/********************************************************************************************** * * raylib.models - Basic functions to deal with 3d shapes and 3d models * * CONFIGURATION: * * #define SUPPORT_FILEFORMAT_OBJ * #define SUPPORT_FILEFORMAT_MTL * #define SUPPORT_FILEFORMAT_IQM * #define SUPPORT_FILEFORMAT_GLTF * Selected desired fileformats to be supported for model data loading. * * #define SUPPORT_MESH_GENERATION * Support procedural mesh generation functions, uses external par_shapes.h library * NOTE: Some generated meshes DO NOT include generated texture coordinates * * * LICENSE: zlib/libpng * * Copyright (c) 2013-2021 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #include "raylib.h" // Declares module functions // Check if config flags have been externally provided on compilation line #if !defined(EXTERNAL_CONFIG_FLAGS) #include "config.h" // Defines module configuration flags #endif #include "utils.h" // Required for: LoadFileData(), LoadFileText(), SaveFileText() #include // Required for: sprintf() #include // Required for: malloc(), free() #include // Required for: memcmp(), strlen() #include // Required for: sinf(), cosf(), sqrtf(), fabsf() #if defined(_WIN32) #include // Required for: _chdir() [Used in LoadOBJ()] #define CHDIR _chdir #else #include // Required for: chdir() (POSIX) [Used in LoadOBJ()] #define CHDIR chdir #endif #include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2 #if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL) #define TINYOBJ_MALLOC RL_MALLOC #define TINYOBJ_CALLOC RL_CALLOC #define TINYOBJ_REALLOC RL_REALLOC #define TINYOBJ_FREE RL_FREE #define TINYOBJ_LOADER_C_IMPLEMENTATION #include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading #endif #if defined(SUPPORT_FILEFORMAT_GLTF) #define CGLTF_MALLOC RL_MALLOC #define CGLTF_FREE RL_FREE #define CGLTF_IMPLEMENTATION #include "external/cgltf.h" // glTF file format loading #include "external/stb_image.h" // glTF texture images loading #endif #if defined(SUPPORT_MESH_GENERATION) #define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T))) #define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1)) #define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N))) #define PAR_FREE RL_FREE #define PAR_SHAPES_IMPLEMENTATION #include "external/par_shapes.h" // Shapes 3d parametric generation #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(SUPPORT_FILEFORMAT_OBJ) static Model LoadOBJ(const char *fileName); // Load OBJ mesh data #endif #if defined(SUPPORT_FILEFORMAT_IQM) static Model LoadIQM(const char *fileName); // Load IQM mesh data static ModelAnimation *LoadIQMModelAnimations(const char *fileName, int *animCount); // Load IQM animation data #endif #if defined(SUPPORT_FILEFORMAT_GLTF) static Model LoadGLTF(const char *fileName); // Load GLTF mesh data static ModelAnimation *LoadGLTFModelAnimations(const char *fileName, int *animCount); // Load GLTF animation data static void LoadGLTFModelIndices(Model* model, cgltf_accessor* indexAccessor, int primitiveIndex); static void BindGLTFPrimitiveToBones(Model* model, const cgltf_data* data, int primitiveIndex); static void LoadGLTFBoneAttribute(Model* model, cgltf_accessor* jointsAccessor, const cgltf_data* data, int primitiveIndex); static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_data* data); static void InitGLTFBones(Model* model, const cgltf_data* data); #endif //---------------------------------------------------------------------------------- // Module Functions Definition //---------------------------------------------------------------------------------- // Draw a line in 3D world space void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color) { // WARNING: Be careful with internal buffer vertex alignment // when using RL_LINES or RL_TRIANGLES, data is aligned to fit // lines-triangles-quads in the same indexed buffers!!! rlCheckRenderBatchLimit(8); rlBegin(RL_LINES); rlColor4ub(color.r, color.g, color.b, color.a); rlVertex3f(startPos.x, startPos.y, startPos.z); rlVertex3f(endPos.x, endPos.y, endPos.z); rlEnd(); } // Draw a point in 3D space, actually a small line void DrawPoint3D(Vector3 position, Color color) { rlCheckRenderBatchLimit(8); rlPushMatrix(); rlTranslatef(position.x, position.y, position.z); rlBegin(RL_LINES); rlColor4ub(color.r, color.g, color.b, color.a); rlVertex3f(0.0f, 0.0f, 0.0f); rlVertex3f(0.0f, 0.0f, 0.1f); rlEnd(); rlPopMatrix(); } // Draw a circle in 3D world space void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color) { rlCheckRenderBatchLimit(2*36); rlPushMatrix(); rlTranslatef(center.x, center.y, center.z); rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z); rlBegin(RL_LINES); for (int i = 0; i < 360; i += 10) { rlColor4ub(color.r, color.g, color.b, color.a); rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f); rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f); } rlEnd(); rlPopMatrix(); } // Draw a color-filled triangle (vertex in counter-clockwise order!) void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color) { rlCheckRenderBatchLimit(3); rlBegin(RL_TRIANGLES); rlColor4ub(color.r, color.g, color.b, color.a); rlVertex3f(v1.x, v1.y, v1.z); rlVertex3f(v2.x, v2.y, v2.z); rlVertex3f(v3.x, v3.y, v3.z); rlEnd(); } // Draw a triangle strip defined by points void DrawTriangleStrip3D(Vector3 *points, int pointsCount, Color color) { if (pointsCount >= 3) { rlCheckRenderBatchLimit(3*(pointsCount - 2)); rlBegin(RL_TRIANGLES); rlColor4ub(color.r, color.g, color.b, color.a); for (int i = 2; i < pointsCount; i++) { if ((i%2) == 0) { rlVertex3f(points[i].x, points[i].y, points[i].z); rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z); rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z); } else { rlVertex3f(points[i].x, points[i].y, points[i].z); rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z); rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z); } } rlEnd(); } } // Draw cube // NOTE: Cube position is the center position void DrawCube(Vector3 position, float width, float height, float length, Color color) { float x = 0.0f; float y = 0.0f; float z = 0.0f; rlCheckRenderBatchLimit(36); rlPushMatrix(); // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate) rlTranslatef(position.x, position.y, position.z); //rlRotatef(45, 0, 1, 0); //rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition rlBegin(RL_TRIANGLES); rlColor4ub(color.r, color.g, color.b, color.a); // Front face rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right // Back face rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left // Top face rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right // Bottom face rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left // Right face rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left // Left face rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right rlEnd(); rlPopMatrix(); } // Draw cube (Vector version) void DrawCubeV(Vector3 position, Vector3 size, Color color) { DrawCube(position, size.x, size.y, size.z, color); } // Draw cube wires void DrawCubeWires(Vector3 position, float width, float height, float length, Color color) { float x = 0.0f; float y = 0.0f; float z = 0.0f; rlCheckRenderBatchLimit(36); rlPushMatrix(); rlTranslatef(position.x, position.y, position.z); rlBegin(RL_LINES); rlColor4ub(color.r, color.g, color.b, color.a); // Front Face ----------------------------------------------------- // Bottom Line rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right // Left Line rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right // Top Line rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left // Right Line rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left // Back Face ------------------------------------------------------ // Bottom Line rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right // Left Line rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right // Top Line rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left // Right Line rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left // Top Face ------------------------------------------------------- // Left Line rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back // Right Line rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back // Bottom Face --------------------------------------------------- // Left Line rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back // Right Line rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back rlEnd(); rlPopMatrix(); } // Draw cube wires (vector version) void DrawCubeWiresV(Vector3 position, Vector3 size, Color color) { DrawCubeWires(position, size.x, size.y, size.z, color); } // Draw cube // NOTE: Cube position is the center position void DrawCubeTexture(Texture2D texture, Vector3 position, float width, float height, float length, Color color) { float x = position.x; float y = position.y; float z = position.z; rlCheckRenderBatchLimit(36); rlSetTexture(texture.id); //rlPushMatrix(); // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate) //rlTranslatef(2.0f, 0.0f, 0.0f); //rlRotatef(45, 0, 1, 0); //rlScalef(2.0f, 2.0f, 2.0f); rlBegin(RL_QUADS); rlColor4ub(color.r, color.g, color.b, color.a); // Front Face rlNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Towards Viewer rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad // Back Face rlNormal3f(0.0f, 0.0f, - 1.0f); // Normal Pointing Away From Viewer rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad // Top Face rlNormal3f(0.0f, 1.0f, 0.0f); // Normal Pointing Up rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left Of The Texture and Quad rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right Of The Texture and Quad rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad // Bottom Face rlNormal3f(0.0f, - 1.0f, 0.0f); // Normal Pointing Down rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Right Of The Texture and Quad rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Left Of The Texture and Quad rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad // Right face rlNormal3f(1.0f, 0.0f, 0.0f); // Normal Pointing Right rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad // Left Face rlNormal3f( - 1.0f, 0.0f, 0.0f); // Normal Pointing Left rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad rlEnd(); //rlPopMatrix(); rlSetTexture(0); } // Draw sphere void DrawSphere(Vector3 centerPos, float radius, Color color) { DrawSphereEx(centerPos, radius, 16, 16, color); } // Draw sphere with extended parameters void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color) { int numVertex = (rings + 2)*slices*6; rlCheckRenderBatchLimit(numVertex); rlPushMatrix(); // NOTE: Transformation is applied in inverse order (scale -> translate) rlTranslatef(centerPos.x, centerPos.y, centerPos.z); rlScalef(radius, radius, radius); rlBegin(RL_TRIANGLES); rlColor4ub(color.r, color.g, color.b, color.a); for (int i = 0; i < (rings + 2); i++) { for (int j = 0; j < slices; j++) { rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*i)), cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*i)), cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*sinf(DEG2RAD*((j+1)*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*cosf(DEG2RAD*((j+1)*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices))); } } rlEnd(); rlPopMatrix(); } // Draw sphere wires void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color) { int numVertex = (rings + 2)*slices*6; rlCheckRenderBatchLimit(numVertex); rlPushMatrix(); // NOTE: Transformation is applied in inverse order (scale -> translate) rlTranslatef(centerPos.x, centerPos.y, centerPos.z); rlScalef(radius, radius, radius); rlBegin(RL_LINES); rlColor4ub(color.r, color.g, color.b, color.a); for (int i = 0; i < (rings + 2); i++) { for (int j = 0; j < slices; j++) { rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*i)), cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))), cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices))); rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)), sinf(DEG2RAD*(270+(180/(rings + 1))*i)), cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices))); } } rlEnd(); rlPopMatrix(); } // Draw a cylinder // NOTE: It could be also used for pyramid and cone void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color) { if (sides < 3) sides = 3; int numVertex = sides*6; rlCheckRenderBatchLimit(numVertex); rlPushMatrix(); rlTranslatef(position.x, position.y, position.z); rlBegin(RL_TRIANGLES); rlColor4ub(color.r, color.g, color.b, color.a); if (radiusTop > 0) { // Draw Body ------------------------------------------------------------------------------------- for (int i = 0; i < 360; i += 360/sides) { rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); //Bottom Right rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right } // Draw Cap -------------------------------------------------------------------------------------- for (int i = 0; i < 360; i += 360/sides) { rlVertex3f(0, height, 0); rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); } } else { // Draw Cone ------------------------------------------------------------------------------------- for (int i = 0; i < 360; i += 360/sides) { rlVertex3f(0, height, 0); rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); } } // Draw Base ----------------------------------------------------------------------------------------- for (int i = 0; i < 360; i += 360/sides) { rlVertex3f(0, 0, 0); rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); } rlEnd(); rlPopMatrix(); } // Draw a wired cylinder // NOTE: It could be also used for pyramid and cone void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color) { if (sides < 3) sides = 3; int numVertex = sides*8; rlCheckRenderBatchLimit(numVertex); rlPushMatrix(); rlTranslatef(position.x, position.y, position.z); rlBegin(RL_LINES); rlColor4ub(color.r, color.g, color.b, color.a); for (int i = 0; i < 360; i += 360/sides) { rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); } rlEnd(); rlPopMatrix(); } // Draw a plane void DrawPlane(Vector3 centerPos, Vector2 size, Color color) { rlCheckRenderBatchLimit(4); // NOTE: Plane is always created on XZ ground rlPushMatrix(); rlTranslatef(centerPos.x, centerPos.y, centerPos.z); rlScalef(size.x, 1.0f, size.y); rlBegin(RL_QUADS); rlColor4ub(color.r, color.g, color.b, color.a); rlNormal3f(0.0f, 1.0f, 0.0f); rlVertex3f(-0.5f, 0.0f, -0.5f); rlVertex3f(-0.5f, 0.0f, 0.5f); rlVertex3f(0.5f, 0.0f, 0.5f); rlVertex3f(0.5f, 0.0f, -0.5f); rlEnd(); rlPopMatrix(); } // Draw a ray line void DrawRay(Ray ray, Color color) { float scale = 10000; rlBegin(RL_LINES); rlColor4ub(color.r, color.g, color.b, color.a); rlColor4ub(color.r, color.g, color.b, color.a); rlVertex3f(ray.position.x, ray.position.y, ray.position.z); rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale); rlEnd(); } // Draw a grid centered at (0, 0, 0) void DrawGrid(int slices, float spacing) { int halfSlices = slices/2; rlCheckRenderBatchLimit((slices + 2)*4); rlBegin(RL_LINES); for (int i = -halfSlices; i <= halfSlices; i++) { if (i == 0) { rlColor3f(0.5f, 0.5f, 0.5f); rlColor3f(0.5f, 0.5f, 0.5f); rlColor3f(0.5f, 0.5f, 0.5f); rlColor3f(0.5f, 0.5f, 0.5f); } else { rlColor3f(0.75f, 0.75f, 0.75f); rlColor3f(0.75f, 0.75f, 0.75f); rlColor3f(0.75f, 0.75f, 0.75f); rlColor3f(0.75f, 0.75f, 0.75f); } rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing); rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing); rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing); rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing); } rlEnd(); } // Load model from files (mesh and material) Model LoadModel(const char *fileName) { Model model = { 0 }; #if defined(SUPPORT_FILEFORMAT_OBJ) if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName); #endif #if defined(SUPPORT_FILEFORMAT_IQM) if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName); #endif #if defined(SUPPORT_FILEFORMAT_GLTF) if (IsFileExtension(fileName, ".gltf;.glb")) model = LoadGLTF(fileName); #endif // Make sure model transform is set to identity matrix! model.transform = MatrixIdentity(); if (model.meshCount == 0) { model.meshCount = 1; model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); #if defined(SUPPORT_MESH_GENERATION) TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data, default to cube mesh", fileName); model.meshes[0] = GenMeshCube(1.0f, 1.0f, 1.0f); #else TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load mesh data", fileName); #endif } else { // Upload vertex data to GPU (static mesh) for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false); } if (model.materialCount == 0) { TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load material data, default to white material", fileName); model.materialCount = 1; model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); model.materials[0] = LoadMaterialDefault(); if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); } return model; } // Load model from generated mesh // WARNING: A shallow copy of mesh is generated, passed by value, // as long as struct