/********************************************************************************************** * * raudio v1.0 - A simple and easy-to-use audio library based on miniaudio * * FEATURES: * - Manage audio device (init/close) * - Manage raw audio context * - Manage mixing channels * - Load and unload audio files * - Format wave data (sample rate, size, channels) * - Play/Stop/Pause/Resume loaded audio * * CONFIGURATION: * * #define RAUDIO_STANDALONE * Define to use the module as standalone library (independently of raylib). * Required types and functions are defined in the same module. * * #define SUPPORT_FILEFORMAT_WAV * #define SUPPORT_FILEFORMAT_OGG * #define SUPPORT_FILEFORMAT_XM * #define SUPPORT_FILEFORMAT_MOD * #define SUPPORT_FILEFORMAT_FLAC * #define SUPPORT_FILEFORMAT_MP3 * Selected desired fileformats to be supported for loading. Some of those formats are * supported by default, to remove support, just comment unrequired #define in this module * * DEPENDENCIES: * miniaudio.h - Audio device management lib (https://github.com/dr-soft/miniaudio) * stb_vorbis.h - Ogg audio files loading (http://www.nothings.org/stb_vorbis/) * dr_mp3.h - MP3 audio file loading (https://github.com/mackron/dr_libs) * dr_flac.h - FLAC audio file loading (https://github.com/mackron/dr_libs) * jar_xm.h - XM module file loading * jar_mod.h - MOD audio file loading * * CONTRIBUTORS: * David Reid (github: @mackron) (Nov. 2017): * - Complete port to miniaudio library * * Joshua Reisenauer (github: @kd7tck) (2015) * - XM audio module support (jar_xm) * - MOD audio module support (jar_mod) * - Mixing channels support * - Raw audio context support * * * LICENSE: zlib/libpng * * Copyright (c) 2013-2021 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #if defined(RAUDIO_STANDALONE) #include "raudio.h" #include // Required for: va_list, va_start(), vfprintf(), va_end() #else #include "raylib.h" // Declares module functions // Check if config flags have been externally provided on compilation line #if !defined(EXTERNAL_CONFIG_FLAGS) #include "config.h" // Defines module configuration flags #endif #include "utils.h" // Required for: fopen() Android mapping #endif #if defined(_WIN32) // To avoid conflicting windows.h symbols with raylib, some flags are defined // WARNING: Those flags avoid inclusion of some Win32 headers that could be required // by user at some point and won't be included... //------------------------------------------------------------------------------------- // If defined, the following flags inhibit definition of the indicated items. #define NOGDICAPMASKS // CC_*, LC_*, PC_*, CP_*, TC_*, RC_ #define NOVIRTUALKEYCODES // VK_* #define NOWINMESSAGES // WM_*, EM_*, LB_*, CB_* #define NOWINSTYLES // WS_*, CS_*, ES_*, LBS_*, SBS_*, CBS_* #define NOSYSMETRICS // SM_* #define NOMENUS // MF_* #define NOICONS // IDI_* #define NOKEYSTATES // MK_* #define NOSYSCOMMANDS // SC_* #define NORASTEROPS // Binary and Tertiary raster ops #define NOSHOWWINDOW // SW_* #define OEMRESOURCE // OEM Resource values #define NOATOM // Atom Manager routines #define NOCLIPBOARD // Clipboard routines #define NOCOLOR // Screen colors #define NOCTLMGR // Control and Dialog routines #define NODRAWTEXT // DrawText() and DT_* #define NOGDI // All GDI defines and routines #define NOKERNEL // All KERNEL defines and routines #define NOUSER // All USER defines and routines //#define NONLS // All NLS defines and routines #define NOMB // MB_* and MessageBox() #define NOMEMMGR // GMEM_*, LMEM_*, GHND, LHND, associated routines #define NOMETAFILE // typedef METAFILEPICT #define NOMINMAX // Macros min(a,b) and max(a,b) #define NOMSG // typedef MSG and associated routines #define NOOPENFILE // OpenFile(), OemToAnsi, AnsiToOem, and OF_* #define NOSCROLL // SB_* and scrolling routines #define NOSERVICE // All Service Controller routines, SERVICE_ equates, etc. #define NOSOUND // Sound driver routines #define NOTEXTMETRIC // typedef TEXTMETRIC and associated routines #define NOWH // SetWindowsHook and WH_* #define NOWINOFFSETS // GWL_*, GCL_*, associated routines #define NOCOMM // COMM driver routines #define NOKANJI // Kanji support stuff. #define NOHELP // Help engine interface. #define NOPROFILER // Profiler interface. #define NODEFERWINDOWPOS // DeferWindowPos routines #define NOMCX // Modem Configuration Extensions // Type required before windows.h inclusion typedef struct tagMSG *LPMSG; #include // Type required by some unused function... typedef struct tagBITMAPINFOHEADER { DWORD biSize; LONG biWidth; LONG biHeight; WORD biPlanes; WORD biBitCount; DWORD biCompression; DWORD biSizeImage; LONG biXPelsPerMeter; LONG biYPelsPerMeter; DWORD biClrUsed; DWORD biClrImportant; } BITMAPINFOHEADER, *PBITMAPINFOHEADER; #include #include #include // Some required types defined for MSVC/TinyC compiler #if defined(_MSC_VER) || defined(__TINYC__) #include "propidl.h" #endif #endif #define MA_MALLOC RL_MALLOC #define MA_FREE RL_FREE #define MA_NO_JACK #define MA_NO_WAV #define MA_NO_FLAC #define MA_NO_MP3 #define MINIAUDIO_IMPLEMENTATION //#define MA_DEBUG_OUTPUT #include "external/miniaudio.h" // miniaudio library #undef PlaySound // Win32 API: windows.h > mmsystem.h defines PlaySound macro #include // Required for: malloc(), free() #include // Required for: FILE, fopen(), fclose(), fread() #if defined(RAUDIO_STANDALONE) #include // Required for: strcmp() [Used in IsFileExtension()] #if !defined(TRACELOG) #define TRACELOG(level, ...) (void)0 #endif // Allow custom memory allocators #ifndef RL_MALLOC #define RL_MALLOC(sz) malloc(sz) #endif #ifndef RL_CALLOC #define RL_CALLOC(n,sz) calloc(n,sz) #endif #ifndef RL_REALLOC #define RL_REALLOC(ptr,sz) realloc(ptr,sz) #endif #ifndef RL_FREE #define RL_FREE(ptr) free(ptr) #endif #endif #if defined(SUPPORT_FILEFORMAT_OGG) // TODO: Remap malloc()/free() calls to RL_MALLOC/RL_FREE #define STB_VORBIS_IMPLEMENTATION #include "external/stb_vorbis.h" // OGG loading functions #endif #if defined(SUPPORT_FILEFORMAT_XM) #define JARXM_MALLOC RL_MALLOC #define JARXM_FREE RL_FREE #define JAR_XM_IMPLEMENTATION #include "external/jar_xm.h" // XM loading functions #endif #if defined(SUPPORT_FILEFORMAT_MOD) #define JARMOD_MALLOC RL_MALLOC #define JARMOD_FREE RL_FREE #define JAR_MOD_IMPLEMENTATION #include "external/jar_mod.h" // MOD loading functions #endif #if defined(SUPPORT_FILEFORMAT_WAV) #define DRWAV_MALLOC RL_MALLOC #define DRWAV_REALLOC RL_REALLOC #define DRWAV_FREE RL_FREE #define DR_WAV_IMPLEMENTATION #include "external/dr_wav.h" // WAV loading functions #endif #if defined(SUPPORT_FILEFORMAT_MP3) #define DRMP3_MALLOC RL_MALLOC #define DRMP3_REALLOC RL_REALLOC #define DRMP3_FREE RL_FREE #define DR_MP3_IMPLEMENTATION #include "external/dr_mp3.h" // MP3 loading functions #endif #if defined(SUPPORT_FILEFORMAT_FLAC) #define DRFLAC_MALLOC RL_MALLOC #define DRFLAC_REALLOC RL_REALLOC #define DRFLAC_FREE RL_FREE #define DR_FLAC_IMPLEMENTATION #define DR_FLAC_NO_WIN32_IO #include "external/dr_flac.h" // FLAC loading functions #endif #if defined(_MSC_VER) #undef bool #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #ifndef AUDIO_DEVICE_FORMAT #define AUDIO_DEVICE_FORMAT ma_format_f32 // Device output format (float-32bit) #endif #ifndef AUDIO_DEVICE_CHANNELS #define AUDIO_DEVICE_CHANNELS 2 // Device output channels: stereo #endif #ifndef AUDIO_DEVICE_SAMPLE_RATE #define AUDIO_DEVICE_SAMPLE_RATE 0 // Device output channels: stereo #endif #ifndef MAX_AUDIO_BUFFER_POOL_CHANNELS #define MAX_AUDIO_BUFFER_POOL_CHANNELS 16 // Audio pool channels #endif #ifndef DEFAULT_AUDIO_BUFFER_SIZE #define DEFAULT_AUDIO_BUFFER_SIZE 4096 // Default audio buffer size #endif //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // Music context type // NOTE: Depends on data structure provided by the library // in charge of reading the different file types typedef enum { MUSIC_AUDIO_NONE = 0, MUSIC_AUDIO_WAV, MUSIC_AUDIO_OGG, MUSIC_AUDIO_FLAC, MUSIC_AUDIO_MP3, MUSIC_MODULE_XM, MUSIC_MODULE_MOD } MusicContextType; #if defined(RAUDIO_STANDALONE) typedef enum { LOG_ALL, LOG_TRACE, LOG_DEBUG, LOG_INFO, LOG_WARNING, LOG_ERROR, LOG_FATAL, LOG_NONE } TraceLogLevel; #endif // NOTE: Different logic is used when feeding data to the playback device // depending on whether or not data is streamed (Music vs Sound) typedef enum { AUDIO_BUFFER_USAGE_STATIC = 0, AUDIO_BUFFER_USAGE_STREAM } AudioBufferUsage; // Audio buffer structure struct rAudioBuffer { ma_data_converter converter; // Audio data converter float volume; // Audio buffer volume float pitch; // Audio buffer pitch bool playing; // Audio buffer state: AUDIO_PLAYING bool paused; // Audio buffer state: AUDIO_PAUSED bool looping; // Audio buffer looping, always true for AudioStreams int usage; // Audio buffer usage mode: STATIC or STREAM bool isSubBufferProcessed[2]; // SubBuffer processed (virtual double buffer) unsigned int sizeInFrames; // Total buffer size in frames unsigned int frameCursorPos; // Frame cursor position unsigned int totalFramesProcessed; // Total frames processed in this buffer (required for play timing) unsigned char *data; // Data buffer, on music stream keeps filling rAudioBuffer *next; // Next audio buffer on the list rAudioBuffer *prev; // Previous audio buffer on the list }; #define AudioBuffer rAudioBuffer // HACK: To avoid CoreAudio (macOS) symbol collision // Audio data context typedef struct AudioData { struct { ma_context context; // miniaudio