)->permGradIndex3D; - for (i = 0; i < 256; i++) { - source[i] = (int16_t) i; - } - seed = seed * 6364136223846793005LL + 1442695040888963407LL; - seed = seed * 6364136223846793005LL + 1442695040888963407LL; - seed = seed * 6364136223846793005LL + 1442695040888963407LL; - for (i = 255; i >= 0; i--) { - seed = seed * 6364136223846793005LL + 1442695040888963407LL; - int r = (int) ((seed + 31) % (i + 1)); - if (r < 0) - r += (i + 1); - perm[i] = source[r]; - permGradIndex3D[i] = - (short) ((perm[i] % (ARRAYSIZE(gradients3D) / 3)) * 3); - source[r] = source[i]; - } - return 0; -} - -static void par__simplex_noise_free(struct osn_context* ctx) -{ - if (!ctx) - return; - if (ctx->perm) { - PAR_FREE(ctx->perm); - ctx->perm = NULL; - } - if (ctx->permGradIndex3D) { - PAR_FREE(ctx->permGradIndex3D); - ctx->permGradIndex3D = NULL; - } - PAR_FREE(ctx); -} - -static double par__simplex_noise2(struct osn_context* ctx, double x, double y) -{ - // Place input coordinates onto grid. - double stretchOffset = (x + y) * STRETCH_CONSTANT_2D; - double xs = x + stretchOffset; - double ys = y + stretchOffset; - - // Floor to get grid coordinates of rhombus (stretched square) super-cell - // origin. - int xsb = fastFloor(xs); - int ysb = fastFloor(ys); - - // Skew out to get actual coordinates of rhombus origin. We'll need these - // later. - double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D; - double xb = xsb + squishOffset; - double yb = ysb + squishOffset; - - // Compute grid coordinates relative to rhombus origin. - double xins = xs - xsb; - double yins = ys - ysb; - - // Sum those together to get a value that determines which region we're in. - double inSum = xins + yins; - - // Positions relative to origin point. - double dx0 = x - xb; - double dy0 = y - yb; - - // We'll be defining these inside the next block and using them afterwards. - double dx_ext, dy_ext; - int xsv_ext, ysv_ext; - - double value = 0; - - // Contribution (1,0) - double dx1 = dx0 - 1 - SQUISH_CONSTANT_2D; - double dy1 = dy0 - 0 - SQUISH_CONSTANT_2D; - double attn1 = 2 - dx1 * dx1 - dy1 * dy1; - if (attn1 > 0) { - attn1 *= attn1; - value += attn1 * attn1 * extrapolate2(ctx, xsb + 1, ysb + 0, dx1, dy1); - } - - // Contribution (0,1) - double dx2 = dx0 - 0 - SQUISH_CONSTANT_2D; - double dy2 = dy0 - 1 - SQUISH_CONSTANT_2D; - double attn2 = 2 - dx2 * dx2 - dy2 * dy2; - if (attn2 > 0) { - attn2 *= attn2; - value += attn2 * attn2 * extrapolate2(ctx, xsb + 0, ysb + 1, dx2, dy2); - } - - if (inSum <= 1) { // We're inside the triangle (2-Simplex) at (0,0) - double zins = 1 - inSum; - if (zins > xins || zins > yins) { - if (xins > yins) { - xsv_ext = xsb + 1; - ysv_ext = ysb - 1; - dx_ext = dx0 - 1; - dy_ext = dy0 + 1; - } else { - xsv_ext = xsb - 1; - ysv_ext = ysb + 1; - dx_ext = dx0 + 1; - dy_ext = dy0 - 1; - } - } else { //(1,0) and (0,1) are the closest two vertices. - xsv_ext = xsb + 1; - ysv_ext = ysb + 1; - dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; - dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; - } - } else { // We're inside the triangle (2-Simplex) at (1,1) - double zins = 2 - inSum; - if (zins < xins || zins < yins) { - if (xins > yins) { - xsv_ext = xsb + 2; - ysv_ext = ysb + 0; - dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D; - dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D; - } else { - xsv_ext = xsb + 0; - ysv_ext = ysb + 2; - dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D; - dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D; - } - } else { //(1,0) and (0,1) are the closest two vertices. - dx_ext = dx0; - dy_ext = dy0; - xsv_ext = xsb; - ysv_ext = ysb; - } - xsb += 1; - ysb += 1; - dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; - dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; - } - - // Contribution (0,0) or (1,1) - double attn0 = 2 - dx0 * dx0 - dy0 * dy0; - if (attn0 > 0) { - attn0 *= attn0; - value += attn0 * attn0 * extrapolate2(ctx, xsb, ysb, dx0, dy0); - } - - // Extra Vertex - double attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext; - if (attn_ext > 0) { - attn_ext *= attn_ext; - value += attn_ext * attn_ext * - extrapolate2(ctx, xsv_ext, ysv_ext, dx_ext, dy_ext); - } - - return value / NORM_CONSTANT_2D; -} - -void par_shapes_remove_degenerate(par_shapes_mesh* mesh, float mintriarea) -{ - int ntriangles = 0; - PAR_SHAPES_T* triangles = PAR_MALLOC(PAR_SHAPES_T, mesh->ntriangles * 3); - PAR_SHAPES_T* dst = triangles; - PAR_SHAPES_T const* src = mesh->triangles; - float next[3], prev[3], cp[3]; - float mincplen2 = (mintriarea * 2) * (mintriarea * 2); - for (int f = 0; f < mesh->ntriangles; f++, src += 3) { - float const* pa = mesh->points + 3 * src[0]; - float const* pb = mesh->points + 3 * src[1]; - float const* pc = mesh->points + 3 * src[2]; - par_shapes__copy3(next, pb); - par_shapes__subtract3(next, pa); - par_shapes__copy3(prev, pc); - par_shapes__subtract3(prev, pa); - par_shapes__cross3(cp, next, prev); - float cplen2 = par_shapes__dot3(cp, cp); - if (cplen2 >= mincplen2) { - *dst++ = src[0]; - *dst++ = src[1]; - *dst++ = src[2]; - ntriangles++; - } - } - mesh->ntriangles = ntriangles; - PAR_FREE(mesh->triangles); - mesh->triangles = triangles; -} - -#endif // PAR_SHAPES_IMPLEMENTATION -#endif // PAR_SHAPES_H -- cgit v1.2.3