contains pointers to data and some values, we get a copy // of mesh pointing to same data as original version... be careful! Model LoadModelFromMesh(Mesh mesh) { Model model = { 0 }; model.transform = MatrixIdentity(); model.meshCount = 1; model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); model.meshes[0] = mesh; model.materialCount = 1; model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); model.materials[0] = LoadMaterialDefault(); model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); model.meshMaterial[0] = 0; // First material index return model; } // Unload model (meshes/materials) from memory (RAM and/or VRAM) // NOTE: This function takes care of all model elements, for a detailed control // over them, use UnloadMesh() and UnloadMaterial() void UnloadModel(Model model) { // Unload meshes for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]); // Unload materials maps // NOTE: As the user could be sharing shaders and textures between models, // we don't unload the material but just free it's maps, // the user is responsible for freeing models shaders and textures for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps); // Unload arrays RL_FREE(model.meshes); RL_FREE(model.materials); RL_FREE(model.meshMaterial); // Unload animation data RL_FREE(model.bones); RL_FREE(model.bindPose); TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM"); } // Unload model (but not meshes) from memory (RAM and/or VRAM) void UnloadModelKeepMeshes(Model model) { // Unload materials maps // NOTE: As the user could be sharing shaders and textures between models, // we don't unload the material but just free it's maps, // the user is responsible for freeing models shaders and textures for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps); // Unload arrays RL_FREE(model.meshes); RL_FREE(model.materials); RL_FREE(model.meshMaterial); // Unload animation data RL_FREE(model.bones); RL_FREE(model.bindPose); TRACELOG(LOG_INFO, "MODEL: Unloaded model (but not meshes) from RAM and VRAM"); } // Upload vertex data into a VAO (if supported) and VBO void UploadMesh(Mesh *mesh, bool dynamic) { if (mesh->vaoId > 0) { // Check if mesh has already been loaded in GPU TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId); return; } mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int)); mesh->vaoId = 0; // Vertex Array Object mesh->vboId[0] = 0; // Vertex buffer: positions mesh->vboId[1] = 0; // Vertex buffer: texcoords mesh->vboId[2] = 0; // Vertex buffer: normals mesh->vboId[3] = 0; // Vertex buffer: colors mesh->vboId[4] = 0; // Vertex buffer: tangents mesh->vboId[5] = 0; // Vertex buffer: texcoords2 mesh->vboId[6] = 0; // Vertex buffer: indices #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) mesh->vaoId = rlLoadVertexArray(); rlEnableVertexArray(mesh->vaoId); // NOTE: Attributes must be uploaded considering default locations points // Enable vertex attributes: position (shader-location = 0) mesh->vboId[0] = rlLoadVertexBuffer(mesh->vertices, mesh->vertexCount*3*sizeof(float), dynamic); rlSetVertexAttribute(0, 3, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(0); // Enable vertex attributes: texcoords (shader-location = 1) mesh->vboId[1] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic); rlSetVertexAttribute(1, 2, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(1); if (mesh->normals != NULL) { // Enable vertex attributes: normals (shader-location = 2) mesh->vboId[2] = rlLoadVertexBuffer(mesh->normals, mesh->vertexCount*3*sizeof(float), dynamic); rlSetVertexAttribute(2, 3, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(2); } else { // Default color vertex attribute set to WHITE float value[3] = { 1.0f, 1.0f, 1.0f }; rlSetVertexAttributeDefault(2, value, SHADER_ATTRIB_VEC3, 3); rlDisableVertexAttribute(2); } if (mesh->colors != NULL) { // Enable vertex attribute: color (shader-location = 3) mesh->vboId[3] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic); rlSetVertexAttribute(3, 4, RL_UNSIGNED_BYTE, 1, 0, 0); rlEnableVertexAttribute(3); } else { // Default color vertex attribute set to WHITE float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; rlSetVertexAttributeDefault(3, value, SHADER_ATTRIB_VEC4, 4); rlDisableVertexAttribute(3); } if (mesh->tangents != NULL) { // Enable vertex attribute: tangent (shader-location = 4) mesh->vboId[4] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic); rlSetVertexAttribute(4, 4, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(4); } else { // Default tangents vertex attribute float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; rlSetVertexAttributeDefault(4, value, SHADER_ATTRIB_VEC4, 4); rlDisableVertexAttribute(4); } if (mesh->texcoords2 != NULL) { // Enable vertex attribute: texcoord2 (shader-location = 5) mesh->vboId[5] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic); rlSetVertexAttribute(5, 2, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(5); } else { // Default texcoord2 vertex attribute float value[2] = { 0.0f, 0.0f }; rlSetVertexAttributeDefault(5, value, SHADER_ATTRIB_VEC2, 2); rlDisableVertexAttribute(5); } if (mesh->indices != NULL) { mesh->vboId[6] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic); } if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId); else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)"); rlDisableVertexArray(); #endif } // Update mesh vertex data in GPU for a specific buffer index void UpdateMeshBuffer(Mesh mesh, int index, void *data, int dataSize, int offset) { rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset); } // Draw a 3d mesh with material and transform void DrawMesh(Mesh mesh, Material material, Matrix transform) { DrawMeshInstanced(mesh, material, &transform, 1); } // Draw multiple mesh instances with material and different transforms void DrawMeshInstanced(Mesh mesh, Material material, Matrix *transforms, int instances) { #if defined(GRAPHICS_API_OPENGL_11) #define GL_VERTEX_ARRAY 0x8074 #define GL_NORMAL_ARRAY 0x8075 #define GL_COLOR_ARRAY 0x8076 #define GL_TEXTURE_COORD_ARRAY 0x8078 rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id); rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices); rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords); rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals); rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors); rlPushMatrix(); rlMultMatrixf(MatrixToFloat(transforms[0])); rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r, material.maps[MATERIAL_MAP_DIFFUSE].color.g, material.maps[MATERIAL_MAP_DIFFUSE].color.b, material.maps[MATERIAL_MAP_DIFFUSE].color.a); if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices); else rlDrawVertexArray(0, mesh.vertexCount); rlPopMatrix(); rlDisableStatePointer(GL_VERTEX_ARRAY); rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY); rlDisableStatePointer(GL_NORMAL_ARRAY); rlDisableStatePointer(GL_COLOR_ARRAY); rlDisableTexture(); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Check instancing bool instancing = false; if (instances < 1) return; else if (instances > 1) instancing = true; float16 *instanceTransforms = NULL; unsigned int instancesVboId = 0; // Bind shader program rlEnableShader(material.shader.id); // Send required data to shader (matrices, values) //----------------------------------------------------- // Upload to shader material.colDiffuse if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1) { float values[4] = { (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f, (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f, (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f, (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f }; rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1); } // Upload to shader material.colSpecular (if location available) if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1) { float values[4] = { (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f, (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f, (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f, (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f }; rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1); } // Get a copy of current matrices to work with, // just in case stereo render is required and we need to modify them // NOTE: At this point the modelview matrix just contains the view matrix (camera) // That's because BeginMode3D() sets it and there is no model-drawing function // that modifies it, all use rlPushMatrix() and rlPopMatrix() Matrix matView = rlGetMatrixModelview(); Matrix matModelView = matView; Matrix matProjection = rlGetMatrixProjection(); // Upload view and projection matrices (if locations available) if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView); if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection); if (instancing) { // Create instances buffer instanceTransforms = RL_MALLOC(instances*sizeof(float16)); // Fill buffer with instances transformations as float16 arrays for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]); // Enable mesh VAO to attach new buffer rlEnableVertexArray(mesh.vaoId); // This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData(). // It isn't clear which would be reliably faster in all cases and on all platforms, // anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems // no faster, since we're transferring all the transform matrices anyway instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false); // Instances transformation matrices are send to shader attribute location: SHADER_LOC_MATRIX_MODEL for (unsigned int i = 0; i < 4; i++) { rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 4, RL_FLOAT, 0, sizeof(Matrix), (void *)(i*sizeof(Vector4))); rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 1); } rlDisableVertexBuffer(); rlDisableVertexArray(); // Accumulate internal matrix transform (push/pop) and view matrix // NOTE: In this case, model instance transformation must be computed in the shader matModelView = MatrixMultiply(rlGetMatrixTransform(), matView); } else { // Model transformation matrix is send to shader uniform location: SHADER_LOC_MATRIX_MODEL if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], transforms[0]); // Accumulate several transformations: // matView: rlgl internal modelview matrix (actually, just view matrix) // rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack // transform: function parameter transformation matModelView = MatrixMultiply(transforms[0], MatrixMultiply(rlGetMatrixTransform(), matView)); } // Upload model normal matrix (if locations available) if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModelView))); //----------------------------------------------------- // Bind active texture maps (if available) for (int i = 0; i < MAX_MATERIAL_MAPS; i++) { if (material.maps[i].texture.id > 0) { // Select current shader texture slot rlActiveTextureSlot(i); // Enable texture for active slot if ((i == MATERIAL_MAP_IRRADIANCE) || (i == MATERIAL_MAP_PREFILTER) || (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id); else rlEnableTexture(material.maps[i].texture.id); rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1); } } // Try binding vertex array objects (VAO) // or use VBOs if not possible if (!rlEnableVertexArray(mesh.vaoId)) { // Bind mesh VBO data: vertex position (shader-location = 0) rlEnableVertexBuffer(mesh.vboId[0]); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]); rlEnableVertexBuffer(mesh.vboId[0]); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]); // Bind mesh VBO data: vertex texcoords (shader-location = 1) rlEnableVertexBuffer(mesh.vboId[1]); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]); if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1) { // Bind mesh VBO data: vertex normals (shader-location = 2) rlEnableVertexBuffer(mesh.vboId[2]); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]); } // Bind mesh VBO data: vertex colors (shader-location = 3, if available) if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1) { if (mesh.vboId[3] != 0) { rlEnableVertexBuffer(mesh.vboId[3]); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0); rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); } else { // Set default value for unused attribute // NOTE: Required when using default shader and no VAO support float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC2, 4); rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); } } // Bind mesh VBO data: vertex tangents (shader-location = 4, if available) if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1) { rlEnableVertexBuffer(mesh.vboId[4]); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]); } // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available) if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1) { rlEnableVertexBuffer(mesh.vboId[5]); rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0); rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]); } if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]); } int eyesCount = 1; if (rlIsStereoRenderEnabled()) eyesCount = 2; for (int eye = 0; eye < eyesCount; eye++) { // Calculate model-view-projection matrix (MVP) Matrix matMVP = MatrixIdentity(); if (eyesCount == 1) matMVP = MatrixMultiply(matModelView, matProjection); else { // Setup current eye viewport (half screen width) rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight()); matMVP = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye)); } // Send combined model-view-projection matrix to shader rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matMVP); if (instancing) // Draw mesh instanced { if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances); else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances); } else // Draw mesh { if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0); else rlDrawVertexArray(0, mesh.vertexCount); } } // Unbind all binded texture maps for (int i = 0; i < MAX_MATERIAL_MAPS; i++) { // Select current shader texture slot rlActiveTextureSlot(i); // Disable texture for active slot if ((i == MATERIAL_MAP_IRRADIANCE) || (i == MATERIAL_MAP_PREFILTER) || (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap(); else rlDisableTexture(); } // Disable all possible vertex array objects (or VBOs) rlDisableVertexArray(); rlDisableVertexBuffer(); rlDisableVertexBufferElement(); // Disable shader program rlDisableShader(); if (instancing) { // Remove instance transforms buffer rlUnloadVertexBuffer(instancesVboId); RL_FREE(instanceTransforms); } else { // Restore rlgl internal modelview and projection matrices rlSetMatrixModelview(matView); rlSetMatrixProjection(matProjection); } #endif } // Unload mesh from memory (RAM and VRAM) void UnloadMesh(Mesh mesh) { // Unload rlgl mesh vboId data rlUnloadVertexArray(mesh.vaoId); for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]); RL_FREE(mesh.vboId); RL_FREE(mesh.vertices); RL_FREE(mesh.texcoords); RL_FREE(mesh.normals); RL_FREE(mesh.colors); RL_FREE(mesh.tangents); RL_FREE(mesh.texcoords2); RL_FREE(mesh.indices); RL_FREE(mesh.animVertices); RL_FREE(mesh.animNormals); RL_FREE(mesh.boneWeights); RL_FREE(mesh.boneIds); } // Export mesh data to file bool ExportMesh(Mesh mesh, const char *fileName) { bool success = false; if (IsFileExtension(fileName, ".obj")) { // Estimated data size, it should be enough... int dataSize = mesh.vertexCount/3* (int)strlen("v 0000.00f 0000.00f 0000.00f") + mesh.vertexCount/2* (int)strlen("vt 0.000f 0.00f") + mesh.vertexCount/3* (int)strlen("vn 0.000f 0.00f 0.00f") + mesh.triangleCount/3* (int)strlen("f 00000/00000/00000 00000/00000/00000 00000/00000/00000"); // NOTE: Text data buffer size is estimated considering mesh data size char *txtData = (char *)RL_CALLOC(dataSize + 2000, sizeof(char)); int bytesCount = 0; bytesCount += sprintf(txtData + bytesCount, "# //////////////////////////////////////////////////////////////////////////////////\n"); bytesCount += sprintf(txtData + bytesCount, "# // //\n"); bytesCount += sprintf(txtData + bytesCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n"); bytesCount += sprintf(txtData + bytesCount, "# // //\n"); bytesCount += sprintf(txtData + bytesCount, "# // more info and bugs-report: github.com/raysan5/raylib //\n"); bytesCount += sprintf(txtData + bytesCount, "# // feedback and support: ray[at]raylib.com //\n"); bytesCount += sprintf(txtData + bytesCount, "# // //\n"); bytesCount += sprintf(txtData + bytesCount, "# // Copyright (c) 2018 Ramon Santamaria (@raysan5) //\n"); bytesCount += sprintf(txtData + bytesCount, "# // //\n"); bytesCount += sprintf(txtData + bytesCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n"); bytesCount += sprintf(txtData + bytesCount, "# Vertex Count: %i\n", mesh.vertexCount); bytesCount += sprintf(txtData + bytesCount, "# Triangle Count: %i\n\n", mesh.triangleCount); bytesCount += sprintf(txtData + bytesCount, "g mesh\n"); for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3) { bytesCount += sprintf(txtData + bytesCount, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]); } for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2) { bytesCount += sprintf(txtData + bytesCount, "vt %.3f %.3f\n", mesh.texcoords[v], mesh.texcoords[v + 1]); } for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3) { bytesCount += sprintf(txtData + bytesCount, "vn %.3f %.3f %.3f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]); } for (int i = 0; i < mesh.triangleCount; i += 3) { bytesCount += sprintf(txtData + bytesCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", i, i, i, i + 1, i + 1, i + 1, i + 2, i + 2, i + 2); } bytesCount += sprintf(txtData + bytesCount, "\n"); // NOTE: Text data length exported is determined by '\0' (NULL) character success = SaveFileText(fileName, txtData); RL_FREE(txtData); } else if (IsFileExtension(fileName, ".raw")) { // TODO: Support additional file formats to export mesh vertex data } return success; } // Load materials from model file Material *LoadMaterials(const char *fileName, int *materialCount) { Material *materials = NULL; unsigned int count = 0; // TODO: Support IQM and GLTF for materials parsing #if defined(SUPPORT_FILEFORMAT_MTL) if (IsFileExtension(fileName, ".mtl")) { tinyobj_material_t *mats = NULL; int result = tinyobj_parse_mtl_file(&mats, &count, fileName); if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName); // TODO: Process materials to return tinyobj_materials_free(mats, count); } #else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName); #endif // Set materials shader to default (DIFFUSE, SPECULAR, NORMAL) if (materials != NULL) { for (unsigned int i = 0; i < count; i++) materials[i].shader = rlGetShaderDefault(); } *materialCount = count; return materials; } // Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps) Material LoadMaterialDefault(void) { Material material = { 0 }; material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap)); material.shader = rlGetShaderDefault(); material.maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault(); // White texture (1x1 pixel) //material.maps[MATERIAL_MAP_NORMAL].texture; // NOTE: By default, not set //material.maps[MATERIAL_MAP_SPECULAR].texture; // NOTE: By default, not set material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE; // Diffuse color material.maps[MATERIAL_MAP_SPECULAR].color = WHITE; // Specular color return material; } // Unload material from memory void UnloadMaterial(Material material) { // Unload material shader (avoid unloading default shader, managed by raylib) if (material.shader.id != rlGetShaderDefault().id) UnloadShader(material.shader); // Unload loaded texture maps (avoid unloading default texture, managed by raylib) for (int i = 0; i < MAX_MATERIAL_MAPS; i++) { if (material.maps[i].texture.id != rlGetTextureDefault().id) rlUnloadTexture(material.maps[i].texture.id); } RL_FREE(material.maps); } // Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...) // NOTE: Previous texture should be manually unloaded void SetMaterialTexture(Material *material, int mapType, Texture2D texture) { material->maps[mapType].texture = texture; } // Set the material for a mesh void SetModelMeshMaterial(Model *model, int meshId, int materialId) { if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count"); else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count"); else model->meshMaterial[meshId] = materialId; } // Load model animations from file ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount) { ModelAnimation *animations = NULL; #if defined(SUPPORT_FILEFORMAT_IQM) if (IsFileExtension(fileName, ".iqm")) animations = LoadIQMModelAnimations(fileName, animCount); #endif #if defined(SUPPORT_FILEFORMAT_GLTF) if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadGLTFModelAnimations(fileName, animCount); #endif return animations; } // Update model animated vertex data (positions and normals) for a given frame // NOTE: Updated data is uploaded to GPU void UpdateModelAnimation(Model model, ModelAnimation anim, int frame) { if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL)) { if (frame >= anim.frameCount) frame = frame%anim.frameCount; for (int m = 0; m < model.meshCount; m++) { Vector3 animVertex = { 0 }; Vector3 animNormal = { 0 }; Vector3 inTranslation = { 0 }; Quaternion inRotation = { 0 }; //Vector3 inScale = { 0 }; // Not used... Vector3 outTranslation = { 0 }; Quaternion outRotation = { 0 }; Vector3 outScale = { 0 }; int vCounter = 0; int boneCounter = 0; int boneId = 0; float boneWeight = 0.0; for (int i = 0; i < model.meshes[m].vertexCount; i++) { model.meshes[m].animVertices[vCounter] = 0; model.meshes[m].animVertices[vCounter + 1] = 0; model.meshes[m].animVertices[vCounter + 2] = 0; model.meshes[m].animNormals[vCounter] = 0; model.meshes[m].animNormals[vCounter + 1] = 0; model.meshes[m].animNormals[vCounter + 2] = 0; for (int j = 0; j < 4; j++) { boneId = model.meshes[m].boneIds[boneCounter]; boneWeight = model.meshes[m].boneWeights[boneCounter]; inTranslation = model.bindPose[boneId].translation; inRotation = model.bindPose[boneId].rotation; //inScale = model.bindPose[boneId].scale; outTranslation = anim.framePoses[frame][boneId].translation; outRotation = anim.framePoses[frame][boneId].rotation; outScale = anim.framePoses[frame][boneId].scale; // Vertices processing // NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position) animVertex = (Vector3){ model.meshes[m].vertices[vCounter], model.meshes[m].vertices[vCounter + 1], model.meshes[m].vertices[vCounter + 2] }; animVertex = Vector3Multiply(animVertex, outScale); animVertex = Vector3Subtract(animVertex, inTranslation); animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation))); animVertex = Vector3Add(animVertex, outTranslation); model.meshes[m].animVertices[vCounter] += animVertex.x * boneWeight; model.meshes[m].animVertices[vCounter + 1] += animVertex.y * boneWeight; model.meshes[m].animVertices[vCounter + 2] += animVertex.z * boneWeight; // Normals processing // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals) if (model.meshes[m].normals != NULL) { animNormal = (Vector3){ model.meshes[m].normals[vCounter], model.meshes[m].normals[vCounter + 1], model.meshes[m].normals[vCounter + 2] }; animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation))); model.meshes[m].animNormals[vCounter] += animNormal.x * boneWeight; model.meshes[m].animNormals[vCounter + 1] += animNormal.y * boneWeight; model.meshes[m].animNormals[vCounter + 2] += animNormal.z * boneWeight; } boneCounter += 1; } vCounter += 3; } // Upload new vertex data to GPU for model drawing rlUpdateVertexBuffer(model.meshes[m].vboId[0], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float), 0); // Update vertex position rlUpdateVertexBuffer(model.meshes[m].vboId[2], model.meshes[m].animNormals, model.meshes[m].vertexCount*3*sizeof(float), 0); // Update vertex normals } } } // Unload animation array data void UnloadModelAnimations(ModelAnimation* animations, unsigned int count) { for (unsigned int i = 0; i < count; i++) UnloadModelAnimation(animations[i]); RL_FREE(animations); } // Unload animation data void UnloadModelAnimation(ModelAnimation anim) { for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]); RL_FREE(anim.bones); RL_FREE(anim.framePoses); } // Check model animation skeleton match // NOTE: Only number of bones and parent connections are checked bool IsModelAnimationValid(Model model, ModelAnimation anim) { int result = true; if (model.boneCount != anim.boneCount) result = false; else { for (int i = 0; i < model.boneCount; i++) { if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; } } } return result; } #if defined(SUPPORT_MESH_GENERATION) // Generate polygonal mesh Mesh GenMeshPoly(int sides, float radius) { Mesh mesh = { 0 }; if (sides < 3) return mesh; int vertexCount = sides*3; // Vertices definition Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); float d = 0.0f, dStep = 360.0f/sides; for (int v = 0; v < vertexCount; v += 3) { vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f }; vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius }; vertices[v + 2] = (Vector3){sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius }; d += dStep; } // Normals definition Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up; // TexCoords definition Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2)); for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f }; mesh.vertexCount = vertexCount; mesh.triangleCount = sides; mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); // Mesh vertices position array for (int i = 0; i < mesh.vertexCount; i++) { mesh.vertices[3*i] = vertices[i].x; mesh.vertices[3*i + 1] = vertices[i].y; mesh.vertices[3*i + 2] = vertices[i].z; } // Mesh texcoords array for (int i = 0; i < mesh.vertexCount; i++) { mesh.texcoords[2*i] = texcoords[i].x; mesh.texcoords[2*i + 1] = texcoords[i].y; } // Mesh normals array for (int i = 0; i < mesh.vertexCount; i++) { mesh.normals[3*i] = normals[i].x; mesh.normals[3*i + 1] = normals[i].y; mesh.normals[3*i + 2] = normals[i].z; } RL_FREE(vertices); RL_FREE(normals); RL_FREE(texcoords); // Upload vertex data to GPU (static mesh) // NOTE: mesh.vboId array is allocated inside UploadMesh() UploadMesh(&mesh, false); return mesh; } // Generate plane mesh (with subdivisions) Mesh GenMeshPlane(float width, float length, int resX, int resZ) { Mesh mesh = { 0 }; #define CUSTOM_MESH_GEN_PLANE #if defined(CUSTOM_MESH_GEN_PLANE) resX++; resZ++; // Vertices definition int vertexCount = resX*resZ; // vertices get reused for the faces Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); for (int z = 0; z < resZ; z++) { // [-length/2, length/2] float zPos = ((float)z/(resZ - 1) - 0.5f)*length; for (int x = 0; x < resX; x++) { // [-width/2, width/2] float xPos = ((float)x/(resX - 1) - 0.5f)*width; vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos }; } } // Normals definition Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up; // TexCoords definition Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2)); for (int v = 0; v < resZ; v++) { for (int u = 0; u < resX; u++) { texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) }; } } // Triangles definition (indices) int numFaces = (resX - 1)*(resZ - 1); int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int)); int t = 0; for (int face = 0; face < numFaces; face++) { // Retrieve lower left corner from face ind int i = face % (resX - 1) + (face/(resZ - 1)*resX); triangles[t++] = i + resX; triangles[t++] = i + 1; triangles[t++] = i; triangles[t++] = i + resX; triangles[t++] = i + resX + 1; triangles[t++] = i + 1; } mesh.vertexCount = vertexCount; mesh.triangleCount = numFaces*2; mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short)); // Mesh vertices position array for (int i = 0; i < mesh.vertexCount; i++) { mesh.vertices[3*i] = vertices[i].x; mesh.vertices[3*i + 1] = vertices[i].y; mesh.vertices[3*i + 2] = vertices[i].z; } // Mesh texcoords array for (int i = 0; i < mesh.vertexCount; i++) { mesh.texcoords[2*i] = texcoords[i].x; mesh.texcoords[2*i + 1] = texcoords[i].y; } // Mesh normals array for (int i = 0; i < mesh.vertexCount; i++) { mesh.normals[3*i] = normals[i].x; mesh.normals[3*i + 1] = normals[i].y; mesh.normals[3*i + 2] = normals[i].z; } // Mesh indices array initialization for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i]; RL_FREE(vertices); RL_FREE(normals); RL_FREE(texcoords); RL_FREE(triangles); #else // Use par_shapes library to generate plane mesh par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!! par_shapes_scale(plane, width, length, 1.0f); par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 }); par_shapes_translate(plane, -width/2, 0.0f, length/2); mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float)); mesh.vertexCount = plane->ntriangles*3; mesh.triangleCount = plane->ntriangles; for (int k = 0; k < mesh.vertexCount; k++) { mesh.vertices[k*3] = plane->points[plane->triangles[k]*3]; mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1]; mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2]; mesh.normals[k*3] = plane->normals[plane->triangles[k]*3]; mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1]; mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2]; mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2]; mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1]; } par_shapes_free_mesh(plane); #endif // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); return mesh; } // Generated cuboid mesh Mesh GenMeshCube(float width, float height, float length) { Mesh mesh = { 0 }; #define CUSTOM_MESH_GEN_CUBE #if defined(CUSTOM_MESH_GEN_CUBE) float vertices[] = { -width/2, -height/2, length/2, width/2, -height/2, length/2, width/2, height/2, length/2, -width/2, height/2, length/2, -width/2, -height/2, -length/2, -width/2, height/2, -length/2, width/2, height/2, -length/2, width/2, -height/2, -length/2, -width/2, height/2, -length/2, -width/2, height/2, length/2, width/2, height/2, length/2, width/2, height/2, -length/2, -width/2, -height/2, -length/2, width/2, -height/2, -length/2, width/2, -height/2, length/2, -width/2, -height/2, length/2, width/2, -height/2, -length/2, width/2, height/2, -length/2, width/2, height/2, length/2, width/2, -height/2, length/2, -width/2, -height/2, -length/2, -width/2, -height/2, length/2, -width/2, height/2, length/2, -width/2, height/2, -length/2 }; float texcoords[] = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f }; float normals[] = { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f }; mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float)); memcpy(mesh.vertices, vertices, 24*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float)); memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float)); memcpy(mesh.normals, normals, 24*3*sizeof(float)); mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short)); int k = 0; // Indices can be initialized right now for (int i = 0; i < 36; i+=6) { mesh.indices[i] = 4*k; mesh.indices[i+1] = 4*k+1; mesh.indices[i+2] = 4*k+2; mesh.indices[i+3] = 4*k; mesh.indices[i+4] = 4*k+2; mesh.indices[i+5] = 4*k+3; k++; } mesh.vertexCount = 24; mesh.triangleCount = 12; #else // Use par_shapes library to generate cube mesh /* // Platonic solids: par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid) par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube) par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (dyamond) par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron */ // Platonic solid generation: cube (6 sides) // NOTE: No normals/texcoords generated by default par_shapes_mesh *cube = par_shapes_create_cube(); cube->tcoords = PAR_MALLOC(float, 2*cube->npoints); for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f; par_shapes_scale(cube, width, height, length); par_shapes_translate(cube, -width/2, 0.0f, -length/2); par_shapes_compute_normals(cube); mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float)); mesh.vertexCount = cube->ntriangles*3; mesh.triangleCount = cube->ntriangles; for (int k = 0; k < mesh.vertexCount; k++) { mesh.vertices[k*3] = cube->points[cube->triangles[k]*3]; mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1]; mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2]; mesh.normals[k*3] = cube->normals[cube->triangles[k]*3]; mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1]; mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2]; mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2]; mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1]; } par_shapes_free_mesh(cube); #endif // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); return mesh; } // Generate sphere mesh (standard sphere) Mesh GenMeshSphere(float radius, int rings, int slices) { Mesh mesh = { 0 }; if ((rings >= 3) && (slices >= 3)) { par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings); par_shapes_scale(sphere, radius, radius, radius); // NOTE: Soft normals are computed internally mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); mesh.vertexCount = sphere->ntriangles*3; mesh.triangleCount = sphere->ntriangles; for (int k = 0; k < mesh.vertexCount; k++) { mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3]; mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1]; mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2]; mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3]; mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1]; mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2]; mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2]; mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1]; } par_shapes_free_mesh(sphere); // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); } else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere"); return mesh; } // Generate hemi-sphere mesh (half sphere, no bottom cap) Mesh GenMeshHemiSphere(float radius, int rings, int slices) { Mesh mesh = { 0 }; if ((rings >= 3) && (slices >= 3)) { if (radius < 0.0f) radius = 0.0f; par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings); par_shapes_scale(sphere, radius, radius, radius); // NOTE: Soft normals are computed internally mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); mesh.vertexCount = sphere->ntriangles*3; mesh.triangleCount = sphere->ntriangles; for (int k = 0; k < mesh.vertexCount; k++) { mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3]; mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1]; mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2]; mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3]; mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1]; mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2]; mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2]; mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1]; } par_shapes_free_mesh(sphere); // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); } else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere"); return mesh; } // Generate cylinder mesh Mesh GenMeshCylinder(float radius, float height, int slices) { Mesh mesh = { 0 }; if (slices >= 3) { // Instance a cylinder that sits on the Z=0 plane using the given tessellation // levels across the UV domain. Think of "slices" like a number of pizza // slices, and "stacks" like a number of stacked rings. // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8); par_shapes_scale(cylinder, radius, radius, height); par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 }); par_shapes_rotate(cylinder, PI/2.0f, (float[]){ 0, 1, 0 }); // Generate an orientable disk shape (top cap) par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 }); capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints); for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f; par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 }); par_shapes_translate(capTop, 0, height, 0); // Generate an orientable disk shape (bottom cap) par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 }); capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints); for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f; par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 }); par_shapes_merge_and_free(cylinder, capTop); par_shapes_merge_and_free(cylinder, capBottom); mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float)); mesh.vertexCount = cylinder->ntriangles*3; mesh.triangleCount = cylinder->ntriangles; for (int k = 0; k < mesh.vertexCount; k++) { mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3]; mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1]; mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2]; mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3]; mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1]; mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2]; mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2]; mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1]; } par_shapes_free_mesh(cylinder); // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); } else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder"); return mesh; } // Generate torus mesh Mesh GenMeshTorus(float radius, float size, int radSeg, int sides) { Mesh mesh = { 0 }; if ((sides >= 3) && (radSeg >= 3)) { if (radius > 1.0f) radius = 1.0f; else if (radius < 0.1f) radius = 0.1f; // Create a donut that sits on the Z=0 plane with the specified inner radius // The outer radius can be controlled with par_shapes_scale par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius); par_shapes_scale(torus, size/2, size/2, size/2); mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float)); mesh.vertexCount = torus->ntriangles*3; mesh.triangleCount = torus->ntriangles; for (int k = 0; k < mesh.vertexCount; k++) { mesh.vertices[k*3] = torus->points[torus->triangles[k]*3]; mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1]; mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2]; mesh.normals[k*3] = torus->normals[torus->triangles[k]*3]; mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1]; mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2]; mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2]; mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1]; } par_shapes_free_mesh(torus); // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); } else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus"); return mesh; } // Generate trefoil knot mesh Mesh GenMeshKnot(float radius, float size, int radSeg, int sides) { Mesh mesh = { 0 }; if ((sides >= 3) && (radSeg >= 3)) { if (radius > 3.0f) radius = 3.0f; else if (radius < 0.5f) radius = 0.5f; par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius); par_shapes_scale(knot, size, size, size); mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float)); mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float)); mesh.vertexCount = knot->ntriangles*3; mesh.triangleCount = knot->ntriangles; for (int k = 0; k < mesh.vertexCount; k++) { mesh.vertices[k*3] = knot->points[knot->triangles[k]*3]; mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1]; mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2]; mesh.normals[k*3] = knot->normals[knot->triangles[k]*3]; mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1]; mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2]; mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2]; mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1]; } par_shapes_free_mesh(knot); // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); } else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot"); return mesh; } // Generate a mesh from heightmap // NOTE: Vertex data is uploaded to GPU Mesh GenMeshHeightmap(Image heightmap, Vector3 size) { #define GRAY_VALUE(c) ((c.r+c.g+c.b)/3) Mesh mesh = { 0 }; int mapX = heightmap.width; int mapZ = heightmap.height; Color *pixels = LoadImageColors(heightmap); // NOTE: One vertex per pixel mesh.triangleCount = (mapX-1)*(mapZ-1)*2; // One quad every four pixels mesh.vertexCount = mesh.triangleCount*3; mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); mesh.colors = NULL; int vCounter = 0; // Used to count vertices float by float int tcCounter = 0; // Used to count texcoords float by float int nCounter = 0; // Used to count normals float by float int trisCounter = 0; Vector3 scaleFactor = { size.x/mapX, size.y/255.0f, size.z/mapZ }; Vector3 vA; Vector3 vB; Vector3 vC; Vector3 vN; for (int z = 0; z < mapZ-1; z++) { for (int x = 0; x < mapX-1; x++) { // Fill vertices array with data //---------------------------------------------------------- // one triangle - 3 vertex mesh.vertices[vCounter] = (float)x*scaleFactor.x; mesh.vertices[vCounter + 1] = (float)GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y; mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z; mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x; mesh.vertices[vCounter + 4] = (float)GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y; mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z; mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x; mesh.vertices[vCounter + 7] = (float)GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y; mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z; // another triangle - 3 vertex mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6]; mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7]; mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8]; mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3]; mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4]; mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5]; mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x; mesh.vertices[vCounter + 16] = (float)GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y; mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z; vCounter += 18; // 6 vertex, 18 floats // Fill texcoords array with data //-------------------------------------------------------------- mesh.texcoords[tcCounter] = (float)x/(mapX - 1); mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1); mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1); mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1); mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1); mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1); mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4]; mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5]; mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2]; mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3]; mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1); mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1); tcCounter += 12; // 6 texcoords, 12 floats // Fill normals array with data //-------------------------------------------------------------- for (int i = 0; i < 18; i += 9) { vA.x = mesh.vertices[nCounter + i]; vA.y = mesh.vertices[nCounter + i + 1]; vA.z = mesh.vertices[nCounter + i + 2]; vB.x = mesh.vertices[nCounter + i + 3]; vB.y = mesh.vertices[nCounter + i + 4]; vB.z = mesh.vertices[nCounter + i + 5]; vC.x = mesh.vertices[nCounter + i + 6]; vC.y = mesh.vertices[nCounter + i + 7]; vC.z = mesh.vertices[nCounter + i + 8]; vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA))); mesh.normals[nCounter + i] = vN.x; mesh.normals[nCounter + i + 1] = vN.y; mesh.normals[nCounter + i + 2] = vN.z; mesh.normals[nCounter + i + 3] = vN.x; mesh.normals[nCounter + i + 4] = vN.y; mesh.normals[nCounter + i + 5] = vN.z; mesh.normals[nCounter + i + 6] = vN.x; mesh.normals[nCounter + i + 7] = vN.y; mesh.normals[nCounter + i + 8] = vN.z; } nCounter += 18; // 6 vertex, 18 floats trisCounter += 2; } } UnloadImageColors(pixels); // Unload pixels color data // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); return mesh; } // Generate a cubes mesh from pixel data // NOTE: Vertex data is uploaded to GPU Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize) { #define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a)) Mesh mesh = { 0 }; Color *pixels = LoadImageColors(cubicmap); int mapWidth = cubicmap.width; int mapHeight = cubicmap.height; // NOTE: Max possible number of triangles numCubes*(12 triangles by cube) int maxTriangles = cubicmap.width*cubicmap.height*12; int vCounter = 0; // Used to count vertices int tcCounter = 0; // Used to count texcoords int nCounter = 0; // Used to count normals float w = cubeSize.x; float h = cubeSize.z; float h2 = cubeSize.y; Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3)); Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2)); Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3)); // Define the 6 normals of the cube, we will combine them accordingly later... Vector3 n1 = { 1.0f, 0.0f, 0.0f }; Vector3 n2 = { -1.0f, 0.0f, 0.0f }; Vector3 n3 = { 0.0f, 1.0f, 0.0f }; Vector3 n4 = { 0.0f, -1.0f, 0.0f }; Vector3 n5 = { 0.0f, 0.0f, -1.0f }; Vector3 n6 = { 0.0f, 0.0f, 1.0f }; // NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6) typedef struct RectangleF { float x; float y; float width; float height; } RectangleF; RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f }; RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f }; RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f }; RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f }; RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f }; RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f }; for (int z = 0; z < mapHeight; ++z) { for (int x = 0; x < mapWidth; ++x) { // Define the 8 vertex of the cube, we will combine them accordingly later... Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) }; Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) }; Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) }; Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) }; Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) }; Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) }; Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) }; Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) }; // We check pixel color to be WHITE -> draw full cube if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE)) { // Define triangles and checking collateral cubes //------------------------------------------------ // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4) // WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside mapVertices[vCounter] = v1; mapVertices[vCounter + 1] = v2; mapVertices[vCounter + 2] = v3; mapVertices[vCounter + 3] = v1; mapVertices[vCounter + 4] = v3; mapVertices[vCounter + 5] = v4; vCounter += 6; mapNormals[nCounter] = n3; mapNormals[nCounter + 1] = n3; mapNormals[nCounter + 2] = n3; mapNormals[nCounter + 3] = n3; mapNormals[nCounter + 4] = n3; mapNormals[nCounter + 5] = n3; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y }; tcCounter += 6; // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8) mapVertices[vCounter] = v6; mapVertices[vCounter + 1] = v8; mapVertices[vCounter + 2] = v7; mapVertices[vCounter + 3] = v6; mapVertices[vCounter + 4] = v5; mapVertices[vCounter + 5] = v8; vCounter += 6; mapNormals[nCounter] = n4; mapNormals[nCounter + 1] = n4; mapNormals[nCounter + 2] = n4; mapNormals[nCounter + 3] = n4; mapNormals[nCounter + 4] = n4; mapNormals[nCounter + 5] = n4; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height }; mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y }; mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; tcCounter += 6; // Checking cube on bottom of current cube if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1)) { // Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8 // NOTE: Collateral occluded faces are not generated mapVertices[vCounter] = v2; mapVertices[vCounter + 1] = v7; mapVertices[vCounter + 2] = v3; mapVertices[vCounter + 3] = v3; mapVertices[vCounter + 4] = v7; mapVertices[vCounter + 5] = v8; vCounter += 6; mapNormals[nCounter] = n6; mapNormals[nCounter + 1] = n6; mapNormals[nCounter + 2] = n6; mapNormals[nCounter + 3] = n6; mapNormals[nCounter + 4] = n6; mapNormals[nCounter + 5] = n6; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y }; mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height }; mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height }; tcCounter += 6; } // Checking cube on top of current cube if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0)) { // Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5 // NOTE: Collateral occluded faces are not generated mapVertices[vCounter] = v1; mapVertices[vCounter + 1] = v5; mapVertices[vCounter + 2] = v6; mapVertices[vCounter + 3] = v1; mapVertices[vCounter + 4] = v4; mapVertices[vCounter + 5] = v5; vCounter += 6; mapNormals[nCounter] = n5; mapNormals[nCounter + 1] = n5; mapNormals[nCounter + 2] = n5; mapNormals[nCounter + 3] = n5; mapNormals[nCounter + 4] = n5; mapNormals[nCounter + 5] = n5; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height }; mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y }; mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height }; tcCounter += 6; } // Checking cube on right of current cube if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1)) { // Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5 // NOTE: Collateral occluded faces are not generated mapVertices[vCounter] = v3; mapVertices[vCounter + 1] = v8; mapVertices[vCounter + 2] = v4; mapVertices[vCounter + 3] = v4; mapVertices[vCounter + 4] = v8; mapVertices[vCounter + 5] = v5; vCounter += 6; mapNormals[nCounter] = n1; mapNormals[nCounter + 1] = n1; mapNormals[nCounter + 2] = n1; mapNormals[nCounter + 3] = n1; mapNormals[nCounter + 4] = n1; mapNormals[nCounter + 5] = n1; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y }; mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height }; mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height }; tcCounter += 6; } // Checking cube on left of current cube if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0)) { // Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7 // NOTE: Collateral occluded faces are not generated mapVertices[vCounter] = v1; mapVertices[vCounter + 1] = v7; mapVertices[vCounter + 2] = v2; mapVertices[vCounter + 3] = v1; mapVertices[vCounter + 4] = v6; mapVertices[vCounter + 5] = v7; vCounter += 6; mapNormals[nCounter] = n2; mapNormals[nCounter + 1] = n2; mapNormals[nCounter + 2] = n2; mapNormals[nCounter + 3] = n2; mapNormals[nCounter + 4] = n2; mapNormals[nCounter + 5] = n2; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y }; mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height }; mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height }; tcCounter += 6; } } // We check pixel color to be BLACK, we will only draw floor and roof else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK)) { // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4) mapVertices[vCounter] = v1; mapVertices[vCounter + 1] = v3; mapVertices[vCounter + 2] = v2; mapVertices[vCounter + 3] = v1; mapVertices[vCounter + 4] = v4; mapVertices[vCounter + 5] = v3; vCounter += 6; mapNormals[nCounter] = n4; mapNormals[nCounter + 1] = n4; mapNormals[nCounter + 2] = n4; mapNormals[nCounter + 3] = n4; mapNormals[nCounter + 4] = n4; mapNormals[nCounter + 5] = n4; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height }; mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y }; mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; tcCounter += 6; // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8) mapVertices[vCounter] = v6; mapVertices[vCounter + 1] = v7; mapVertices[vCounter + 2] = v8; mapVertices[vCounter + 3] = v6; mapVertices[vCounter + 4] = v8; mapVertices[vCounter + 5] = v5; vCounter += 6; mapNormals[nCounter] = n3; mapNormals[nCounter + 1] = n3; mapNormals[nCounter + 2] = n3; mapNormals[nCounter + 3] = n3; mapNormals[nCounter + 4] = n3; mapNormals[nCounter + 5] = n3; nCounter += 6; mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height }; mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y }; tcCounter += 6; } } } // Move data from mapVertices temp arays to vertices float array mesh.vertexCount = vCounter; mesh.triangleCount = vCounter/3; mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); mesh.colors = NULL; int fCounter = 0; // Move vertices data for (int i = 0; i < vCounter; i++) { mesh.vertices[fCounter] = mapVertices[i].x; mesh.vertices[fCounter + 1] = mapVertices[i].y; mesh.vertices[fCounter + 2] = mapVertices[i].z; fCounter += 3; } fCounter = 0; // Move normals data for (int i = 0; i < nCounter; i++) { mesh.normals[fCounter] = mapNormals[i].x; mesh.normals[fCounter + 1] = mapNormals[i].y; mesh.normals[fCounter + 2] = mapNormals[i].z; fCounter += 3; } fCounter = 0; // Move texcoords data for (int i = 0; i < tcCounter; i++) { mesh.texcoords[fCounter] = mapTexcoords[i].x; mesh.texcoords[fCounter + 1] = mapTexcoords[i].y; fCounter += 2; } RL_FREE(mapVertices); RL_FREE(mapNormals); RL_FREE(mapTexcoords); UnloadImageColors(pixels); // Unload pixels color data // Upload vertex data to GPU (static mesh) UploadMesh(&mesh, false); return mesh; } #endif // SUPPORT_MESH_GENERATION // Compute mesh bounding box limits // NOTE: minVertex and maxVertex should be transformed by model transform matrix BoundingBox MeshBoundingBox(Mesh mesh) { // Get min and max vertex to construct bounds (AABB) Vector3 minVertex = { 0 }; Vector3 maxVertex = { 0 }; if (mesh.vertices != NULL) { minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] }; maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] }; for (int i = 1; i < mesh.vertexCount; i++) { minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] }); maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] }); } } // Create the bounding box BoundingBox box = { 0 }; box.min = minVertex; box.max = maxVertex; return box; } // Compute mesh tangents // NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates // Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html void MeshTangents(Mesh *mesh) { if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float)); else TRACELOG(LOG_WARNING, "MESH: Tangents data already available, re-writting"); Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3)); Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3)); for (int i = 0; i < mesh->vertexCount; i += 3) { // Get triangle vertices Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] }; Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] }; Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] }; // Get triangle texcoords Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] }; Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] }; Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] }; float x1 = v2.x - v1.x; float y1 = v2.y - v1.y; float z1 = v2.z - v1.z; float x2 = v3.x - v1.x; float y2 = v3.y - v1.y; float z2 = v3.z - v1.z; float s1 = uv2.x - uv1.x; float t1 = uv2.y - uv1.y; float s2 = uv3.x - uv1.x; float t2 = uv3.y - uv1.y; float div = s1*t2 - s2*t1; float r = (div == 0.0f)? 0.0f : 1.0f/div; Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r }; Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r }; tan1[i + 0] = sdir; tan1[i + 1] = sdir; tan1[i + 2] = sdir; tan2[i + 0] = tdir; tan2[i + 1] = tdir; tan2[i + 2] = tdir; } // Compute tangents considering normals for (int i = 0; i < mesh->vertexCount; ++i) { Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] }; Vector3 tangent = tan1[i]; // TODO: Review, not sure if tangent computation is right, just used reference proposed maths... #if defined(COMPUTE_TANGENTS_METHOD_01) Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent))); tmp = Vector3Normalize(tmp); mesh->tangents[i*4 + 0] = tmp.x; mesh->tangents[i*4 + 1] = tmp.y; mesh->tangents[i*4 + 2] = tmp.z; mesh->tangents[i*4 + 3] = 1.0f; #else Vector3OrthoNormalize(&normal, &tangent); mesh->tangents[i*4 + 0] = tangent.x; mesh->tangents[i*4 + 1] = tangent.y; mesh->tangents[i*4 + 2] = tangent.z; mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f; #endif } RL_FREE(tan1); RL_FREE(tan2); // Load a new tangent attributes buffer mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false); TRACELOG(LOG_INFO, "MESH: Tangents data computed for provided mesh"); } // Compute mesh binormals (aka bitangent) void MeshBinormals(Mesh *mesh) { for (int i = 0; i < mesh->vertexCount; i++) { //Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] }; //Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] }; //Vector3 binormal = Vector3Scale(Vector3CrossProduct(normal, tangent), mesh->tangents[i*4 + 3]); // TODO: Register computed binormal in mesh->binormal? } } // Draw a model (with texture if set) void DrawModel(Model model, Vector3 position, float scale, Color tint) { Vector3 vScale = { scale, scale, scale }; Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f }; DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint); } // Draw a model with extended parameters void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint) { // Calculate transformation matrix from function parameters // Get transform matrix (rotation -> scale -> translation) Matrix matScale = MatrixScale(scale.x, scale.y, scale.z); Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD); Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z); Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation); // Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform) model.transform = MatrixMultiply(model.transform, matTransform); for (int i = 0; i < model.meshCount; i++) { Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color; Color colorTint = WHITE; colorTint.r = (unsigned char)((((float)color.r/255.0)*((float)tint.r/255.0))*255.0f); colorTint.g = (unsigned char)((((float)color.g/255.0)*((float)tint.g/255.0))*255.0f); colorTint.b = (unsigned char)((((float)color.b/255.0)*((float)tint.b/255.0))*255.0f); colorTint.a = (unsigned char)((((float)color.a/255.0)*((float)tint.a/255.0))*255.0f); model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint; DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform); model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color; } } // Draw a model wires (with texture if set) void DrawModelWires(Model model, Vector3 position, float scale, Color tint) { rlEnableWireMode(); DrawModel(model, position, scale, tint); rlDisableWireMode(); } // Draw a model wires (with texture if set) with extended parameters void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint) { rlEnableWireMode(); DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint); rlDisableWireMode(); } // Draw a billboard void DrawBillboard(Camera camera, Texture2D texture, Vector3 center, float size, Color tint) { Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height }; DrawBillboardRec(camera, texture, source, center, size, tint); } // Draw a billboard (part of a texture defined by a rectangle) void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 center, float size, Color tint) { // NOTE: Billboard size will maintain source rectangle aspect ratio, size will represent billboard width Vector2 sizeRatio = { size, size*(float)source.height/source.width }; Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up); Vector3 right = { matView.m0, matView.m4, matView.m8 }; //Vector3 up = { matView.m1, matView.m5, matView.m9 }; // NOTE: Billboard locked on axis-Y Vector3 up = { 0.0f, 1.0f, 0.0f }; /* a-------b | | | * | | | d-------c */ right = Vector3Scale(right, sizeRatio.x/2); up = Vector3Scale(up, sizeRatio.y/2); Vector3 p1 = Vector3Add(right, up); Vector3 p2 = Vector3Subtract(right, up); Vector3 a = Vector3Subtract(center, p2); Vector3 b = Vector3Add(center, p1); Vector3 c = Vector3Add(center, p2); Vector3 d = Vector3Subtract(center, p1); rlCheckRenderBatchLimit(4); rlSetTexture(texture.id); rlBegin(RL_QUADS); rlColor4ub(tint.r, tint.g, tint.b, tint.a); // Bottom-left corner for texture and quad rlTexCoord2f((float)source.x/texture.width, (float)source.y/texture.height); rlVertex3f(a.x, a.y, a.z); // Top-left corner for texture and quad rlTexCoord2f((float)source.x/texture.width, (float)(source.y + source.height)/texture.height); rlVertex3f(d.x, d.y, d.z); // Top-right corner for texture and quad rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height); rlVertex3f(c.x, c.y, c.z); // Bottom-right corner for texture and quad rlTexCoord2f((float)(source.x + source.width)/texture.width, (float)source.y/texture.height); rlVertex3f(b.x, b.y, b.z); rlEnd(); rlSetTexture(0); } // Draw a bounding box with wires void DrawBoundingBox(BoundingBox box, Color color) { Vector3 size; size.x = fabsf(box.max.x - box.min.x); size.y = fabsf(box.max.y - box.min.y); size.z = fabsf(box.max.z - box.min.z); Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f }; DrawCubeWires(center, size.x, size.y, size.z, color); } // Detect collision between two spheres bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2) { bool collision = false; // Simple way to check for collision, just checking distance between two points // Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution /* float dx = center1.x - center2.x; // X distance between centers float dy = center1.y - center2.y; // Y distance between centers float dz = center1.z - center2.z; // Z distance between centers float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers if (distance <= (radius1 + radius2)) collision = true; */ // Check for distances squared to avoid sqrtf() if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true; return collision; } // Detect collision between two boxes // NOTE: Boxes are defined by two points minimum and maximum bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2) { bool collision = true; if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x)) { if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false; if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false; } else collision = false; return collision; } // Detect collision between box and sphere bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius) { bool collision = false; float dmin = 0; if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2); else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2); if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2); else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2); if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2); else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2); if (dmin <= (radius*radius)) collision = true; return collision; } // Detect collision between ray and sphere bool CheckCollisionRaySphere(Ray ray, Vector3 center, float radius) { bool collision = false; Vector3 raySpherePos = Vector3Subtract(center, ray.position); float distance = Vector3Length(raySpherePos); float vector = Vector3DotProduct(raySpherePos, ray.direction); float d = radius*radius - (distance*distance - vector*vector); if (d >= 0.0f) collision = true; return collision; } // Detect collision between ray and sphere with extended parameters and collision point detection bool CheckCollisionRaySphereEx(Ray ray, Vector3 center, float radius, Vector3 *collisionPoint) { bool collision = false; Vector3 raySpherePos = Vector3Subtract(center, ray.position); float distance = Vector3Length(raySpherePos); float vector = Vector3DotProduct(raySpherePos, ray.direction); float d = radius*radius - (distance*distance - vector*vector); if (d >= 0.0f) collision = true; // Check if ray origin is inside the sphere to calculate the correct collision point float collisionDistance = 0; if (distance < radius) collisionDistance = vector + sqrtf(d); else collisionDistance = vector - sqrtf(d); // Calculate collision point Vector3 cPoint = Vector3Add(ray.position, Vector3Scale(ray.direction, collisionDistance)); collisionPoint->x = cPoint.x; collisionPoint->y = cPoint.y; collisionPoint->z = cPoint.z; return collision; } // Detect collision between ray and bounding box bool CheckCollisionRayBox(Ray ray, BoundingBox box) { bool collision = false; float t[8]; t[0] = (box.min.x - ray.position.x)/ray.direction.x; t[1] = (box.max.x - ray.position.x)/ray.direction.x; t[2] = (box.min.y - ray.position.y)/ray.direction.y; t[3] = (box.max.y - ray.position.y)/ray.direction.y; t[4] = (box.min.z - ray.position.z)/ray.direction.z; t[5] = (box.max.z - ray.position.z)/ray.direction.z; t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5])); t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5])); collision = !(t[7] < 0 || t[6] > t[7]); return collision; } // Get collision info between ray and mesh RayHitInfo GetCollisionRayMesh(Ray ray, Mesh mesh, Matrix transform) { RayHitInfo result = { 0 }; // Check if mesh vertex data on CPU for testing if (mesh.vertices != NULL) { int triangleCount = mesh.triangleCount; // Test against all triangles in mesh for (int i = 0; i < triangleCount; i++) { Vector3 a, b, c; Vector3* vertdata = (Vector3*)mesh.vertices; if (mesh.indices) { a = vertdata[mesh.indices[i*3 + 0]]; b = vertdata[mesh.indices[i*3 + 1]]; c = vertdata[mesh.indices[i*3 + 2]]; } else { a = vertdata[i*3 + 0]; b = vertdata[i*3 + 1]; c = vertdata[i*3 + 2]; } a = Vector3Transform(a, transform); b = Vector3Transform(b, transform); c = Vector3Transform(c, transform); RayHitInfo triHitInfo = GetCollisionRayTriangle(ray, a, b, c); if (triHitInfo.hit) { // Save the closest hit triangle if ((!result.hit) || (result.distance > triHitInfo.distance)) result = triHitInfo; } } } return result; } // Get collision info between ray and model RayHitInfo GetCollisionRayModel(Ray ray, Model model) { RayHitInfo result = { 0 }; for (int m = 0; m < model.meshCount; m++) { RayHitInfo meshHitInfo = GetCollisionRayMesh(ray, model.meshes[m], model.transform); if (meshHitInfo.hit) { // Save the closest hit mesh if ((!result.hit) || (result.distance > meshHitInfo.distance)) result = meshHitInfo; } } return result; } // Get collision info between ray and triangle // NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm RayHitInfo GetCollisionRayTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3) { #define EPSILON 0.000001 // A small number Vector3 edge1, edge2; Vector3 p, q, tv; float det, invDet, u, v, t; RayHitInfo result = {0}; // Find vectors for two edges sharing V1 edge1 = Vector3Subtract(p2, p1); edge2 = Vector3Subtract(p3, p1); // Begin calculating determinant - also used to calculate u parameter p = Vector3CrossProduct(ray.direction, edge2); // If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle det = Vector3DotProduct(edge1, p); // Avoid culling! if ((det > -EPSILON) && (det < EPSILON)) return result; invDet = 1.0f/det; // Calculate distance from V1 to ray origin tv = Vector3Subtract(ray.position, p1); // Calculate u parameter and test bound u = Vector3DotProduct(tv, p)*invDet; // The intersection lies outside of the triangle if ((u < 0.0f) || (u > 1.0f)) return result; // Prepare to test v parameter q = Vector3CrossProduct(tv, edge1); // Calculate V parameter and test bound v = Vector3DotProduct(ray.direction, q)*invDet; // The intersection lies outside of the triangle if ((v < 0.0f) || ((u + v) > 1.0f)) return result; t = Vector3DotProduct(edge2, q)*invDet; if (t > EPSILON) { // Ray hit, get hit point and normal result.hit = true; result.distance = t; result.hit = true; result.