context data ma_device device; // miniaudio device ma_mutex lock; // miniaudio mutex lock bool isReady; // Check if audio device is ready } System; struct { AudioBuffer *first; // Pointer to first AudioBuffer in the list AudioBuffer *last; // Pointer to last AudioBuffer in the list int defaultSize; // Default audio buffer size for audio streams } Buffer; struct { unsigned int poolCounter; // AudioBuffer pointers pool counter AudioBuffer *pool[MAX_AUDIO_BUFFER_POOL_CHANNELS]; // Multichannel AudioBuffer pointers pool unsigned int channels[MAX_AUDIO_BUFFER_POOL_CHANNELS]; // AudioBuffer pool channels } MultiChannel; } AudioData; //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- static AudioData AUDIO = { // Global AUDIO context // NOTE: Music buffer size is defined by number of samples, independent of sample size and channels number // After some math, considering a sampleRate of 48000, a buffer refill rate of 1/60 seconds and a // standard double-buffering system, a 4096 samples buffer has been chosen, it should be enough // In case of music-stalls, just increase this number .Buffer.defaultSize = 0 }; //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- static void OnLog(ma_context *pContext, ma_device *pDevice, ma_uint32 logLevel, const char *message); static void OnSendAudioDataToDevice(ma_device *pDevice, void *pFramesOut, const void *pFramesInput, ma_uint32 frameCount); static void MixAudioFrames(float *framesOut, const float *framesIn, ma_uint32 frameCount, float localVolume); #if defined(SUPPORT_FILEFORMAT_WAV) static Wave LoadWAV(const unsigned char *fileData, unsigned int fileSize); // Load WAV file static int SaveWAV(Wave wave, const char *fileName); // Save wave data as WAV file #endif #if defined(SUPPORT_FILEFORMAT_OGG) static Wave LoadOGG(const unsigned char *fileData, unsigned int fileSize); // Load OGG file #endif #if defined(SUPPORT_FILEFORMAT_FLAC) static Wave LoadFLAC(const unsigned char *fileData, unsigned int fileSize); // Load FLAC file #endif #if defined(SUPPORT_FILEFORMAT_MP3) static Wave LoadMP3(const unsigned char *fileData, unsigned int fileSize); // Load MP3 file #endif #if defined(RAUDIO_STANDALONE) static bool IsFileExtension(const char *fileName, const char *ext); // Check file extension static unsigned char *LoadFileData(const char *fileName, unsigned int *bytesRead); // Load file data as byte array (read) static bool SaveFileData(const char *fileName, void *data, unsigned int bytesToWrite); // Save data to file from byte array (write) static bool SaveFileText(const char *fileName, char *text); // Save text data to file (write), string must be '\0' terminated #endif //---------------------------------------------------------------------------------- // AudioBuffer management functions declaration // NOTE: Those functions are not exposed by raylib... for the moment //---------------------------------------------------------------------------------- AudioBuffer *LoadAudioBuffer(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 sizeInFrames, int usage); void UnloadAudioBuffer(AudioBuffer *buffer); bool IsAudioBufferPlaying(AudioBuffer *buffer); void PlayAudioBuffer(AudioBuffer *buffer); void StopAudioBuffer(AudioBuffer *buffer); void PauseAudioBuffer(AudioBuffer *buffer); void ResumeAudioBuffer(AudioBuffer *buffer); void SetAudioBufferVolume(AudioBuffer *buffer, float volume); void SetAudioBufferPitch(AudioBuffer *buffer, float pitch); void TrackAudioBuffer(AudioBuffer *buffer); void UntrackAudioBuffer(AudioBuffer *buffer); int GetAudioStreamBufferSizeDefault(); //---------------------------------------------------------------------------------- // Module Functions Definition - Audio Device initialization and Closing //---------------------------------------------------------------------------------- // Initialize audio device void InitAudioDevice(void) { // TODO: Load AUDIO context memory dynamically? // Init audio context ma_context_config ctxConfig = ma_context_config_init(); ctxConfig.logCallback = OnLog; ma_result result = ma_context_init(NULL, 0, &ctxConfig, &AUDIO.System.context); if (result != MA_SUCCESS) { TRACELOG(LOG_WARNING, "AUDIO: Failed to initialize context"); return; } // Init audio device // NOTE: Using the default device. Format is floating point because it simplifies mixing. ma_device_config config = ma_device_config_init(ma_device_type_playback); config.playback.pDeviceID = NULL; // NULL for the default playback AUDIO.System.device. config.playback.format = AUDIO_DEVICE_FORMAT; config.playback.channels = AUDIO_DEVICE_CHANNELS; config.capture.pDeviceID = NULL; // NULL for the default capture AUDIO.System.device. config.capture.format = ma_format_s16; config.capture.channels = 1; config.sampleRate = AUDIO_DEVICE_SAMPLE_RATE; config.dataCallback = OnSendAudioDataToDevice; config.pUserData = NULL; result = ma_device_init(&AUDIO.System.context, &config, &AUDIO.System.device); if (result != MA_SUCCESS) { TRACELOG(LOG_WARNING, "AUDIO: Failed to initialize playback device"); ma_context_uninit(&AUDIO.System.context); return; } // Keep the device running the whole time. May want to consider doing something a bit smarter and only have the device running // while there's at least one sound being played. result = ma_device_start(&AUDIO.System.device); if (result != MA_SUCCESS) { TRACELOG(LOG_WARNING, "AUDIO: Failed to start playback device"); ma_device_uninit(&AUDIO.System.device); ma_context_uninit(&AUDIO.System.context); return; } // Mixing happens on a seperate thread which means we need to synchronize. I'm using a mutex here to make things simple, but may // want to look at something a bit smarter later on to keep everything real-time, if that's necessary. if (ma_mutex_init(&AUDIO.System.lock) != MA_SUCCESS) { TRACELOG(LOG_WARNING, "AUDIO: Failed to create mutex for mixing"); ma_device_uninit(&AUDIO.System.device); ma_context_uninit(&AUDIO.System.context); return; } // Init dummy audio buffers pool for multichannel sound playing for (int i = 0; i < MAX_AUDIO_BUFFER_POOL_CHANNELS; i++) { // WARNING: An empty audioBuffer is created (data = 0) // AudioBuffer data just points to loaded sound data AUDIO.MultiChannel.pool[i] = LoadAudioBuffer(AUDIO_DEVICE_FORMAT, AUDIO_DEVICE_CHANNELS, AUDIO.System.device.sampleRate, 0, AUDIO_BUFFER_USAGE_STATIC); } TRACELOG(LOG_INFO, "AUDIO: Device initialized successfully"); TRACELOG(LOG_INFO, " > Backend: miniaudio / %s", ma_get_backend_name(AUDIO.System.context.backend)); TRACELOG(LOG_INFO, " > Format: %s -> %s", ma_get_format_name(AUDIO.System.device.playback.format), ma_get_format_name(AUDIO.System.device.playback.internalFormat)); TRACELOG(LOG_INFO, " > Channels: %d -> %d", AUDIO.System.device.playback.channels, AUDIO.System.device.playback.internalChannels); TRACELOG(LOG_INFO, " > Sample rate: %d -> %d", AUDIO.System.device.sampleRate, AUDIO.System.device.playback.internalSampleRate); TRACELOG(LOG_INFO, " > Periods size: %d", AUDIO.System.device.playback.internalPeriodSizeInFrames*AUDIO.System.device.playback.internalPeriods); AUDIO.System.isReady = true; } // Close the audio device for all contexts void CloseAudioDevice(void) { if (AUDIO.System.isReady) { // Unload dummy audio buffers pool // WARNING: They can be pointing to already unloaded data for (int i = 0; i < MAX_AUDIO_BUFFER_POOL_CHANNELS; i++) { //UnloadAudioBuffer(AUDIO.MultiChannel.pool[i]); if (AUDIO.MultiChannel.pool[i] != NULL) { ma_data_converter_uninit(&AUDIO.MultiChannel.pool[i]->converter); UntrackAudioBuffer(AUDIO.MultiChannel.pool[i]); //RL_FREE(buffer->data); // Already unloaded by UnloadSound() RL_FREE(AUDIO.MultiChannel.pool[i]); } } ma_mutex_uninit(&AUDIO.System.lock); ma_device_uninit(&AUDIO.System.device); ma_context_uninit(&AUDIO.System.context); AUDIO.System.isReady = false; TRACELOG(LOG_INFO, "AUDIO: Device closed successfully"); } else TRACELOG(LOG_WARNING, "AUDIO: Device could not be closed, not currently initialized"); } // Check if device has been initialized successfully bool IsAudioDeviceReady(void) { return AUDIO.System.isReady; } // Set master volume (listener) void SetMasterVolume(float volume) { ma_device_set_master_volume(&AUDIO.System.device, volume); } //---------------------------------------------------------------------------------- // Module Functions Definition - Audio Buffer management //---------------------------------------------------------------------------------- // Initialize a new audio buffer (filled with silence) AudioBuffer *LoadAudioBuffer(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_uint32 sizeInFrames, int usage) { AudioBuffer *audioBuffer = (AudioBuffer *)RL_CALLOC(1, sizeof(AudioBuffer)); if (audioBuffer == NULL) { TRACELOG(LOG_WARNING, "AUDIO: Failed to allocate memory for buffer"); return NULL; } if (sizeInFrames > 0) audioBuffer->data = RL_CALLOC(sizeInFrames*channels*ma_get_bytes_per_sample(format), 1); // Audio data runs through a format converter ma_data_converter_config converterConfig = ma_data_converter_config_init(format, AUDIO_DEVICE_FORMAT, channels, AUDIO_DEVICE_CHANNELS, sampleRate, AUDIO.System.device.sampleRate); converterConfig.resampling.allowDynamicSampleRate = true; // Required for pitch shifting ma_result result = ma_data_converter_init(&converterConfig, &audioBuffer->converter); if (result != MA_SUCCESS) { TRACELOG(LOG_WARNING, "AUDIO: Failed to create data conversion pipeline"); RL_FREE(audioBuffer); return NULL; } // Init