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2)); result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, t)); } return result; } // Get collision info between ray and ground plane (Y-normal plane) RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight) { #define EPSILON 0.000001 // A small number RayHitInfo result = { 0 }; if (fabsf(ray.direction.y) > EPSILON) { float distance = (ray.position.y - groundHeight)/-ray.direction.y; if (distance >= 0.0) { result.hit = true; result.distance = distance; result.normal = (Vector3){ 0.0, 1.0, 0.0 }; result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, distance)); result.position.y = groundHeight; } } return result; } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- #if defined(SUPPORT_FILEFORMAT_OBJ) // Load OBJ mesh data static Model LoadOBJ(const char *fileName) { Model model = { 0 }; tinyobj_attrib_t attrib = { 0 }; tinyobj_shape_t *meshes = NULL; unsigned int meshCount = 0; tinyobj_material_t *materials = NULL; unsigned int materialCount = 0; char *fileData = LoadFileText(fileName); if (fileData != NULL) { unsigned int dataSize = (unsigned int)strlen(fileData); char currentDir[1024] = { 0 }; strcpy(currentDir, GetWorkingDirectory()); const char *workingDir = GetDirectoryPath(fileName); if (CHDIR(workingDir) != 0) { TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir); } unsigned int flags = TINYOBJ_FLAG_TRIANGULATE; int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, fileData, dataSize, flags); if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load OBJ data", fileName); else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes / %i materials", fileName, meshCount, materialCount); model.meshCount = materialCount; // Init model materials array if (materialCount > 0) { model.materialCount = materialCount; model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); TraceLog(LOG_INFO, "MODEL: model has %i material meshes", materialCount); } else { model.meshCount = 1; TraceLog(LOG_INFO, "MODEL: No materials, putting all meshes in a default material"); } model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); // count the faces for each material int *matFaces = RL_CALLOC(meshCount, sizeof(int)); for (unsigned int mi = 0; mi < meshCount; mi++) { for (unsigned int fi = 0; fi < meshes[mi].length; fi++) { int idx = attrib.material_ids[meshes[mi].face_offset + fi]; if (idx == -1) idx = 0; // for no material face (which could be the whole model) matFaces[idx]++; } } //-------------------------------------- // create the material meshes // running counts / indexes for each material mesh as we are // building them at the same time int *vCount = RL_CALLOC(model.meshCount, sizeof(int)); int *vtCount = RL_CALLOC(model.meshCount, sizeof(int)); int *vnCount = RL_CALLOC(model.meshCount, sizeof(int)); int *faceCount = RL_CALLOC(model.meshCount, sizeof(int)); // allocate space for each of the material meshes for (int mi = 0; mi < model.meshCount; mi++) { model.meshes[mi].vertexCount = matFaces[mi]*3; model.meshes[mi].triangleCount = matFaces[mi]; model.meshes[mi].vertices = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float)); model.meshes[mi].texcoords = (float *)RL_CALLOC(model.meshes[mi].vertexCount*2, sizeof(float)); model.meshes[mi].normals = (float *)RL_CALLOC(model.meshes[mi].vertexCount*3, sizeof(float)); model.meshMaterial[mi] = mi; } // scan through the combined sub meshes and pick out each material mesh for (unsigned int af = 0; af < attrib.num_faces; af++) { int mm = attrib.material_ids[af]; // mesh material for this face if (mm == -1) { mm = 0; } // no material object.. // Get indices for the face tinyobj_vertex_index_t idx0 = attrib.faces[3*af + 0]; tinyobj_vertex_index_t idx1 = attrib.faces[3*af + 1]; tinyobj_vertex_index_t idx2 = attrib.faces[3*af + 2]; // Fill vertices buffer (float) using vertex index of the face for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx0.v_idx*3 + v]; } vCount[mm] +=3; for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx1.v_idx*3 + v]; } vCount[mm] +=3; for (int v = 0; v < 3; v++) { model.meshes[mm].vertices[vCount[mm] + v] = attrib.vertices[idx2.v_idx*3 + v]; } vCount[mm] +=3; if (attrib.num_texcoords > 0) { // Fill texcoords buffer (float) using vertex index of the face // NOTE: Y-coordinate must be flipped upside-down to account for // raylib's upside down textures... model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx0.vt_idx*2 + 0]; model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1]; vtCount[mm] += 2; model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx1.vt_idx*2 + 0]; model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1]; vtCount[mm] += 2; model.meshes[mm].texcoords[vtCount[mm] + 0] = attrib.texcoords[idx2.vt_idx*2 + 0]; model.meshes[mm].texcoords[vtCount[mm] + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1]; vtCount[mm] += 2; } if (attrib.num_normals > 0) { // Fill normals buffer (float) using vertex index of the face for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx0.vn_idx*3 + v]; } vnCount[mm] +=3; for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx1.vn_idx*3 + v]; } vnCount[mm] +=3; for (int v = 0; v < 3; v++) { model.meshes[mm].normals[vnCount[mm] + v] = attrib.normals[idx2.vn_idx*3 + v]; } vnCount[mm] +=3; } } // Init model materials for (unsigned int m = 0; m < materialCount; m++) { // Init material to default // NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE model.materials[m] = LoadMaterialDefault(); model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault(); // Get default texture, in case no texture is defined if (materials[m].diffuse_texname != NULL) model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(materials[m].diffuse_texname); //char *diffuse_texname; // map_Kd else model.materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = rlGetTextureDefault(); model.materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(materials[m].diffuse[0]*255.0f), (unsigned char)(materials[m].diffuse[1]*255.0f), (unsigned char)(materials[m].diffuse[2]*255.0f), 255 }; //float diffuse[3]; model.materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f; if (materials[m].specular_texname != NULL) model.materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(materials[m].specular_texname); //char *specular_texname; // map_Ks model.materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(materials[m].specular[0]*255.0f), (unsigned char)(materials[m].specular[1]*255.0f), (unsigned char)(materials[m].specular[2]*255.0f), 255 }; //float specular[3]; model.materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f; if (materials[m].bump_texname != NULL) model.materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(materials[m].bump_texname); //char *bump_texname; // map_bump, bump model.materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE; model.materials[m].maps[MATERIAL_MAP_NORMAL].value = materials[m].shininess; model.materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(materials[m].emission[0]*255.0f), (unsigned char)(materials[m].emission[1]*255.0f), (unsigned char)(materials[m].emission[2]*255.0f), 255 }; //float emission[3]; if (materials[m].displacement_texname != NULL) model.materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(materials[m].displacement_texname); //char *displacement_texname; // disp } tinyobj_attrib_free(&attrib); tinyobj_shapes_free(meshes, meshCount); tinyobj_materials_free(materials, materialCount); RL_FREE(fileData); RL_FREE(matFaces); RL_FREE(vCount); RL_FREE(vtCount); RL_FREE(vnCount); RL_FREE(faceCount); if (CHDIR(currentDir) != 0) { TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir); } } return model; } #endif #if defined(SUPPORT_FILEFORMAT_IQM) // Load IQM mesh data static Model LoadIQM(const char *fileName) { #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number #define IQM_VERSION 2 // only IQM version 2 supported #define BONE_NAME_LENGTH 32 // BoneInfo name string length #define MESH_NAME_LENGTH 32 // Mesh name string length #define MATERIAL_NAME_LENGTH 32 // Material name string length unsigned int fileSize = 0; unsigned char *fileData = LoadFileData(fileName, &fileSize); unsigned char *fileDataPtr = fileData; // IQM file structs //----------------------------------------------------------------------------------- typedef struct IQMHeader { char magic[16]; unsigned int version; unsigned int filesize; unsigned int flags; unsigned int num_text, ofs_text; unsigned int num_meshes, ofs_meshes; unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays; unsigned int num_triangles, ofs_triangles, ofs_adjacency; unsigned int num_joints, ofs_joints; unsigned int num_poses, ofs_poses; unsigned int num_anims, ofs_anims; unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds; unsigned int num_comment, ofs_comment; unsigned int num_extensions, ofs_extensions; } IQMHeader; typedef struct IQMMesh { unsigned int name; unsigned int material; unsigned int first_vertex, num_vertexes; unsigned int first_triangle, num_triangles; } IQMMesh; typedef struct IQMTriangle { unsigned int vertex[3]; } IQMTriangle; typedef struct IQMJoint { unsigned int name; int parent; float translate[3], rotate[4], scale[3]; } IQMJoint; typedef struct IQMVertexArray { unsigned int type; unsigned int flags; unsigned int format; unsigned int size; unsigned int offset; } IQMVertexArray; // NOTE: Below IQM structures are not used but listed for reference /* typedef struct IQMAdjacency { unsigned int triangle[3]; } IQMAdjacency; typedef struct IQMPose { int parent; unsigned int mask; float channeloffset[10]; float channelscale[10]; } IQMPose; typedef struct IQMAnim { unsigned int name; unsigned int first_frame, num_frames; float framerate; unsigned int flags; } IQMAnim; typedef struct IQMBounds { float bbmin[3], bbmax[3]; float xyradius, radius; } IQMBounds; */ //----------------------------------------------------------------------------------- // IQM vertex data types enum { IQM_POSITION = 0, IQM_TEXCOORD = 1, IQM_NORMAL = 2, IQM_TANGENT = 3, // NOTE: Tangents unused by default IQM_BLENDINDEXES = 4, IQM_BLENDWEIGHTS = 5, IQM_COLOR = 6, // NOTE: Vertex colors unused by default IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default }; Model model = { 0 }; IQMMesh *imesh = NULL; IQMTriangle *tri = NULL; IQMVertexArray *va = NULL; IQMJoint *ijoint = NULL; float *vertex = NULL; float *normal = NULL; float *text = NULL; char *blendi = NULL; unsigned char *blendw = NULL; // In case file can not be read, return an empty model if (fileDataPtr == NULL) return model; // Read IQM header IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr; if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0) { TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName); return model; } if (iqmHeader->version != IQM_VERSION) { TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version); return model; } //fileDataPtr += sizeof(IQMHeader); // Move file data pointer // Meshes data processing imesh = RL_MALLOC(sizeof(IQMMesh)*iqmHeader->num_meshes); //fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET); //fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile); memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh)); model.meshCount = iqmHeader->num_meshes; model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh)); model.materialCount = model.meshCount; model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); char name[MESH_NAME_LENGTH] = { 0 }; char material[MATERIAL_NAME_LENGTH] = { 0 }; for (int i = 0; i < model.meshCount; i++) { //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET); //fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile); memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char)); //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET); //fread(material, sizeof(char)*MATERIAL_NAME_LENGTH, 1, iqmFile); memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char)); model.materials[i] = LoadMaterialDefault(); TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material); model.meshes[i].vertexCount = imesh[i].num_vertexes; model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported! model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported! model.meshes[i].triangleCount = imesh[i].num_triangles; model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short)); // Animated verted data, what we actually process for rendering // NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning) model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); } // Triangles data processing tri = RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle)); //fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET); //fread(tri, iqmHeader->num_triangles*sizeof(IQMTriangle), 1, iqmFile); memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle)); for (int m = 0; m < model.meshCount; m++) { int tcounter = 0; for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++) { // IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order, // expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes // NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex; model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex; model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex; tcounter += 3; } } // Vertex arrays data processing va = RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray)); //fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET); //fread(va, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray), 1, iqmFile); memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray)); for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++) { switch (va[i].type) { case IQM_POSITION: { vertex = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float)); //fseek(iqmFile, va[i].offset, SEEK_SET); //fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile); memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float)); for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) { int vCounter = 0; for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++) { model.meshes[m].vertices[vCounter] = vertex[i]; model.meshes[m].animVertices[vCounter] = vertex[i]; vCounter++; } } } break; case IQM_NORMAL: { normal = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float)); //fseek(iqmFile, va[i].offset, SEEK_SET); //fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile); memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float)); for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) { int vCounter = 0; for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++) { model.meshes[m].normals[vCounter] = normal[i]; model.meshes[m].animNormals[vCounter] = normal[i]; vCounter++; } } } break; case IQM_TEXCOORD: { text = RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float)); //fseek(iqmFile, va[i].offset, SEEK_SET); //fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile); memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float)); for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) { int vCounter = 0; for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++) { model.meshes[m].texcoords[vCounter] = text[i]; vCounter++; } } } break; case IQM_BLENDINDEXES: { blendi = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char)); //fseek(iqmFile, va[i].offset, SEEK_SET); //fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile); memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char)); for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) { int boneCounter = 0; for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) { model.meshes[m].boneIds[boneCounter] = blendi[i]; boneCounter++; } } } break; case IQM_BLENDWEIGHTS: { blendw = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char)); //fseek(iqmFile, va[i].offset, SEEK_SET); //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile); memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char)); for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) { int boneCounter = 0; for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) { model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f; boneCounter++; } } } break; } } // Bones (joints) data processing ijoint = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint)); //fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET); //fread(ijoint, iqmHeader->num_joints*sizeof(IQMJoint), 1, iqmFile); memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint)); model.boneCount = iqmHeader->num_joints; model.bones = RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo)); model.bindPose = RL_MALLOC(iqmHeader->num_joints*sizeof(Transform)); for (unsigned int i = 0; i < iqmHeader->num_joints; i++) { // Bones model.bones[i].parent = ijoint[i].parent; //fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET); //fread(model.bones[i].name, BONE_NAME_LENGTH*sizeof(char), 1, iqmFile); memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char)); // Bind pose (base pose) model.bindPose[i].translation.x = ijoint[i].translate[0]; model.bindPose[i].translation.y = ijoint[i].translate[1]; model.bindPose[i].translation.z = ijoint[i].translate[2]; model.bindPose[i].rotation.x = ijoint[i].rotate[0]; model.bindPose[i].rotation.y = ijoint[i].rotate[1]; model.bindPose[i].rotation.z = ijoint[i].rotate[2]; model.bindPose[i].rotation.w = ijoint[i].rotate[3]; model.bindPose[i].scale.x = ijoint[i].scale[0]; model.bindPose[i].scale.y = ijoint[i].scale[1]; model.bindPose[i].scale.z = ijoint[i].scale[2]; } // Build bind pose from parent joints for (int i = 0; i < model.boneCount; i++) { if (model.bones[i].parent >= 0) { model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation); model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation); model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation); model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale); } } RL_FREE(fileData); RL_FREE(imesh); RL_FREE(tri); RL_FREE(va); RL_FREE(vertex); RL_FREE(normal); RL_FREE(text); RL_FREE(blendi); RL_FREE(blendw); RL_FREE(ijoint); return model; } // Load IQM animation data static ModelAnimation* LoadIQMModelAnimations(const char* fileName, int* animCount) { #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number #define IQM_VERSION 2 // only IQM version 2 supported unsigned int fileSize = 0; unsigned char *fileData = LoadFileData(fileName, &fileSize); unsigned char *fileDataPtr = fileData; typedef struct IQMHeader { char