audio buffer values audioBuffer->volume = 1.0f; audioBuffer->pitch = 1.0f; audioBuffer->playing = false; audioBuffer->paused = false; audioBuffer->looping = false; audioBuffer->usage = usage; audioBuffer->frameCursorPos = 0; audioBuffer->sizeInFrames = sizeInFrames; // Buffers should be marked as processed by default so that a call to // UpdateAudioStream() immediately after initialization works correctly audioBuffer->isSubBufferProcessed[0] = true; audioBuffer->isSubBufferProcessed[1] = true; // Track audio buffer to linked list next position TrackAudioBuffer(audioBuffer); return audioBuffer; } // Delete an audio buffer void UnloadAudioBuffer(AudioBuffer *buffer) { if (buffer != NULL) { ma_data_converter_uninit(&buffer->converter); UntrackAudioBuffer(buffer); RL_FREE(buffer->data); RL_FREE(buffer); } } // Check if an audio buffer is playing bool IsAudioBufferPlaying(AudioBuffer *buffer) { bool result = false; if (buffer != NULL) result = (buffer->playing && !buffer->paused); return result; } // Play an audio buffer // NOTE: Buffer is restarted to the start. // Use PauseAudioBuffer() and ResumeAudioBuffer() if the playback position should be maintained. void PlayAudioBuffer(AudioBuffer *buffer) { if (buffer != NULL) { buffer->playing = true; buffer->paused = false; buffer->frameCursorPos = 0; } } // Stop an audio buffer void StopAudioBuffer(AudioBuffer *buffer) { if (buffer != NULL) { if (IsAudioBufferPlaying(buffer)) { buffer->playing = false; buffer->paused = false; buffer->frameCursorPos = 0; buffer->totalFramesProcessed = 0; buffer->isSubBufferProcessed[0] = true; buffer->isSubBufferProcessed[1] = true; } } } // Pause an audio buffer void PauseAudioBuffer(AudioBuffer *buffer) { if (buffer != NULL) buffer->paused = true; } // Resume an audio buffer void ResumeAudioBuffer(AudioBuffer *buffer) { if (buffer != NULL) buffer->paused = false; } // Set volume for an audio buffer void SetAudioBufferVolume(AudioBuffer *buffer, float volume) { if (buffer != NULL) buffer->volume = volume; } // Set pitch for an audio buffer void SetAudioBufferPitch(AudioBuffer *buffer, float pitch) { if ((buffer != NULL) && (pitch > 0.0f)) { // Pitching is just an adjustment of the sample rate. // Note that this changes the duration of the sound: // - higher pitches will make the sound faster // - lower pitches make it slower ma_uint32 outputSampleRate = (ma_uint32)((float)buffer->converter.config.sampleRateOut/pitch); ma_data_converter_set_rate(&buffer->converter, buffer->converter.config.sampleRateIn, outputSampleRate); buffer->pitch = pitch; } } // Track audio buffer to linked list next position void TrackAudioBuffer(AudioBuffer *buffer) { ma_mutex_lock(&AUDIO.System.lock); { if (AUDIO.Buffer.first == NULL) AUDIO.Buffer.first = buffer; else { AUDIO.Buffer.last->next = buffer; buffer->prev = AUDIO.Buffer.last; } AUDIO.Buffer.last = buffer; } ma_mutex_unlock(&AUDIO.System.lock); } // Untrack audio buffer from linked list void UntrackAudioBuffer(AudioBuffer *buffer) { ma_mutex_lock(&AUDIO.System.lock); { if (buffer->prev == NULL) AUDIO.Buffer.first = buffer->next; else buffer->prev->next = buffer->next; if (buffer->next == NULL) AUDIO.Buffer.last = buffer->prev; else buffer->next->prev = buffer->prev; buffer->prev = NULL; buffer->next = NULL; } ma_mutex_unlock(&AUDIO.System.lock); } //---------------------------------------------------------------------------------- // Module Functions Definition - Sounds loading and playing (.WAV) //---------------------------------------------------------------------------------- // Load wave data from file Wave LoadWave(const char *fileName) { Wave wave = { 0 }; // Loading file to memory unsigned int fileSize = 0; unsigned char *fileData = LoadFileData(fileName, &fileSize); if (fileData != NULL) { // Loading wave from memory data wave = LoadWaveFromMemory(GetFileExtension(fileName), fileData, fileSize); RL_FREE(fileData); } return wave; } // Load wave from memory buffer, fileType refers to extension: i.e. ".wav" Wave LoadWaveFromMemory(const char *fileType, const unsigned char *fileData, int dataSize) { Wave wave = { 0 }; char fileExtLower[16] = { 0 }; strcpy(fileExtLower, TextToLower(fileType)); if (false) { } #if defined(SUPPORT_FILEFORMAT_WAV) else if (TextIsEqual(fileExtLower, ".wav")) wave = LoadWAV(fileData, dataSize); #endif #if defined(SUPPORT_FILEFORMAT_OGG) else if (TextIsEqual(fileExtLower, ".ogg")) wave = LoadOGG(fileData, dataSize); #endif #if defined(SUPPORT_FILEFORMAT_FLAC) else if (TextIsEqual(fileExtLower, ".flac")) wave = LoadFLAC(fileData, dataSize); #endif #if defined(SUPPORT_FILEFORMAT_MP3) else if (TextIsEqual(fileExtLower, ".mp3")) wave = LoadMP3(fileData, dataSize); #endif else TRACELOG(LOG_WARNING, "WAVE: File format not supported"); return wave; } // Load sound from file // NOTE: The entire file is loaded to memory to be played (no-streaming) Sound LoadSound(const char *fileName) { Wave wave = LoadWave(fileName); Sound sound = LoadSoundFromWave(wave); UnloadWave(wave); // Sound is loaded, we can unload wave return sound; } // Load sound from wave data // NOTE: Wave data must be unallocated manually Sound LoadSoundFromWave(Wave wave) { Sound sound = { 0 }; if (wave.data != NULL) { // When using miniaudio we need to do our own mixing. // To simplify this we need convert the format of each sound to be consistent with // the format used to open the playback AUDIO.System.device. We can do this two ways: // // 1) Convert the whole sound in one go at load time (here). // 2) Convert the audio data in chunks at mixing time. // // First option has been selected, format conversion is done on the loading stage. // The downside is that it uses more memory if the original sound is u8 or s16. ma_format formatIn = ((wave.sampleSize == 8)? ma_format_u8 : ((wave.sampleSize == 16)? ma_format_s16 : ma_format_f32)); ma_uint32 frameCountIn = wave.sampleCount/wave.channels; ma_uint32 frameCount = (ma_uint32)ma_convert_frames(NULL, 0, AUDIO_DEVICE_FORMAT, AUDIO_DEVICE_CHANNELS, AUDIO.System.device.sampleRate, NULL, frameCountIn, formatIn, wave.channels, wave.sampleRate); if (frameCount == 0) TRACELOG(LOG_WARNING, "SOUND: Failed to get frame count for format conversion"); AudioBuffer *audioBuffer = LoadAudioBuffer(AUDIO_DEVICE_FORMAT, AUDIO_DEVICE_CHANNELS, AUDIO.System.device.sampleRate, frameCount, AUDIO_BUFFER_USAGE_STATIC); if (audioBuffer == NULL) { TRACELOG(LOG_WARNING, "SOUND: Failed to create buffer"); return sound; // early return to avoid dereferencing the audioBuffer null pointer } frameCount = (ma_uint32)ma_convert_frames(audioBuffer->data, frameCount, AUDIO_DEVICE_FORMAT, AUDIO_DEVICE_CHANNELS, AUDIO.System.device.sampleRate, wave.data, frameCountIn, formatIn, wave.channels, wave.sampleRate); if (frameCount == 0) TRACELOG(LOG_WARNING, "SOUND: Failed format conversion"); sound.sampleCount = frameCount*AUDIO_DEVICE_CHANNELS; sound.stream.sampleRate = AUDIO.System.device.sampleRate; sound.stream.sampleSize = 32; sound.stream.channels = AUDIO_DEVICE_CHANNELS; sound.stream.buffer = audioBuffer; } return sound; } // Unload wave data void UnloadWave(Wave wave) { if (wave.data != NULL) RL_FREE(wave.data); TRACELOG(LOG_INFO, "WAVE: Unloaded wave data from RAM"); } // Unload sound void UnloadSound(Sound sound) { UnloadAudioBuffer(sound.stream.buffer); TRACELOG(LOG_INFO, "WAVE: Unloaded sound data from RAM"); } // Update sound buffer with new data void UpdateSound(Sound sound, const void *data, int samplesCount) { if (sound.stream.buffer != NULL) { StopAudioBuffer(sound.stream.buffer); // TODO: May want to lock/unlock this since this data buffer is read at mixing time memcpy(sound.stream.buffer->data, data, samplesCount*ma_get_bytes_per_frame(sound.stream.buffer->converter.config.formatIn, sound.stream.buffer->converter.config.channelsIn)); } } // Export wave data to file bool ExportWave(Wave wave, const char *fileName) { bool success = false; if (false) { } #if defined(SUPPORT_FILEFORMAT_WAV) else if (IsFileExtension(fileName, ".wav")) success = SaveWAV(wave, fileName); #endif else if (IsFileExtension(fileName, ".raw")) { // Export raw sample data (without header) // NOTE: It's up to the user to track wave parameters success = SaveFileData(fileName, wave.data, wave.sampleCount*wave.sampleSize/8); } if (success) TRACELOG(LOG_INFO, "FILEIO: [%s] Wave data exported successfully", fileName); else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export wave data", fileName); return success; } // Export wave sample data to code (.h) bool ExportWaveAsCode(Wave wave, const char *fileName) { bool success = false; #ifndef TEXT_BYTES_PER_LINE #define TEXT_BYTES_PER_LINE 20 #endif int waveDataSize = wave.sampleCount*wave.channels*wave.sampleSize/8; // NOTE: Text data buffer size is estimated considering wave data size in bytes // and requiring 6 char bytes for every byte: "0x00, " char *txtData = (char *)RL_CALLOC(6*waveDataSize + 2000, sizeof(char)); int bytesCount = 0; bytesCount += sprintf(txtData + bytesCount, "\n//////////////////////////////////////////////////////////////////////////////////\n"); bytesCount += sprintf(txtData + bytesCount, "// //\n"); bytesCount += sprintf(txtData + bytesCount, "// WaveAsCode exporter v1.0 - Wave data exported as an array of bytes //\n"); bytesCount += sprintf(txtData + bytesCount, "// //\n"); bytesCount += sprintf(txtData + bytesCount, "// more info and bugs-report: github.com/raysan5/raylib //\n"); bytesCount += sprintf(txtData + bytesCount, "// feedback and support: ray[at]raylib.com //\n"); bytesCount += sprintf(txtData + bytesCount, "// //\n"); bytesCount += sprintf(txtData + bytesCount, "// Copyright (c) 2018 Ramon Santamaria (@raysan5) //\n"); bytesCount += sprintf(txtData + bytesCount, "// //\n"); bytesCount += sprintf(txtData + bytesCount, "//////////////////////////////////////////////////////////////////////////////////\n\n"); char varFileName[256] = { 0 }; #if !defined(RAUDIO_STANDALONE) // Get file name from path and convert variable name to uppercase strcpy(varFileName, GetFileNameWithoutExt(fileName)); for (int i = 0; varFileName[i] != '\0'; i++) if (varFileName[i] >= 'a' && varFileName[i] <= 'z') { varFileName[i] = varFileName[i] - 32; } #else strcpy(varFileName, fileName); #endif bytesCount += sprintf(txtData + bytesCount, "// Wave data information\n"); bytesCount += sprintf(txtData + bytesCount, "#define %s_SAMPLE_COUNT %u\n", varFileName, wave.sampleCount); bytesCount += sprintf(txtData + bytesCount, "#define %s_SAMPLE_RATE %u\n", varFileName, wave.sampleRate); bytesCount += sprintf(txtData + bytesCount, "#define %s_SAMPLE_SIZE %u\n", varFileName, wave.sampleSize); bytesCount += sprintf(txtData + bytesCount, "#define %s_CHANNELS %u\n\n", varFileName, wave.channels); // Write byte data as hexadecimal text bytesCount += sprintf(txtData + bytesCount, "static unsigned char %s_DATA[%i] = { ", varFileName, waveDataSize); for (int i = 0; i < waveDataSize - 1; i++) bytesCount += sprintf(txtData + bytesCount, ((i%TEXT_BYTES_PER_LINE == 0)? "0x%x,\n" : "0x%x, "), ((unsigned char *)wave.data)[i]); bytesCount += sprintf(txtData + bytesCount, "0x%x };\n", ((unsigned char *)wave.data)[waveDataSize - 1]); // NOTE: Text data length exported is determined by '\0' (NULL) character success = SaveFileText(fileName, txtData); RL_FREE(txtData); return success; } // Play a sound void PlaySound(Sound sound) { PlayAudioBuffer(sound.stream.buffer); } // Play a sound in the multichannel buffer pool void PlaySoundMulti(Sound sound) { int index = -1; unsigned int oldAge = 0; int oldIndex = -1; // find the first non playing pool entry for (int i = 0; i < MAX_AUDIO_BUFFER_POOL_CHANNELS; i++) { if (AUDIO.MultiChannel.channels[i] > oldAge) { oldAge = AUDIO.MultiChannel.channels[i]; oldIndex = i; } if (!IsAudioBufferPlaying(AUDIO.MultiChannel.pool[i])) { index = i; break; } } // If no none playing pool members can be index choose the oldest if (index == -1) { TRACELOG(LOG_WARNING, "SOUND: Buffer pool is already full, count: %i", AUDIO.MultiChannel.poolCounter); if (oldIndex == -1) { // Shouldn't be able to get here... but just in case something odd happens! TRACELOG(LOG_WARNING, "SOUND: Buffer pool could not determine oldest buffer not playing sound"); return; } index = oldIndex; // Just in case... StopAudioBuffer(AUDIO.MultiChannel.pool[index]); } // Experimentally mutex lock doesn't seem to be needed this makes sense // as pool[index] isn't playing and the only stuff we're copying // shouldn't be changing... AUDIO.MultiChannel.channels[index] = AUDIO.MultiChannel.poolCounter; AUDIO.MultiChannel.poolCounter++; AUDIO.MultiChannel.pool[index]->volume = sound.stream.buffer->volume; AUDIO.MultiChannel.pool[index]->pitch = sound.stream.buffer->pitch; AUDIO.MultiChannel.pool[index]->looping = sound.stream.buffer->looping; AUDIO.MultiChannel.pool[index]->usage = sound.stream.buffer->usage; AUDIO.MultiChannel.pool[index]->isSubBufferProcessed[0] = false; AUDIO.MultiChannel.pool[index]->isSubBufferProcessed[1] = false; AUDIO.MultiChannel.pool[index]->sizeInFrames = sound.stream.buffer->sizeInFrames; AUDIO.MultiChannel.pool[index]->data = sound.stream.buffer->data; PlayAudioBuffer(AUDIO.MultiChannel.pool[index]); } // Stop any sound played with PlaySoundMulti() void StopSoundMulti(void) { for (int i = 0; i < MAX_AUDIO_BUFFER_POOL_CHANNELS; i++) StopAudioBuffer(AUDIO.MultiChannel.pool[i]); } // Get number of sounds playing in the multichannel buffer pool int GetSoundsPlaying(void) { int counter = 0; for (int i = 0; i < MAX_AUDIO_BUFFER_POOL_CHANNELS; i++) { if (IsAudioBufferPlaying(AUDIO.MultiChannel.pool[i])) counter++; } return counter; } // Pause a sound void PauseSound(Sound sound) { PauseAudioBuffer(sound.stream.buffer); } // Resume a paused sound void ResumeSound(Sound sound) { ResumeAudioBuffer(sound.stream.buffer); } // Stop reproducing a sound void StopSound(Sound sound) { StopAudioBuffer(sound.stream.buffer); } // Check if a sound is playing bool IsSoundPlaying(Sound sound) { return IsAudioBufferPlaying(sound.stream.buffer); } // Set volume for a sound void SetSoundVolume(Sound sound, float volume) { SetAudioBufferVolume(sound.stream.buffer, volume); } // Set pitch for a sound void SetSoundPitch(Sound sound, float pitch) { SetAudioBufferPitch(sound.stream.buffer, pitch); } // Convert wave data to desired format void WaveFormat(Wave *wave, int sampleRate, int sampleSize, int channels) { ma_format formatIn = ((wave->sampleSize == 8)? ma_format_u8 : ((wave->sampleSize == 16)? ma_format_s16 : ma_format_f32)); ma_format formatOut = ((sampleSize == 8)? ma_format_u8 : ((sampleSize == 16)? ma_format_s16 : ma_format_f32)); ma_uint32 frameCountIn = wave->sampleCount/wave->channels; ma_uint32 frameCount = (ma_uint32)ma_convert_frames(NULL, 0, formatOut, channels, sampleRate, NULL, frameCountIn, formatIn, wave->channels, wave->sampleRate); if (frameCount == 0) { TRACELOG(LOG_WARNING, "WAVE: Failed to get frame count for format conversion"); return; } void *data = RL_MALLOC(frameCount*channels*(sampleSize/8)); frameCount = (ma_uint32)ma_convert_frames(data, frameCount, formatOut, channels, sampleRate, wave->data, frameCountIn, formatIn, wave->channels, wave->sampleRate); if (frameCount == 0) { TRACELOG(LOG_WARNING, "WAVE: Failed format conversion"); return; } wave->sampleCount = frameCount*channels; wave->sampleSize = sampleSize; wave->sampleRate = sampleRate; wave->channels = channels; RL_FREE(wave->data); wave->data = data; } // Copy a wave to a new wave Wave WaveCopy(Wave wave) { Wave newWave = { 0 }; newWave.data = RL_MALLOC(wave.sampleCount*wave.sampleSize/8); if (newWave.data != NULL) { // NOTE: Size must be provided in bytes memcpy(newWave.data, wave.data, wave.sampleCount*wave.sampleSize/8); newWave.sampleCount = wave.sampleCount; newWave.sampleRate = wave.sampleRate; newWave.sampleSize = wave.sampleSize; newWave.channels = wave.channels; } return newWave; } // Crop a wave to defined samples range // NOTE: Security check in case of out-of-range void WaveCrop(Wave *wave, int initSample, int finalSample) { if ((initSample >= 0) && (initSample < finalSample) && (finalSample > 0) && ((unsigned int)finalSample < wave->sampleCount)) { int sampleCount = finalSample - initSample; void *data = RL_MALLOC(sampleCount*wave->sampleSize/8); memcpy(data, (unsigned char *)wave->data + (initSample*wave->channels*wave->sampleSize/8), sampleCount*wave->sampleSize/8); RL_FREE(wave->data); wave->data = data; } else TRACELOG(LOG_WARNING, "WAVE: Crop range out of bounds"); } // Load samples data from wave as a floats array // NOTE 1: Returned sample values are normalized to range [-1..1] // NOTE 2: Sample data allocated should be freed with UnloadWaveSamples() float *LoadWaveSamples(Wave wave) { float *samples = (float *)RL_MALLOC(wave.sampleCount*sizeof(float)); // NOTE: sampleCount is the total number of interlaced samples (including channels) for (unsigned int i = 0; i < wave.sampleCount; i++) { if (wave.sampleSize == 8) samples[i] = (float)(((unsigned char *)wave.data)[i] - 127)/256.0f; else if (wave.sampleSize == 16) samples[i] = (float)(((short *)wave.data)[i])/32767.0f; else if (wave.sampleSize == 32) samples[i] = ((float *)wave.data)[i]; } return samples; } // Unload samples data loaded with LoadWaveSamples() void UnloadWaveSamples(float *samples) { RL_FREE(samples); } //---------------------------------------------------------------------------------- // Module Functions Definition - Music loading and stream playing (.OGG) //---------------------------------------------------------------------------------- // Load music stream from file Music LoadMusicStream(const char *fileName) { Music music = { 0 }; bool musicLoaded = false; if (false) { } #if defined(SUPPORT_FILEFORMAT_WAV) else if (IsFileExtension(fileName, ".wav")) { drwav *ctxWav = RL_CALLOC(1, sizeof(drwav)); bool success = drwav_init_file(ctxWav, fileName, NULL); music.ctxType = MUSIC_AUDIO_WAV; music.ctxData = ctxWav; if (success) { int sampleSize = ctxWav->bitsPerSample; if (ctxWav->bitsPerSample == 24) sampleSize = 16; // Forcing conversion to s16 on UpdateMusicStream() music.stream = InitAudioStream(ctxWav->sampleRate, sampleSize, ctxWav->channels); music.sampleCount = (unsigned int)ctxWav->totalPCMFrameCount*ctxWav->channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_OGG) else if (IsFileExtension(fileName, ".ogg")) { // Open ogg audio stream music.ctxType = MUSIC_AUDIO_OGG; music.ctxData = stb_vorbis_open_filename(fileName, NULL, NULL); if (music.ctxData != NULL) { stb_vorbis_info info = stb_vorbis_get_info((stb_vorbis *)music.ctxData); // Get Ogg file info // OGG bit rate defaults to 16 bit, it's enough for compressed format music.stream = InitAudioStream(info.sample_rate, 16, info.channels); // WARNING: It seems this function returns length in frames, not samples, so we multiply by channels music.sampleCount = (unsigned int)stb_vorbis_stream_length_in_samples((stb_vorbis *)music.ctxData)*info.channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_FLAC) else if (IsFileExtension(fileName, ".flac")) { music.ctxType = MUSIC_AUDIO_FLAC; music.ctxData = drflac_open_file(fileName, NULL); if (music.ctxData != NULL) { drflac *ctxFlac = (drflac *)music.ctxData; music.stream = InitAudioStream(ctxFlac->sampleRate, ctxFlac->bitsPerSample, ctxFlac->channels); music.sampleCount = (unsigned int)ctxFlac->totalPCMFrameCount*ctxFlac->channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_MP3) else if (IsFileExtension(fileName, ".mp3")) { drmp3 *ctxMp3 = RL_CALLOC(1, sizeof(drmp3)); int result = drmp3_init_file(ctxMp3, fileName, NULL); music.ctxType = MUSIC_AUDIO_MP3; music.ctxData = ctxMp3; if (result > 0) { music.stream = InitAudioStream(ctxMp3->sampleRate, 32, ctxMp3->channels); music.sampleCount = (unsigned int)drmp3_get_pcm_frame_count(ctxMp3)*ctxMp3->channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_XM) else if (IsFileExtension(fileName, ".xm")) { jar_xm_context_t *ctxXm = NULL; int result = jar_xm_create_context_from_file(&ctxXm, AUDIO.System.device.sampleRate, fileName); music.ctxType = MUSIC_MODULE_XM; music.ctxData = ctxXm; if (result == 0) // XM AUDIO.System.context created successfully { jar_xm_set_max_loop_count(ctxXm, 0); // Set infinite number of loops unsigned int bits = 32; if (AUDIO_DEVICE_FORMAT == ma_format_s16) bits = 16; else if (AUDIO_DEVICE_FORMAT == ma_format_u8) bits = 8; // NOTE: Only stereo is supported for XM music.stream = InitAudioStream(AUDIO.System.device.sampleRate, bits, AUDIO_DEVICE_CHANNELS); music.sampleCount = (unsigned int)jar_xm_get_remaining_samples(ctxXm)*2; // 2 channels music.looping = true; // Looping enabled by default jar_xm_reset(ctxXm); // make sure we start at the beginning of the song musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_MOD) else if (IsFileExtension(fileName, ".mod")) { jar_mod_context_t *ctxMod = RL_CALLOC(1, sizeof(jar_mod_context_t)); jar_mod_init(ctxMod); int result = jar_mod_load_file(ctxMod, fileName); music.ctxType = MUSIC_MODULE_MOD; music.ctxData = ctxMod; if (result > 0) { // NOTE: Only stereo is supported for MOD music.stream = InitAudioStream(AUDIO.System.device.sampleRate, 16, AUDIO_DEVICE_CHANNELS); music.sampleCount = (unsigned int)jar_mod_max_samples(ctxMod)*2; // 2 channels music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif else TRACELOG(LOG_WARNING, "STREAM: [%s] Fileformat not supported", fileName); if (!musicLoaded) { if (false) { } #if defined(SUPPORT_FILEFORMAT_WAV) else if (music.ctxType == MUSIC_AUDIO_WAV) drwav_uninit((drwav *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_OGG) else if (music.ctxType == MUSIC_AUDIO_OGG) stb_vorbis_close((stb_vorbis *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_FLAC) else if (music.ctxType == MUSIC_AUDIO_FLAC) drflac_free((drflac *)music.ctxData, NULL); #endif #if defined(SUPPORT_FILEFORMAT_MP3) else if (music.ctxType == MUSIC_AUDIO_MP3) { drmp3_uninit((drmp3 *)music.ctxData); RL_FREE(music.ctxData); } #endif #if defined(SUPPORT_FILEFORMAT_XM) else if (music.ctxType == MUSIC_MODULE_XM) jar_xm_free_context((jar_xm_context_t *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_MOD) else if (music.ctxType == MUSIC_MODULE_MOD) { jar_mod_unload((jar_mod_context_t *)music.ctxData); RL_FREE(music.ctxData); } #endif music.ctxData = NULL; TRACELOG(LOG_WARNING, "FILEIO: [%s] Music file could not be opened", fileName); } else { // Show some music stream info TRACELOG(LOG_INFO, "FILEIO: [%s] Music file successfully loaded:", fileName); TRACELOG(LOG_INFO, " > Total samples: %i", music.sampleCount); TRACELOG(LOG_INFO, " > Sample rate: %i Hz", music.stream.sampleRate); TRACELOG(LOG_INFO, " > Sample size: %i bits", music.stream.sampleSize); TRACELOG(LOG_INFO, " > Channels: %i (%s)", music.stream.channels, (music.stream.channels == 1)? "Mono" : (music.stream.channels == 2)? "Stereo" : "Multi"); } return music; } // extension including period ".mod" Music LoadMusicStreamFromMemory(const char *fileType, unsigned char* data, int dataSize) { Music music = { 0 }; bool musicLoaded = false; char fileExtLower[16] = { 0 }; strcpy(fileExtLower, TextToLower(fileType)); if (false) { } #if defined(SUPPORT_FILEFORMAT_WAV) else if (TextIsEqual(fileExtLower, ".wav")) { drwav *ctxWav = RL_CALLOC(1, sizeof(drwav)); bool success = drwav_init_memory(ctxWav, (const void*)data, dataSize, NULL); music.ctxType = MUSIC_AUDIO_WAV; music.ctxData = ctxWav; if (success) { int sampleSize = ctxWav->bitsPerSample; if (ctxWav->bitsPerSample == 24) sampleSize = 16; // Forcing conversion to s16 on UpdateMusicStream() music.stream = InitAudioStream(ctxWav->sampleRate, sampleSize, ctxWav->channels); music.sampleCount = (unsigned int)ctxWav->totalPCMFrameCount*ctxWav->channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_FLAC) else if (TextIsEqual(fileExtLower, ".flac")) { music.ctxType = MUSIC_AUDIO_FLAC; music.ctxData = drflac_open_memory((const void*)data, dataSize, NULL); if (music.ctxData != NULL) { drflac *ctxFlac = (drflac *)music.ctxData; music.stream = InitAudioStream(ctxFlac->sampleRate, ctxFlac->bitsPerSample, ctxFlac->channels); music.sampleCount = (unsigned int)ctxFlac->totalPCMFrameCount*ctxFlac->channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_MP3) else if (TextIsEqual(fileExtLower, ".mp3")) { drmp3 *ctxMp3 = RL_CALLOC(1, sizeof(drmp3)); int success = drmp3_init_memory(ctxMp3, (const void*)data, dataSize, NULL); music.ctxType = MUSIC_AUDIO_MP3; music.ctxData = ctxMp3; if (success) { music.stream = InitAudioStream(ctxMp3->sampleRate, 32, ctxMp3->channels); music.sampleCount = (unsigned int)drmp3_get_pcm_frame_count(ctxMp3)*ctxMp3->channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_OGG) else if (TextIsEqual(fileExtLower, ".ogg")) { // Open ogg audio stream music.ctxType = MUSIC_AUDIO_OGG; //music.ctxData = stb_vorbis_open_filename(fileName, NULL, NULL); music.ctxData = stb_vorbis_open_memory((const unsigned char*)data, dataSize, NULL, NULL); if (music.ctxData != NULL) { stb_vorbis_info info = stb_vorbis_get_info((stb_vorbis *)music.ctxData); // Get Ogg file info // OGG bit rate defaults to 16 bit, it's enough for compressed format music.stream = InitAudioStream(info.sample_rate, 16, info.channels); // WARNING: It seems this function returns length in frames, not samples, so we multiply by channels music.sampleCount = (unsigned int)stb_vorbis_stream_length_in_samples((stb_vorbis *)music.ctxData)*info.channels; music.looping = true; // Looping enabled by default musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_XM) else if (TextIsEqual(fileExtLower, ".xm")) { jar_xm_context_t *ctxXm = NULL; int result = jar_xm_create_context_safe(&ctxXm, (const char*)data, dataSize, AUDIO.System.device.sampleRate); if (result == 0) // XM AUDIO.System.context created successfully { music.ctxType = MUSIC_MODULE_XM; jar_xm_set_max_loop_count(ctxXm, 0); // Set infinite number of loops unsigned int bits = 32; if (AUDIO_DEVICE_FORMAT == ma_format_s16) bits = 16; else if (AUDIO_DEVICE_FORMAT == ma_format_u8) bits = 8; // NOTE: Only stereo is supported for XM music.stream = InitAudioStream(AUDIO.System.device.sampleRate, bits, 2); music.sampleCount = (unsigned int)jar_xm_get_remaining_samples(ctxXm)*2; // 2 channels music.looping = true; // Looping enabled by default jar_xm_reset(ctxXm); // make sure we start at the beginning of the song music.ctxData = ctxXm; musicLoaded = true; } } #endif #if defined(SUPPORT_FILEFORMAT_MOD) else if (TextIsEqual(fileExtLower, ".mod")) { jar_mod_context_t *ctxMod = RL_MALLOC(sizeof(jar_mod_context_t)); int result = 0; jar_mod_init(ctxMod); // copy data to allocated memory for default UnloadMusicStream unsigned char *newData = RL_MALLOC(dataSize); int it = dataSize/sizeof(unsigned char); for (int i = 0; i < it; i++){ newData[i] = data[i]; } // Memory loaded version for jar_mod_load_file() if (dataSize && dataSize < 32*1024*1024) { ctxMod->modfilesize = dataSize; ctxMod->modfile = newData; if (jar_mod_load(ctxMod, (void *)ctxMod->modfile, dataSize)) result = dataSize; } if (result > 0) { music.ctxType = MUSIC_MODULE_MOD; // NOTE: Only stereo is supported for MOD music.stream = InitAudioStream(AUDIO.System.device.sampleRate, 16, 2); music.sampleCount = (unsigned int)jar_mod_max_samples(ctxMod)*2; // 2 channels music.looping = true; // Looping enabled by default musicLoaded = true; music.ctxData = ctxMod; musicLoaded = true; } } #endif else TRACELOG(LOG_WARNING, "STREAM: [%s] Fileformat not supported", fileType); if (!musicLoaded) { if (false) { } #if defined(SUPPORT_FILEFORMAT_WAV) else if (music.ctxType == MUSIC_AUDIO_WAV) drwav_uninit((drwav *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_FLAC) else if (music.ctxType == MUSIC_AUDIO_FLAC) drflac_free((drflac *)music.ctxData, NULL); #endif #if defined(SUPPORT_FILEFORMAT_MP3) else if (music.ctxType == MUSIC_AUDIO_MP3) { drmp3_uninit((drmp3 *)music.ctxData); RL_FREE(music.ctxData); } #endif #if defined(SUPPORT_FILEFORMAT_OGG) else if (music.ctxType == MUSIC_AUDIO_OGG) stb_vorbis_close((stb_vorbis *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_XM) else if (music.ctxType == MUSIC_MODULE_XM) jar_xm_free_context((jar_xm_context_t *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_MOD) else if (music.ctxType == MUSIC_MODULE_MOD) { jar_mod_unload((jar_mod_context_t *)music.ctxData); RL_FREE(music.ctxData); } #endif music.ctxData = NULL; TRACELOG(LOG_WARNING, "FILEIO: [%s] Music memory could not be opened", fileType); } else { // Show some music stream info TRACELOG(LOG_INFO, "FILEIO: [%s] Music memory successfully loaded:", fileType); TRACELOG(LOG_INFO, " > Total samples: %i", music.sampleCount); TRACELOG(LOG_INFO, " > Sample rate: %i Hz", music.stream.sampleRate); TRACELOG(LOG_INFO, " > Sample size: %i bits", music.stream.sampleSize); TRACELOG(LOG_INFO, " > Channels: %i (%s)", music.stream.channels, (music.stream.channels == 1)? "Mono" : (music.stream.channels == 2)? "Stereo" : "Multi"); } return music; } // Unload music stream void UnloadMusicStream(Music music) { CloseAudioStream(music.stream); if (music.ctxData != NULL) { if (false) { } #if defined(SUPPORT_FILEFORMAT_WAV) else if (music.ctxType == MUSIC_AUDIO_WAV) drwav_uninit((drwav *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_OGG) else if (music.ctxType == MUSIC_AUDIO_OGG) stb_vorbis_close((stb_vorbis *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_FLAC) else if (music.ctxType == MUSIC_AUDIO_FLAC) drflac_free((drflac *)music.ctxData, NULL); #endif #if defined(SUPPORT_FILEFORMAT_MP3) else if (music.ctxType == MUSIC_AUDIO_MP3) { drmp3_uninit((drmp3 *)music.ctxData); RL_FREE(music.ctxData); } #endif #if defined(SUPPORT_FILEFORMAT_XM) else if (music.ctxType == MUSIC_MODULE_XM) jar_xm_free_context((jar_xm_context_t *)music.ctxData); #endif #if defined(SUPPORT_FILEFORMAT_MOD) else if (music.ctxType == MUSIC_MODULE_MOD) { jar_mod_unload((jar_mod_context_t *)music.ctxData); RL_FREE(music.ctxData); } #endif } } // Start music playing (open stream) void PlayMusicStream(Music music) { if (music.stream.buffer != NULL) { // For music streams, we need to make sure we maintain the frame cursor position // This is a hack for this section of code in UpdateMusicStream() // NOTE: In case window is minimized, music stream is stopped, just make sure to // play again on window restore: if (IsMusicPlaying(music)) PlayMusicStream(music); ma_uint32 frameCursorPos = music.stream.buffer->frameCursorPos; PlayAudioStream(music.stream); // WARNING: This resets the cursor position. music.stream.buffer->frameCursorPos = frameCursorPos; } } // Pause music playing void PauseMusicStream(Music music) { PauseAudioStream(music.stream); } // Resume music playing void ResumeMusicStream(Music music) { ResumeAudioStream(music.stream); } // Stop music playing (close stream) void StopMusicStream(Music music) { StopAudioStream(music.stream); switch (music.ctxType) { #if defined(SUPPORT_FILEFORMAT_WAV) case MUSIC_AUDIO_WAV: drwav_seek_to_pcm_frame((drwav *)music.ctxData, 0); break; #endif #if defined(SUPPORT_FILEFORMAT_OGG) case MUSIC_AUDIO_OGG: stb_vorbis_seek_start((stb_vorbis *)music.ctxData); break; #endif #if defined(SUPPORT_FILEFORMAT_FLAC) case MUSIC_AUDIO_FLAC: drflac_seek_to_pcm_frame((drflac *)music.ctxData, 0); break; #endif #if defined(SUPPORT_FILEFORMAT_MP3) case MUSIC_AUDIO_MP3: drmp3_seek_to_pcm_frame((drmp3 *)music.ctxData, 0); break; #endif #if defined(SUPPORT_FILEFORMAT_XM) case MUSIC_MODULE_XM: jar_xm_reset((jar_xm_context_t *)music.ctxData); break; #endif #if defined(SUPPORT_FILEFORMAT_MOD) case MUSIC_MODULE_MOD: jar_mod_seek_start((jar_mod_context_t *)music.ctxData); break; #endif default: break; } } // Update (re-fill) music buffers if data already processed void UpdateMusicStream(Music music) { if (music.stream.buffer == NULL) return; if (music.ctxType == MUSIC_MODULE_XM) jar_xm_set_max_loop_count(music.ctxData, music.looping ? 0 : 1); bool streamEnding = false; unsigned int subBufferSizeInFrames = music.stream.buffer->sizeInFrames/2; // NOTE: Using dynamic allocation because it could require more than 16KB void *pcm = RL_CALLOC(subBufferSizeInFrames*music.stream.channels*music.stream.sampleSize/8, 1); int samplesCount = 0; // Total size of data streamed in L+R samples for xm floats, individual L or R for ogg shorts // TODO: Get the sampleLeft using totalFramesProcessed... but first, get total frames processed correctly... //ma_uint32 frameSizeInBytes = ma_get_bytes_per_sample(music.stream.buffer->dsp.formatConverterIn.config.formatIn)*music.stream.buffer->dsp.formatConverterIn.config.channels; int sampleLeft = music.sampleCount - (music.stream.buffer->totalFramesProcessed*music.stream.channels); if (music.ctxType == MUSIC_MODULE_XM && music.looping) sampleLeft = subBufferSizeInFrames*4; while (IsAudioStreamProcessed(music.stream)) { if ((sampleLeft/music.stream.channels) >= subBufferSizeInFrames) samplesCount = subBufferSizeInFrames*music.stream.channels; else samplesCount = sampleLeft; switch (music.ctxType) { #if defined(SUPPORT_FILEFORMAT_WAV) case MUSIC_AUDIO_WAV: { // NOTE: Returns the number of samples to process (not required) if (music.stream.sampleSize == 16) drwav_read_pcm_frames_s16((drwav *)music.ctxData, samplesCount/music.stream.channels, (short *)pcm); else if (music.stream.sampleSize == 32) drwav_read_pcm_frames_f32((drwav *)music.ctxData, samplesCount/music.stream.channels, (float *)pcm); } break; #endif #if defined(SUPPORT_FILEFORMAT_OGG) case MUSIC_AUDIO_OGG: { // NOTE: Returns the number of samples to process (be careful! we ask for number of shorts!) stb_vorbis_get_samples_short_interleaved((stb_vorbis *)music.ctxData, music.stream.channels, (short *)pcm, samplesCount); } break; #endif #if defined(SUPPORT_FILEFORMAT_FLAC) case MUSIC_AUDIO_FLAC: { // NOTE: Returns the number of samples to process (not required) drflac_read_pcm_frames_s16((drflac *)music.ctxData, samplesCount, (short *)pcm); } break; #endif #if defined(SUPPORT_FILEFORMAT_MP3) case MUSIC_AUDIO_MP3: { // NOTE: samplesCount, actually refers to framesCount and returns the number of frames processed drmp3_read_pcm_frames_f32((drmp3 *)music.ctxData, samplesCount/music.stream.channels, (float *)pcm); } break; #endif #if defined(SUPPORT_FILEFORMAT_XM) case MUSIC_MODULE_XM: { switch (AUDIO_DEVICE_FORMAT) { case ma_format_f32: // NOTE: Internally this function considers 2 channels generation, so samplesCount/2 jar_xm_generate_samples((jar_xm_context_t*)music.ctxData, (float*)pcm, samplesCount / 2); break; case ma_format_s16: // NOTE: Internally this function considers 2 channels generation, so samplesCount/2 jar_xm_generate_samples_16bit((jar_xm_context_t*)music.ctxData, (short*)pcm, samplesCount / 2); break; case ma_format_u8: // NOTE: Internally this function considers 2 channels generation, so samplesCount/2 jar_xm_generate_samples_8bit((jar_xm_context_t*)music.ctxData, (char*)pcm, samplesCount / 2); break; } } break; #endif #if defined(SUPPORT_FILEFORMAT_MOD) case MUSIC_MODULE_MOD: { // NOTE: 3rd parameter (nbsample) specify the number of stereo 16bits samples you want, so sampleCount/2 jar_mod_fillbuffer((jar_mod_context_t *)music.ctxData, (short *)pcm, samplesCount/2, 0); } break; #endif default: break; } UpdateAudioStream(music.stream, pcm, samplesCount); if ((music.ctxType == MUSIC_MODULE_XM) || music.ctxType == MUSIC_MODULE_MOD) { if (samplesCount > 1) sampleLeft -= samplesCount/2; else sampleLeft -= samplesCount; } else sampleLeft -= samplesCount; if (sampleLeft <= 0) { streamEnding = true; break; } } // Free allocated pcm data RL_FREE(pcm); // Reset audio stream for looping if (streamEnding) { StopMusicStream(music); // Stop music (and reset) if (music.looping) PlayMusicStream(music); // Play again } else { // NOTE: In case window is minimized, music stream is stopped, // just make sure to play again on window restore if (IsMusicPlaying(music)) PlayMusicStream(music); } } // Check if any music is playing bool IsMusicPlaying(Music music) { return IsAudioStreamPlaying(music.stream); } // Set volume for music void SetMusicVolume(Music music, float volume) { SetAudioStreamVolume(music.stream, volume); } // Set pitch for music void SetMusicPitch(Music music, float pitch) { SetAudioBufferPitch(music.stream.buffer, pitch); } // Get music time length (in seconds) float GetMusicTimeLength(Music music) { float totalSeconds = 0.0f; totalSeconds = (float)music.sampleCount/(music.stream.sampleRate*music.stream.channels); return totalSeconds; } // Get current music time played (in seconds) float GetMusicTimePlayed(Music music) { #if defined(SUPPORT_FILEFORMAT_XM) if (music.ctxType == MUSIC_MODULE_XM) { uint64_t samples = 0; jar_xm_get_position(music.ctxData, NULL, NULL, NULL, &samples); samples = samples % (music.sampleCount); return (float)(samples)/(music.stream.sampleRate*music.stream.channels); } #endif float secondsPlayed = 0.0f; if (music.stream.buffer != NULL) { //ma_uint32 frameSizeInBytes = ma_get_bytes_per_sample(music.stream.buffer->dsp.formatConverterIn.config.formatIn)*music.stream.buffer->dsp.formatConverterIn.config.channels; unsigned int samplesPlayed = music.stream.buffer->totalFramesProcessed*music.stream.channels; secondsPlayed = (float)samplesPlayed/(music.stream.sampleRate*music.stream.channels); } return secondsPlayed; } // Init audio stream (to stream audio pcm data) AudioStream InitAudioStream(unsigned int sampleRate, unsigned int sampleSize, unsigned int channels) { AudioStream stream = { 0 }; stream.sampleRate = sampleRate; stream.sampleSize = sampleSize; stream.channels = channels; ma_format formatIn = ((stream.sampleSize == 8)? ma_format_u8 : ((stream.sampleSize == 16)? ma_format_s16 : ma_format_f32)); // The size of a streaming buffer must be at