magic[16]; unsigned int version; unsigned int filesize; unsigned int flags; unsigned int num_text, ofs_text; unsigned int num_meshes, ofs_meshes; unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays; unsigned int num_triangles, ofs_triangles, ofs_adjacency; unsigned int num_joints, ofs_joints; unsigned int num_poses, ofs_poses; unsigned int num_anims, ofs_anims; unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds; unsigned int num_comment, ofs_comment; unsigned int num_extensions, ofs_extensions; } IQMHeader; typedef struct IQMPose { int parent; unsigned int mask; float channeloffset[10]; float channelscale[10]; } IQMPose; typedef struct IQMAnim { unsigned int name; unsigned int first_frame, num_frames; float framerate; unsigned int flags; } IQMAnim; // In case file can not be read, return an empty model if (fileDataPtr == NULL) return NULL; // Read IQM header IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr; if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0) { TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName); return NULL; } if (iqmHeader->version != IQM_VERSION) { TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version); return NULL; } // Get bones data IQMPose *poses = RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose)); //fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET); //fread(poses, iqmHeader->num_poses*sizeof(IQMPose), 1, iqmFile); memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose)); // Get animations data *animCount = iqmHeader->num_anims; IQMAnim *anim = RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim)); //fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET); //fread(anim, iqmHeader->num_anims*sizeof(IQMAnim), 1, iqmFile); memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim)); ModelAnimation *animations = RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation)); // frameposes unsigned short *framedata = RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short)); //fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET); //fread(framedata, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short), 1, iqmFile); memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short)); for (unsigned int a = 0; a < iqmHeader->num_anims; a++) { animations[a].frameCount = anim[a].num_frames; animations[a].boneCount = iqmHeader->num_poses; animations[a].bones = RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo)); animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *)); // animations[a].framerate = anim.framerate; // TODO: Use framerate? for (unsigned int j = 0; j < iqmHeader->num_poses; j++) { strcpy(animations[a].bones[j].name, "ANIMJOINTNAME"); animations[a].bones[j].parent = poses[j].parent; } for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqmHeader->num_poses*sizeof(Transform)); int dcounter = anim[a].first_frame*iqmHeader->num_framechannels; for (unsigned int frame = 0; frame < anim[a].num_frames; frame++) { for (unsigned int i = 0; i < iqmHeader->num_poses; i++) { animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0]; if (poses[i].mask & 0x01) { animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0]; dcounter++; } animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1]; if (poses[i].mask & 0x02) { animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1]; dcounter++; } animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2]; if (poses[i].mask & 0x04) { animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2]; dcounter++; } animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3]; if (poses[i].mask & 0x08) { animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3]; dcounter++; } animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4]; if (poses[i].mask & 0x10) { animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4]; dcounter++; } animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5]; if (poses[i].mask & 0x20) { animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5]; dcounter++; } animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6]; if (poses[i].mask & 0x40) { animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6]; dcounter++; } animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7]; if (poses[i].mask & 0x80) { animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7]; dcounter++; } animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8]; if (poses[i].mask & 0x100) { animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8]; dcounter++; } animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9]; if (poses[i].mask & 0x200) { animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9]; dcounter++; } animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation); } } // Build frameposes for (unsigned int frame = 0; frame < anim[a].num_frames; frame++) { for (int i = 0; i < animations[a].boneCount; i++) { if (animations[a].bones[i].parent >= 0) { animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation); animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation); animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation); animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale); } } } } RL_FREE(fileData); RL_FREE(framedata); RL_FREE(poses); RL_FREE(anim); return animations; } #endif #if defined(SUPPORT_FILEFORMAT_GLTF) static const unsigned char base64Table[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 0, 0, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 }; static int GetSizeBase64(char *input) { int size = 0; for (int i = 0; input[4*i] != 0; i++) { if (input[4*i + 3] == '=') { if (input[4*i + 2] == '=') size += 1; else size += 2; } else size += 3; } return size; } static unsigned char *DecodeBase64(char *input, int *size) { *size = GetSizeBase64(input); unsigned char *buf = (unsigned char *)RL_MALLOC(*size); for (int i = 0; i < *size/3; i++) { unsigned char a = base64Table[(int)input[4*i]]; unsigned char b = base64Table[(int)input[4*i + 1]]; unsigned char c = base64Table[(int)input[4*i + 2]]; unsigned char d = base64Table[(int)input[4*i + 3]]; buf[3*i] = (a << 2) | (b >> 4); buf[3*i + 1] = (b << 4) | (c >> 2); buf[3*i + 2] = (c << 6) | d; } if (*size%3 == 1) { int n = *size/3; unsigned char a = base64Table[(int)input[4*n]]; unsigned char b = base64Table[(int)input[4*n + 1]]; buf[*size - 1] = (a << 2) | (b >> 4); } else if (*size%3 == 2) { int n = *size/3; unsigned char a = base64Table[(int)input[4*n]]; unsigned char b = base64Table[(int)input[4*n + 1]]; unsigned char c = base64Table[(int)input[4*n + 2]]; buf[*size - 2] = (a << 2) | (b >> 4); buf[*size - 1] = (b << 4) | (c >> 2); } return buf; } // Load texture from cgltf_image static Image LoadImageFromCgltfImage(cgltf_image *image, const char *texPath, Color tint) { Image rimage = { 0 }; if (image->uri) { if ((strlen(image->uri) > 5) && (image->uri[0] == 'd') && (image->uri[1] == 'a') && (image->uri[2] == 't') && (image->uri[3] == 'a') && (image->uri[4] == ':')) { // Data URI // Format: data:;base64, // Find the comma int i = 0; while ((image->uri[i] != ',') && (image->uri[i] != 0)) i++; if (image->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image"); else { int size = 0; unsigned char *data = DecodeBase64(image->uri + i + 1, &size); int width, height; unsigned char *raw = stbi_load_from_memory(data, size, &width, &height, NULL, 4); RL_FREE(data); rimage.data = raw; rimage.width = width; rimage.height = height; rimage.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8; rimage.mipmaps = 1; // TODO: Tint shouldn't be applied here! ImageColorTint(&rimage, tint); } } else { rimage = LoadImage(TextFormat("%s/%s", texPath, image->uri)); // TODO: Tint shouldn't be applied here! ImageColorTint(&rimage, tint); } } else if (image->buffer_view) { unsigned char *data = RL_MALLOC(image->buffer_view->size); int n = (int)image->buffer_view->offset; int stride = (int)image->buffer_view->stride ? (int)image->buffer_view->stride : 1; for (unsigned int i = 0; i < image->buffer_view->size; i++) { data[i] = ((unsigned char *)image->buffer_view->buffer->data)[n]; n += stride; } int width, height; unsigned char *raw = stbi_load_from_memory(data, (int)image->buffer_view->size, &width, &height, NULL, 4); RL_FREE(data); rimage.data = raw; rimage.width = width; rimage.height = height; rimage.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8; rimage.mipmaps = 1; // TODO: Tint shouldn't be applied here! ImageColorTint(&rimage, tint); } else rimage = GenImageColor(1, 1, tint); return rimage; } static bool GLTFReadValue(cgltf_accessor* acc, unsigned int index, void *variable, unsigned int elements, unsigned int size) { if (acc->count == 2) { if (index > 1) return false; memcpy(variable, index == 0 ? acc->min : acc->max, elements*size); return true; } unsigned int stride = size*elements; memset(variable, 0, stride); if (acc->buffer_view == NULL || acc->buffer_view->buffer == NULL || acc->buffer_view->buffer->data == NULL) return false; void* readPosition = ((char *)acc->buffer_view->buffer->data) + (index*stride) + acc->buffer_view->offset + acc->offset; memcpy(variable, readPosition, stride); return true; } // LoadGLTF loads in model data from given filename, supporting both .gltf and .glb static Model LoadGLTF(const char *fileName) { /*********************************************************************************** Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend) and Hristo Stamenov(@object71) Features: - Supports .gltf and .glb files - Supports embedded (base64) or external textures - Loads all raylib supported material textures, values and colors - Supports multiple mesh per model and multiple primitives per model Some restrictions (not exhaustive): - Triangle-only meshes - Not supported node hierarchies or transforms - Only supports unsigned short indices (no byte/unsigned int) - Only supports float for texture coordinates (no byte/unsigned short) *************************************************************************************/ Model model = { 0 }; // glTF file loading unsigned int dataSize = 0; unsigned char *fileData = LoadFileData(fileName, &dataSize); if (fileData == NULL) return model; // glTF data loading cgltf_options options = { 0 }; cgltf_data *data = NULL; cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data); if (result == cgltf_result_success) { TRACELOG(LOG_INFO, "MODEL: [%s] glTF meshes (%s) count: %i", fileName, (data->file_type == 2)? "glb" : "gltf", data->meshes_count); TRACELOG(LOG_INFO, "MODEL: [%s] glTF materials (%s) count: %i", fileName, (data->file_type == 2)? "glb" : "gltf", data->materials_count); // Read data buffers result = cgltf_load_buffers(&options, data, fileName); if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName); int primitivesCount = 0; for (unsigned int i = 0; i < data->meshes_count; i++) primitivesCount += (int)data->meshes[i].primitives_count; // Process glTF data and map to model model.meshCount = primitivesCount; model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh)); model.materialCount = (int)data->materials_count + 1; model.materials = RL_MALLOC(model.materialCount*sizeof(Material)); model.meshMaterial = RL_MALLOC(model.meshCount*sizeof(int)); model.boneCount = (int)data->nodes_count; model.bones = RL_CALLOC(model.boneCount, sizeof(BoneInfo)); model.bindPose = RL_CALLOC(model.boneCount, sizeof(Transform)); InitGLTFBones(&model, data); LoadGLTFMaterial(&model, fileName, data); int primitiveIndex = 0; for (unsigned int i = 0; i < data->meshes_count; i++) { for (unsigned int p = 0; p < data->meshes[i].primitives_count; p++) { for (unsigned int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++) { if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_position) { cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data; model.meshes[primitiveIndex].vertexCount = (int)acc->count; int bufferSize = model.meshes[primitiveIndex].vertexCount*3*sizeof(float); model.meshes[primitiveIndex].vertices = RL_MALLOC(bufferSize); model.meshes[primitiveIndex].animVertices = RL_MALLOC(bufferSize); if (acc->component_type == cgltf_component_type_r_32f) { for (int a = 0; a < acc->count; a++) { GLTFReadValue(acc, a, model.meshes[primitiveIndex].vertices + (a*3), 3, sizeof(float)); } } else if (acc->component_type == cgltf_component_type_r_32u) { int readValue[3]; for (int a = 0; a < acc->count; a++) { GLTFReadValue(acc, a, readValue, 3, sizeof(int)); model.meshes[primitiveIndex].vertices[(a*3) + 0] = (float)readValue[0]; model.meshes[primitiveIndex].vertices[(a*3) + 1] = (float)readValue[1]; model.meshes[primitiveIndex].vertices[(a*3) + 2] = (float)readValue[2]; } } else { // TODO: Support normalized unsigned byte/unsigned short vertices TRACELOG(LOG_WARNING, "MODEL: [%s] glTF vertices must be float or int", fileName); } memcpy(model.meshes[primitiveIndex].animVertices, model.meshes[primitiveIndex].vertices, bufferSize); } else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_normal) { cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data; int bufferSize = (int)(acc->count*3*sizeof(float)); model.meshes[primitiveIndex].normals = RL_MALLOC(bufferSize); model.meshes[primitiveIndex].animNormals = RL_MALLOC(bufferSize); if (acc->component_type == cgltf_component_type_r_32f) { for (int a = 0; a < acc->count; a++) { GLTFReadValue(acc, a, model.meshes[primitiveIndex].normals + (a*3), 3, sizeof(float)); } } else if (acc->component_type == cgltf_component_type_r_32u) { int readValue[3]; for (int a = 0; a < acc->count; a++) { GLTFReadValue(acc, a, readValue, 3, sizeof(int)); model.meshes[primitiveIndex].normals[(a*3) + 0] = (float)readValue[0]; model.meshes[primitiveIndex].normals[(a*3) + 1] = (float)readValue[1]; model.meshes[primitiveIndex].normals[(a*3) + 2] = (float)readValue[2]; } } else { // TODO: Support normalized unsigned byte/unsigned short normals TRACELOG(LOG_WARNING, "MODEL: [%s] glTF normals must be float or int", fileName); } memcpy(model.meshes[primitiveIndex].animNormals, model.meshes[primitiveIndex].normals, bufferSize); } else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_texcoord) { cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data; if (acc->component_type == cgltf_component_type_r_32f) { model.meshes[primitiveIndex].texcoords = RL_MALLOC(acc->count*2*sizeof(float)); for (int a = 0; a < acc->count; a++) { GLTFReadValue(acc, a, model.meshes[primitiveIndex].texcoords + (a*2), 2, sizeof(float)); } } else { // TODO: Support normalized unsigned byte/unsigned short texture coordinates TRACELOG(LOG_WARNING, "MODEL: [%s] glTF texture coordinates must be float", fileName); } } else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_joints) { cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data; LoadGLTFBoneAttribute(&model, acc, data, primitiveIndex); } else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_weights) { cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data; model.meshes[primitiveIndex].boneWeights = RL_MALLOC(acc->count*4*sizeof(float)); if (acc->component_type == cgltf_component_type_r_32f) { for (int a = 0; a < acc->count; a++) { GLTFReadValue(acc, a, model.meshes[primitiveIndex].boneWeights + (a*4), 4, sizeof(float)); } } else if (acc->component_type == cgltf_component_type_r_32u) { unsigned int readValue[4]; for (int a = 0; a < acc->count; a++) { GLTFReadValue(acc, a, readValue, 4, sizeof(unsigned int)); model.meshes[primitiveIndex].normals[(a*4) + 0] = (float)readValue[0]; model.meshes[primitiveIndex].normals[(a*4) + 1] = (float)readValue[1]; model.meshes[primitiveIndex].normals[(a*4) + 2] = (float)readValue[2]; model.meshes[primitiveIndex].normals[(a*4) + 3] = (float)readValue[3]; } } else { // TODO: Support normalized unsigned byte/unsigned short weights TRACELOG(LOG_WARNING, "MODEL: [%s] glTF normals must be float or int", fileName); } } } cgltf_accessor *acc = data->meshes[i].primitives[p].indices; LoadGLTFModelIndices(&model, acc, primitiveIndex); if (data->meshes[i].primitives[p].material) { // Compute the offset model.meshMaterial[primitiveIndex] = (int)(data->meshes[i].primitives[p].material - data->materials); } else { model.meshMaterial[primitiveIndex] = model.materialCount - 1; } BindGLTFPrimitiveToBones(&model, data, primitiveIndex); primitiveIndex++; } } cgltf_free(data); } else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName); RL_FREE(fileData); return model; } static void InitGLTFBones(Model* model, const cgltf_data* data) { for (unsigned int j = 0; j < data->nodes_count; j++) { strcpy(model->bones[j].name, data->nodes[j].name == 0 ? "ANIMJOINT" : data->nodes[j].name); model->bones[j].parent = (data->nodes[j].parent != NULL) ? (int)(data->nodes[j].parent - data->nodes) : -1; } for (unsigned int i = 0; i < data->nodes_count; i++) { if (data->nodes[i].has_translation) memcpy(&model->bindPose[i].translation, data->nodes[i].translation, 3*sizeof(float)); else model->bindPose[i].translation = Vector3Zero(); if (data->nodes[i].has_rotation) memcpy(&model->bindPose[i].rotation, data->nodes[i].rotation, 4*sizeof(float)); else model->bindPose[i].rotation = QuaternionIdentity(); model->bindPose[i].rotation = QuaternionNormalize(model->bindPose[i].rotation); if (data->nodes[i].has_scale) memcpy(&model->bindPose[i].scale, data->nodes[i].scale, 3*sizeof(float)); else model->bindPose[i].scale = Vector3One(); } { bool* completedBones = RL_CALLOC(model->boneCount, sizeof(bool)); int numberCompletedBones = 0; while (numberCompletedBones < model->boneCount) { for (int i = 0; i < model->boneCount; i++) { if (completedBones[i]) continue; if (model->bones[i].parent < 0) { completedBones[i] = true; numberCompletedBones++; continue; } if (!completedBones[model->bones[i].parent]) continue; Transform* currentTransform = &model->bindPose[i]; BoneInfo* currentBone = &model->bones[i]; int root = currentBone->parent; if (root >= model->boneCount) root = 0; Transform* parentTransform = &model->bindPose[root]; currentTransform->rotation = QuaternionMultiply(parentTransform->rotation, currentTransform->rotation); currentTransform->translation = Vector3RotateByQuaternion(currentTransform->translation, parentTransform->rotation); currentTransform->translation = Vector3Add(currentTransform->translation, parentTransform->translation); currentTransform->scale = Vector3Multiply(currentTransform->scale, parentTransform->scale); completedBones[i] = true; numberCompletedBones++; } } RL_FREE(completedBones); } } static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_data* data) { for (int i = 0; i < model->materialCount - 1; i++) { model->materials[i] = LoadMaterialDefault(); Color tint = (Color){ 255, 255, 255, 255 }; const char *texPath = GetDirectoryPath(fileName); // Ensure material follows raylib support for PBR (metallic/roughness flow) if (data->materials[i].has_pbr_metallic_roughness) { tint.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255); tint.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255); tint.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255); tint.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255); model->materials[i].maps[MATERIAL_MAP_ALBEDO].color = tint; if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture) { Image albedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath, tint); model->materials[i].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(albedo); UnloadImage(albedo); } tint = WHITE; // Set tint to white after it's been used by Albedo if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture) { Image metallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath, tint); model->materials[i].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(metallicRoughness); float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor; model->materials[i].maps[MATERIAL_MAP_ROUGHNESS].value = roughness; float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor; model->materials[i].maps[MATERIAL_MAP_METALNESS].value = metallic; UnloadImage(metallicRoughness); } if (data->materials[i].normal_texture.texture) { Image normalImage = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath, tint); model->materials[i].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(normalImage); UnloadImage(normalImage); } if (data->materials[i].occlusion_texture.texture) { Image occulsionImage = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath, tint); model->materials[i].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(occulsionImage); UnloadImage(occulsionImage); } if (data->materials[i].emissive_texture.texture) { Image emissiveImage = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath, tint); model->materials[i].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(emissiveImage); tint.r = (unsigned char)(data->materials[i].emissive_factor[0]*255); tint.g = (unsigned char)(data->materials[i].emissive_factor[1]*255); tint.b = (unsigned char)(data->materials[i].emissive_factor[2]*255); model->materials[i].maps[MATERIAL_MAP_EMISSION].color = tint; UnloadImage(emissiveImage); } } } model->materials[model->materialCount - 1] = LoadMaterialDefault(); } static void LoadGLTFBoneAttribute(Model* model, cgltf_accessor* jointsAccessor, const cgltf_data* data, int primitiveIndex) { if (jointsAccessor->component_type == cgltf_component_type_r_16u) { model->meshes[primitiveIndex].boneIds = RL_MALLOC(sizeof(int)*jointsAccessor->count*4); short* bones = RL_MALLOC(sizeof(short)*jointsAccessor->count*4); for (int a = 0; a < jointsAccessor->count; a++) { GLTFReadValue(jointsAccessor, a, bones + (a*4), 4, sizeof(short)); } for (unsigned int a = 0; a < jointsAccessor->count*4; a++) { cgltf_node* skinJoint = data->skins->joints[bones[a]]; for (unsigned int k = 0; k < data->nodes_count; k++) { if (&(data->nodes[k]) == skinJoint) { model->meshes[primitiveIndex].boneIds[a] = k; break; } } } RL_FREE(bones); } else if (jointsAccessor->component_type == cgltf_component_type_r_8u) { model->meshes[primitiveIndex].boneIds = RL_MALLOC(sizeof(int)*jointsAccessor->count*4); unsigned char* bones = RL_MALLOC(sizeof(unsigned char)*jointsAccessor->count*4); for (int a = 0; a < jointsAccessor->count; a++) { GLTFReadValue(jointsAccessor, a, bones + (a*4), 4, sizeof(unsigned char)); } for (unsigned int a = 0; a < jointsAccessor->count*4; a++) { cgltf_node* skinJoint = data->skins->joints[bones[a]]; for (unsigned int k = 0; k < data->nodes_count; k++) { if (&(data->nodes[k]) == skinJoint) { model->meshes[primitiveIndex].boneIds[a] = k; break; } } } RL_FREE(bones); } else { // TODO: Support other size of bone index? TRACELOG(LOG_WARNING, "MODEL: glTF bones in unexpected format"); } } static void BindGLTFPrimitiveToBones(Model* model, const cgltf_data* data, int primitiveIndex) { if (model->meshes[primitiveIndex].boneIds == NULL && data->nodes_count > 0) { for (int nodeId = 0; nodeId < data->nodes_count; nodeId++) { if (data->nodes[nodeId].mesh == &(data->meshes[primitiveIndex])) { model->meshes[primitiveIndex].boneIds = RL_CALLOC(4*model->meshes[primitiveIndex].vertexCount, sizeof(int)); model->meshes[primitiveIndex].boneWeights = RL_CALLOC(4*model->meshes[primitiveIndex].vertexCount, sizeof(float)); for (int b = 0; b < 4*model->meshes[primitiveIndex].vertexCount; b++) { if (b%4 == 0) { model->meshes[primitiveIndex].boneIds[b] = nodeId; model->meshes[primitiveIndex].boneWeights[b] = 1.0f; } else { model->meshes[primitiveIndex].boneIds[b] = 0; model->meshes[primitiveIndex].boneWeights[b] = 0.0f; } } Vector3 boundVertex = { 0 }; Vector3 boundNormal = { 0 }; Vector3 outTranslation = { 0 }; Quaternion outRotation = { 0 }; Vector3 outScale = { 0 }; int vCounter = 0; int boneCounter = 0; int boneId = 0; for (int i = 0; i < model->meshes[primitiveIndex].vertexCount; i++) { boneId = model->meshes[primitiveIndex].boneIds[boneCounter]; outTranslation = model->bindPose[boneId].translation; outRotation = model->bindPose[boneId].rotation; outScale = model->bindPose[boneId].scale; // Vertices processing boundVertex = (Vector3){ model->meshes[primitiveIndex].vertices[vCounter], model->meshes[primitiveIndex].vertices[vCounter + 1], model->meshes[primitiveIndex].vertices[vCounter + 2] }; boundVertex = Vector3Multiply(boundVertex, outScale); boundVertex = Vector3RotateByQuaternion(boundVertex, outRotation); boundVertex = Vector3Add(boundVertex, outTranslation); model->meshes[primitiveIndex].vertices[vCounter] = boundVertex.x; model->meshes[primitiveIndex].vertices[vCounter + 1] = boundVertex.y; model->meshes[primitiveIndex].vertices[vCounter + 2] = boundVertex.z; // Normals processing if (model->meshes[primitiveIndex].normals != NULL) { boundNormal = (Vector3){ model->meshes[primitiveIndex].normals[vCounter], model->meshes[primitiveIndex].normals[vCounter + 1], model->meshes[primitiveIndex].normals[vCounter + 2] }; boundNormal = Vector3RotateByQuaternion(boundNormal, outRotation); model->meshes[primitiveIndex].normals[vCounter] = boundNormal.x; model->meshes[primitiveIndex].normals[vCounter + 1] = boundNormal.y; model->meshes[primitiveIndex].normals[vCounter + 2] = boundNormal.z; } vCounter += 3; boneCounter += 4; } } } } } static void LoadGLTFModelIndices(Model* model, cgltf_accessor* indexAccessor, int primitiveIndex) { if (indexAccessor) { if (indexAccessor->component_type == cgltf_component_type_r_16u || indexAccessor->component_type == cgltf_component_type_r_16) { model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3; model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short)); unsigned short readValue = 0; for (int a = 0; a < indexAccessor->count; a++) { GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(short)); model->meshes[primitiveIndex].indices[a] = readValue; } } else if (indexAccessor->component_type == cgltf_component_type_r_8u || indexAccessor->component_type == cgltf_component_type_r_8) { model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3; model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short)); unsigned char readValue = 0; for (int a = 0; a < indexAccessor->count; a++) { GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(char)); model->meshes[primitiveIndex].indices[a] = (unsigned short)readValue; } } else if (indexAccessor->component_type == cgltf_component_type_r_32u) { model->meshes[primitiveIndex].triangleCount = (int)indexAccessor->count/3; model->meshes[primitiveIndex].indices = RL_MALLOC(model->meshes[primitiveIndex].triangleCount*3*sizeof(unsigned short)); unsigned int readValue; for (int a = 0; a < indexAccessor->count; a++) { GLTFReadValue(indexAccessor, a, &readValue, 1, sizeof(unsigned int)); model->meshes[primitiveIndex].indices[a] = (unsigned short)readValue; } } } else { // Unindexed mesh model->meshes[primitiveIndex].triangleCount = model->meshes[primitiveIndex].vertexCount/3; } } // LoadGLTF loads in animation data from given filename static ModelAnimation *LoadGLTFModelAnimations(const char *fileName, int *animCount) { /*********************************************************************************** Function implemented by Hristo Stamenov (@object71) Features: - Supports .gltf and .glb files Some restrictions (not exhaustive): - ... *************************************************************************************/ // glTF file loading unsigned int dataSize = 0; unsigned char *fileData = LoadFileData(fileName, &dataSize); ModelAnimation *animations = NULL; if (fileData == NULL) return animations; // glTF data loading cgltf_options options = { 0 }; cgltf_data *data = NULL; cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data); if (result == cgltf_result_success) { TRACELOG(LOG_INFO, "MODEL: [%s] glTF animations (%s) count: %i", fileName, (data->file_type == 2)? "glb" : "gltf", data->animations_count); result = cgltf_load_buffers(&options, data, fileName); if (result != cgltf_result_success) TRACELOG(LOG_WARNING, "MODEL: [%s] unable to load glTF animations data", fileName); animations = RL_MALLOC(data->animations_count*sizeof(ModelAnimation)); *animCount = (int)data->animations_count; for (unsigned int a = 0; a < data->animations_count; a++) { // gltf animation consists of the following structures: // - nodes - bones // - channels - single transformation type on a single bone // - node - bone // - transformation type (path) - translation, rotation, scale // - sampler - animation samples // - input - points in time this transformation happens // - output - the transformation amount at the given input points in time // - interpolation - the type of interpolation to use between the frames cgltf_animation *animation = data->animations + a; ModelAnimation *output = animations + a; // 30 frames sampled per second const float timeStep = (1.0f/30.0f); float animationDuration = 0.0f; // Getting the max animation time to consider for animation duration for (unsigned int i = 0; i < animation->channels_count; i++) { cgltf_animation_channel* channel = animation->channels + i; int frameCounts = (int)channel->sampler->input->count; float lastFrameTime = 0.0f; if (GLTFReadValue(channel->sampler->input, frameCounts - 1, &lastFrameTime, 1, sizeof(float))) { animationDuration = fmaxf(lastFrameTime, animationDuration); } } output->frameCount = (int)(animationDuration / timeStep); output->boneCount = (int)data->nodes_count; output->bones = RL_MALLOC(output->boneCount*sizeof(BoneInfo)); output->framePoses = RL_MALLOC(output->frameCount*sizeof(Transform *)); // output->framerate = // TODO: Use framerate instead of const timestep // Name and parent bones for (unsigned int j = 0; j < data->nodes_count; j++) { strcpy(output->bones[j].name, data->nodes[j].name == 0 ? "ANIMJOINT" : data->nodes[j].name); output->bones[j].parent = (data->nodes[j].parent != NULL) ? (int)(data->nodes[j].parent - data->nodes) : -1; } // Allocate data for frames // Initiate with zero bone translations for (int frame = 0; frame < output->frameCount; frame++) { output->framePoses[frame] = RL_MALLOC(output->frameCount*data->nodes_count*sizeof(Transform)); for (unsigned int i = 0; i < data->nodes_count; i++) { output->framePoses[frame][i].translation = Vector3Zero(); output->framePoses[frame][i].rotation = QuaternionIdentity(); output->framePoses[frame][i].rotation = QuaternionNormalize(output->framePoses[frame][i].rotation); output->framePoses[frame][i].scale = Vector3One(); } } // for each single transformation type on single bone for (unsigned int channelId = 0; channelId < animation->channels_count; channelId++) { cgltf_animation_channel* channel = animation->channels + channelId; cgltf_animation_sampler* sampler = channel->sampler; int boneId = (int)(channel->target_node - data->nodes); for (int frame = 0; frame < output->frameCount; frame++) { bool shouldSkipFurtherTransformation = true; int outputMin = 0; int outputMax = 0; float frameTime = frame*timeStep; float lerpPercent = 0.0f; // For this transformation: // getting between which input values the current frame time position // and also what is the percent to use in the linear interpolation later for (unsigned int j = 0; j < sampler->input->count; j++) { float inputFrameTime; if (GLTFReadValue(sampler->input, j, &inputFrameTime, 1, sizeof(float))) { if (frameTime < inputFrameTime) { shouldSkipFurtherTransformation = false; outputMin = (j == 0) ? 0 : j - 1; outputMax = j; float previousInputTime = 0.0f; if (GLTFReadValue(sampler->input, outputMin, &previousInputTime, 1, sizeof(float))) { if ((inputFrameTime - previousInputTime) != 0) { lerpPercent = (frameTime - previousInputTime)/(inputFrameTime - previousInputTime); } } break; } } else break; } // If the current transformation has no information for the current frame time point if (shouldSkipFurtherTransformation) continue; if (channel->target_path == cgltf_animation_path_type_translation) { Vector3 translationStart; Vector3 translationEnd; bool success = GLTFReadValue(sampler->output, outputMin, &translationStart, 3, sizeof(float)); success = GLTFReadValue(sampler->output, outputMax, &translationEnd, 3, sizeof(float)) || success; if (success) output->framePoses[frame][boneId].translation = Vector3Lerp(translationStart, translationEnd, lerpPercent); } if (channel->target_path == cgltf_animation_path_type_rotation) { Quaternion rotationStart; Quaternion rotationEnd; bool success = GLTFReadValue(sampler->output, outputMin, &rotationStart, 4, sizeof(float)); success = GLTFReadValue(sampler->output, outputMax, &rotationEnd, 4, sizeof(float)) || success; if (success) { output->framePoses[frame][boneId].rotation = QuaternionLerp(rotationStart, rotationEnd, lerpPercent); output->framePoses[frame][boneId].rotation = QuaternionNormalize(output->framePoses[frame][boneId].rotation); } } if (channel->target_path == cgltf_animation_path_type_scale) { Vector3 scaleStart; Vector3 scaleEnd; bool success = GLTFReadValue(sampler->output, outputMin, &scaleStart, 3, sizeof(float)); success = GLTFReadValue(sampler->output, outputMax, &scaleEnd, 3, sizeof(float)) || success; if (success) output->framePoses[frame][boneId].scale = Vector3Lerp(scaleStart, scaleEnd, lerpPercent); } } } // Build frameposes for (int frame = 0; frame < output->frameCount; frame++) { bool *completedBones = RL_CALLOC(output->boneCount, sizeof(bool)); int numberCompletedBones = 0; while (numberCompletedBones < output->boneCount) { for (int i = 0; i < output->boneCount; i++) { if (completedBones[i]) continue; if (output->bones[i].parent < 0) { completedBones[i] = true; numberCompletedBones++; continue; } if (!completedBones[output->bones[i].parent]) continue; output->framePoses[frame][i].rotation = QuaternionMultiply(output->framePoses[frame][output->bones[i].parent].rotation, output->framePoses[frame][i].rotation); output->framePoses[frame][i].translation = Vector3RotateByQuaternion(output->framePoses[frame][i].translation, output->framePoses[frame][output->bones[i].parent].rotation); output->framePoses[frame][i].translation = Vector3Add(output->framePoses[frame][i].translation, output->framePoses[frame][output->bones[i].parent].translation); output->framePoses[frame][i].scale = Vector3Multiply(output->framePoses[frame][i].scale, output->framePoses[frame][output->bones[i].parent].scale); completedBones[i] = true; numberCompletedBones++; } } RL_FREE(completedBones); } } cgltf_free(data); } else TRACELOG(LOG_WARNING, ": [%s] Failed to load glTF data", fileName); RL_FREE(fileData); return animations; } #endif