least double the size of a period unsigned int periodSize = AUDIO.System.device.playback.internalPeriodSizeInFrames; unsigned int subBufferSize = GetAudioStreamBufferSizeDefault(); if (subBufferSize < periodSize) subBufferSize = periodSize; // Create a double audio buffer of defined size stream.buffer = LoadAudioBuffer(formatIn, stream.channels, stream.sampleRate, subBufferSize*2, AUDIO_BUFFER_USAGE_STREAM); if (stream.buffer != NULL) { stream.buffer->looping = true; // Always loop for streaming buffers TRACELOG(LOG_INFO, "STREAM: Initialized successfully (%i Hz, %i bit, %s)", stream.sampleRate, stream.sampleSize, (stream.channels == 1)? "Mono" : "Stereo"); } else TRACELOG(LOG_WARNING, "STREAM: Failed to load audio buffer, stream could not be created"); return stream; } // Close audio stream and free memory void CloseAudioStream(AudioStream stream) { UnloadAudioBuffer(stream.buffer); TRACELOG(LOG_INFO, "STREAM: Unloaded audio stream data from RAM"); } // Update audio stream buffers with data // NOTE 1: Only updates one buffer of the stream source: unqueue -> update -> queue // NOTE 2: To unqueue a buffer it needs to be processed: IsAudioStreamProcessed() void UpdateAudioStream(AudioStream stream, const void *data, int samplesCount) { if (stream.buffer != NULL) { if (stream.buffer->isSubBufferProcessed[0] || stream.buffer->isSubBufferProcessed[1]) { ma_uint32 subBufferToUpdate = 0; if (stream.buffer->isSubBufferProcessed[0] && stream.buffer->isSubBufferProcessed[1]) { // Both buffers are available for updating. // Update the first one and make sure the cursor is moved back to the front. subBufferToUpdate = 0; stream.buffer->frameCursorPos = 0; } else { // Just update whichever sub-buffer is processed. subBufferToUpdate = (stream.buffer->isSubBufferProcessed[0])? 0 : 1; } ma_uint32 subBufferSizeInFrames = stream.buffer->sizeInFrames/2; unsigned char *subBuffer = stream.buffer->data + ((subBufferSizeInFrames*stream.channels*(stream.sampleSize/8))*subBufferToUpdate); // TODO: Get total frames processed on this buffer... DOES NOT WORK. stream.buffer->totalFramesProcessed += subBufferSizeInFrames; // Does this API expect a whole buffer to be updated in one go? // Assuming so, but if not will need to change this logic. if (subBufferSizeInFrames >= (ma_uint32)samplesCount/stream.channels) { ma_uint32 framesToWrite = subBufferSizeInFrames; if (framesToWrite > ((ma_uint32)samplesCount/stream.channels)) framesToWrite = (ma_uint32)samplesCount/stream.channels; ma_uint32 bytesToWrite = framesToWrite*stream.channels*(stream.sampleSize/8); memcpy(subBuffer, data, bytesToWrite); // Any leftover frames should be filled with zeros. ma_uint32 leftoverFrameCount = subBufferSizeInFrames - framesToWrite; if (leftoverFrameCount > 0) memset(subBuffer + bytesToWrite, 0, leftoverFrameCount*stream.channels*(stream.sampleSize/8)); stream.buffer->isSubBufferProcessed[subBufferToUpdate] = false; } else TRACELOG(LOG_WARNING, "STREAM: Attempting to write too many frames to buffer"); } else TRACELOG(LOG_WARNING, "STREAM: Buffer not available for updating"); } } // Check if any audio stream buffers requires refill bool IsAudioStreamProcessed(AudioStream stream) { if (stream.buffer == NULL) return false; return (stream.buffer->isSubBufferProcessed[0] || stream.buffer->isSubBufferProcessed[1]); } // Play audio stream void PlayAudioStream(AudioStream stream) { PlayAudioBuffer(stream.buffer); } // Play audio stream void PauseAudioStream(AudioStream stream) { PauseAudioBuffer(stream.buffer); } // Resume audio stream playing void ResumeAudioStream(AudioStream stream) { ResumeAudioBuffer(stream.buffer); } // Check if audio stream is playing. bool IsAudioStreamPlaying(AudioStream stream) { return IsAudioBufferPlaying(stream.buffer); } // Stop audio stream void StopAudioStream(AudioStream stream) { StopAudioBuffer(stream.buffer); } // Set volume for audio stream (1.0 is max level) void SetAudioStreamVolume(AudioStream stream, float volume) { SetAudioBufferVolume(stream.buffer, volume); } // Set pitch for audio stream (1.0 is base level) void SetAudioStreamPitch(AudioStream stream, float pitch) { SetAudioBufferPitch(stream.buffer, pitch); } // Default size for new audio streams void SetAudioStreamBufferSizeDefault(int size) { AUDIO.Buffer.defaultSize = size; } int GetAudioStreamBufferSizeDefault() { // if the buffer is not set, compute one that would give us a buffer good enough for a decent frame rate if (AUDIO.Buffer.defaultSize == 0) AUDIO.Buffer.defaultSize = AUDIO.System.device.sampleRate/30; return AUDIO.Buffer.defaultSize; } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- // Log callback function static void OnLog(ma_context *pContext, ma_device *pDevice, ma_uint32 logLevel, const char *message) { (void)pContext; (void)pDevice; TRACELOG(LOG_WARNING, "miniaudio: %s", message); // All log messages from miniaudio are errors } // Reads audio data from an AudioBuffer object in internal format. static ma_uint32 ReadAudioBufferFramesInInternalFormat(AudioBuffer *audioBuffer, void *framesOut, ma_uint32 frameCount) { ma_uint32 subBufferSizeInFrames = (audioBuffer->sizeInFrames > 1)? audioBuffer->sizeInFrames/2 : audioBuffer->sizeInFrames; ma_uint32 currentSubBufferIndex = audioBuffer->frameCursorPos/subBufferSizeInFrames; if (currentSubBufferIndex > 1) return 0; // Another thread can update the processed state of buffers so // we just take a copy here to try and avoid potential synchronization problems bool isSubBufferProcessed[2]; isSubBufferProcessed[0] = audioBuffer->isSubBufferProcessed[0]; isSubBufferProcessed[1] = audioBuffer->isSubBufferProcessed[1]; ma_uint32 frameSizeInBytes = ma_get_bytes_per_frame(audioBuffer->converter.config.formatIn, audioBuffer->converter.config.channelsIn); // Fill out every frame until we find a buffer that's marked as processed. Then fill the remainder with 0 ma_uint32 framesRead = 0; while (1) { // We break from this loop differently depending on the buffer's usage // - For static buffers, we simply fill as much data as we can // - For streaming buffers we only fill the halves of the buffer that are processed // Unprocessed halves must keep their audio data in-tact if (audioBuffer->usage == AUDIO_BUFFER_USAGE_STATIC) { if (framesRead >= frameCount) break; } else { if (isSubBufferProcessed[currentSubBufferIndex]) break; } ma_uint32 totalFramesRemaining = (frameCount - framesRead); if (totalFramesRemaining == 0) break; ma_uint32 framesRemainingInOutputBuffer; if (audioBuffer->usage == AUDIO_BUFFER_USAGE_STATIC) { framesRemainingInOutputBuffer = audioBuffer->sizeInFrames - audioBuffer->frameCursorPos; } else { ma_uint32 firstFrameIndexOfThisSubBuffer = subBufferSizeInFrames*currentSubBufferIndex; framesRemainingInOutputBuffer = subBufferSizeInFrames - (audioBuffer->frameCursorPos - firstFrameIndexOfThisSubBuffer); } ma_uint32 framesToRead = totalFramesRemaining; if (framesToRead > framesRemainingInOutputBuffer) framesToRead = framesRemainingInOutputBuffer; memcpy((unsigned char *)framesOut + (framesRead*frameSizeInBytes), audioBuffer->data + (audioBuffer->frameCursorPos*frameSizeInBytes), framesToRead*frameSizeInBytes); audioBuffer->frameCursorPos = (audioBuffer->frameCursorPos + framesToRead)%audioBuffer->sizeInFrames; framesRead += framesToRead; // If we've read to the end of the buffer, mark it as processed if (framesToRead == framesRemainingInOutputBuffer) { audioBuffer->isSubBufferProcessed[currentSubBufferIndex] = true; isSubBufferProcessed[currentSubBufferIndex] = true; currentSubBufferIndex = (currentSubBufferIndex + 1)%2; // We need to break from this loop if we're not looping if (!audioBuffer->looping) { StopAudioBuffer(audioBuffer); break; } } } // Zero-fill excess ma_uint32 totalFramesRemaining = (frameCount - framesRead); if (totalFramesRemaining > 0) { memset((unsigned char *)framesOut + (framesRead*frameSizeInBytes), 0, totalFramesRemaining*frameSizeInBytes); // For static buffers we can fill the remaining frames with silence for safety, but we don't want // to report those frames as "read". The reason for this is that the caller uses the return value // to know whether or not a non-looping sound has finished playback. if (audioBuffer->usage != AUDIO_BUFFER_USAGE_STATIC) framesRead += totalFramesRemaining; } return framesRead; } // Reads audio data from an AudioBuffer object in device format. Returned data will be in a format appropriate for mixing. static ma_uint32 ReadAudioBufferFramesInMixingFormat(AudioBuffer *audioBuffer, float *framesOut, ma_uint32 frameCount) { // What's going on here is that we're continuously converting data from the AudioBuffer's internal format to the mixing format, which // should be defined by the output format of the data converter. We do this until frameCount frames have been output. The important // detail to remember here is that we never, ever attempt to read more input data than is required for the specified number of output // frames. This can be achieved with ma_data_converter_get_required_input_frame_count(). ma_uint8 inputBuffer[4096]; ma_uint32 inputBufferFrameCap = sizeof(inputBuffer)/ma_get_bytes_per_frame(audioBuffer->converter.config.formatIn, audioBuffer->converter.config.channelsIn); ma_uint32 totalOutputFramesProcessed = 0; while (totalOutputFramesProcessed < frameCount) { ma_uint64 outputFramesToProcessThisIteration = frameCount - totalOutputFramesProcessed; ma_uint64 inputFramesToProcessThisIteration = ma_data_converter_get_required_input_frame_count(&audioBuffer->converter, outputFramesToProcessThisIteration); if (inputFramesToProcessThisIteration > inputBufferFrameCap) { inputFramesToProcessThisIteration = inputBufferFrameCap; } float *runningFramesOut = framesOut + (totalOutputFramesProcessed*audioBuffer->converter.config.channelsOut); /* At this point we can convert the data to our mixing format. */ ma_uint64 inputFramesProcessedThisIteration = ReadAudioBufferFramesInInternalFormat(audioBuffer, inputBuffer, (ma_uint32)inputFramesToProcessThisIteration); /* Safe cast. */ ma_uint64 outputFramesProcessedThisIteration = outputFramesToProcessThisIteration; ma_data_converter_process_pcm_frames(&audioBuffer->converter, inputBuffer, &inputFramesProcessedThisIteration, runningFramesOut, &outputFramesProcessedThisIteration); totalOutputFramesProcessed += (ma_uint32)outputFramesProcessedThisIteration; /* Safe cast. */ if (inputFramesProcessedThisIteration < inputFramesToProcessThisIteration) { break; /* Ran out of input data. */ } /* This should never be hit, but will add it here for safety. Ensures we get out of the loop when no input nor output frames are processed. */ if (inputFramesProcessedThisIteration == 0 && outputFramesProcessedThisIteration == 0) { break; } } return totalOutputFramesProcessed; } // Sending audio data to device callback function // NOTE: All the mixing takes place here static void OnSendAudioDataToDevice(ma_device *pDevice, void *pFramesOut, const void *pFramesInput, ma_uint32 frameCount) { (void)pDevice; // Mixing is basically just an accumulation, we need to initialize the output buffer to 0 memset(pFramesOut, 0, frameCount*pDevice->playback.channels*ma_get_bytes_per_sample(pDevice->playback.format)); // Using a mutex here for thread-safety which makes things not real-time // This is unlikely to be necessary for this project, but may want to consider how you might want to avoid this ma_mutex_lock(&AUDIO.System.lock); { for (AudioBuffer *audioBuffer = AUDIO.Buffer.first; audioBuffer != NULL; audioBuffer = audioBuffer->next) { // Ignore stopped or paused sounds if (!audioBuffer->playing || audioBuffer->paused) continue; ma_uint32 framesRead = 0; while (1) { if (framesRead >= frameCount) break; // Just read as much data as we can from the stream ma_uint32 framesToRead = (frameCount - framesRead); while (framesToRead > 0) { float tempBuffer[1024]; // 512 frames for stereo ma_uint32 framesToReadRightNow = framesToRead; if (framesToReadRightNow > sizeof(tempBuffer)/sizeof(tempBuffer[0])/AUDIO_DEVICE_CHANNELS) { framesToReadRightNow = sizeof(tempBuffer)/sizeof(tempBuffer[0])/AUDIO_DEVICE_CHANNELS; } ma_uint32 framesJustRead = ReadAudioBufferFramesInMixingFormat(audioBuffer, tempBuffer, framesToReadRightNow); if (framesJustRead > 0) { float *framesOut = (float *)pFramesOut + (framesRead*AUDIO.System.device.playback.channels); float *framesIn = tempBuffer; MixAudioFrames(framesOut, framesIn, framesJustRead, audioBuffer->volume); framesToRead -= framesJustRead; framesRead += framesJustRead; } if (!audioBuffer->playing) { framesRead = frameCount; break; } // If we weren't able to read all the frames we requested, break if (framesJustRead < framesToReadRightNow) { if (!audioBuffer->looping) { StopAudioBuffer(audioBuffer); break; } else { // Should never get here, but just for safety, // move the cursor position back to the start and continue the loop audioBuffer->frameCursorPos = 0; continue; } } } // If for some reason we weren't able to read every frame we'll need to break from the loop // Not doing this could theoretically put us into an infinite loop if (framesToRead > 0) break; } } } ma_mutex_unlock(&AUDIO.System.lock); } // This is the main mixing function. Mixing is pretty simple in this project - it's just an accumulation. // NOTE: framesOut is both an input and an output. It will be initially filled with zeros outside of this function. static void MixAudioFrames(float *framesOut, const float *framesIn, ma_uint32 frameCount, float localVolume) { for (ma_uint32 iFrame = 0; iFrame < frameCount; ++iFrame) { for (ma_uint32 iChannel = 0; iChannel < AUDIO.System.device.playback.channels; ++iChannel) { float *frameOut = framesOut + (iFrame*AUDIO.System.device.playback.channels); const float *frameIn = framesIn + (iFrame*AUDIO.System.device.playback.channels); frameOut[iChannel] += (frameIn[iChannel]*localVolume); } } } #if defined(SUPPORT_FILEFORMAT_WAV) // Load WAV file data into Wave structure // NOTE: Using dr_wav library static Wave LoadWAV(const unsigned char *fileData, unsigned int fileSize) { Wave wave = { 0 }; drwav wav = { 0 }; bool success = drwav_init_memory(&wav, fileData, fileSize, NULL); if (success) { wave.sampleCount = (unsigned int)wav.totalPCMFrameCount*wav.channels; wave.sampleRate = wav.sampleRate; wave.sampleSize = 16; // NOTE: We are forcing conversion to 16bit wave.channels = wav.channels; wave.data = (short *)RL_MALLOC(wave.sampleCount*sizeof(short)); drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, wave.data); } else TRACELOG(LOG_WARNING, "WAVE: Failed to load WAV data"); drwav_uninit(&wav); return wave; } // Save wave data as WAV file // NOTE: Using dr_wav library static int SaveWAV(Wave wave, const char *fileName) { int success = false; drwav wav = { 0 }; drwav_data_format format = { 0 }; format.container = drwav_container_riff; format.format = DR_WAVE_FORMAT_PCM; format.channels = wave.channels; format.sampleRate = wave.sampleRate; format.bitsPerSample = wave.sampleSize; void *fileData = NULL; size_t fileDataSize = 0; success = drwav_init_memory_write(&wav, &fileData, &fileDataSize, &format, NULL); if (success) success = (int)drwav_write_pcm_frames(&wav, wave.sampleCount/wave.channels, wave.data); drwav_result result = drwav_uninit(&wav); if (result == DRWAV_SUCCESS) success = SaveFileData(fileName, (unsigned char *)fileData, (unsigned int)fileDataSize); drwav_free(fileData, NULL); return success; } #endif #if defined(SUPPORT_FILEFORMAT_OGG) // Load OGG file data into Wave structure // NOTE: Using stb_vorbis library static Wave LoadOGG(const unsigned char *fileData, unsigned int fileSize) { Wave wave = { 0 }; stb_vorbis *oggData = stb_vorbis_open_memory((unsigned char *)fileData, fileSize, NULL, NULL); if (oggData != NULL) { stb_vorbis_info info = stb_vorbis_get_info(oggData); wave.sampleRate = info.sample_rate; wave.sampleSize = 16; // 16 bit per sample (short) wave.channels = info.channels; wave.sampleCount = (unsigned int)stb_vorbis_stream_length_in_samples(oggData)*info.channels; // Independent by channel float totalSeconds = stb_vorbis_stream_length_in_seconds(oggData); if (totalSeconds > 10) TRACELOG(LOG_WARNING, "WAVE: OGG audio length larger than 10 seconds (%f sec.), that's a big file in memory, consider music streaming", totalSeconds); wave.data = (short *)RL_MALLOC(wave.sampleCount*sizeof(short)); // NOTE: Returns the number of samples to process (be careful! we ask for number of shorts!) stb_vorbis_get_samples_short_interleaved(oggData, info.channels, (short *)wave.data, wave.sampleCount); TRACELOG(LOG_INFO, "WAVE: OGG data loaded successfully (%i Hz, %i bit, %s)", wave.sampleRate, wave.sampleSize, (wave.channels == 1)? "Mono" : "Stereo"); stb_vorbis_close(oggData); } else TRACELOG(LOG_WARNING, "WAVE: Failed to load OGG data"); return wave; } #endif #if defined(SUPPORT_FILEFORMAT_FLAC) // Load FLAC file data into Wave structure // NOTE: Using dr_flac library static Wave LoadFLAC(const unsigned char *fileData, unsigned int fileSize) { Wave wave = { 0 }; // Decode the entire FLAC file in one go unsigned long long int totalFrameCount = 0; wave.data = drflac_open_memory_and_read_pcm_frames_s16(fileData, fileSize, &wave.channels, &wave.sampleRate, &totalFrameCount, NULL); if (wave.data != NULL) { wave.sampleCount = (unsigned int)totalFrameCount*wave.channels; wave.sampleSize = 16; TRACELOG(LOG_INFO, "WAVE: FLAC data loaded successfully (%i Hz, %i bit, %s)", wave.sampleRate, wave.sampleSize, (wave.channels == 1)? "Mono" : "Stereo"); } else TRACELOG(LOG_WARNING, "WAVE: Failed to load FLAC data"); return wave; } #endif #if defined(SUPPORT_FILEFORMAT_MP3) // Load MP3 file data into Wave structure // NOTE: Using dr_mp3 library static Wave LoadMP3(const unsigned char *fileData, unsigned int fileSize) { Wave wave = { 0 }; drmp3_config config = { 0 }; // Decode the entire MP3 file in one go unsigned long long int totalFrameCount = 0; wave.data = drmp3_open_memory_and_read_pcm_frames_f32(fileData, fileSize, &config, &totalFrameCount, NULL); if (wave.data != NULL) { wave.channels = config.channels; wave.sampleRate = config.sampleRate; wave.sampleCount = (int)totalFrameCount*wave.channels; wave.sampleSize = 32; // NOTE: Only support up to 2 channels (mono, stereo) // TODO: Really? if (wave.channels > 2) TRACELOG(LOG_WARNING, "WAVE: MP3 channels number (%i) not supported", wave.channels); TRACELOG(LOG_INFO, "WAVE: MP3 file loaded successfully (%i Hz, %i bit, %s)", wave.sampleRate, wave.sampleSize, (wave.channels == 1)? "Mono" : "Stereo"); } else TRACELOG(LOG_WARNING, "WAVE: Failed to load MP3 data"); return wave; } #endif // Some required functions for audio standalone module version #if defined(RAUDIO_STANDALONE) // Check file extension static bool IsFileExtension(const char *fileName, const char *ext) { bool result = false; const char *fileExt; if ((fileExt = strrchr(fileName, '.')) != NULL) { if (strcmp(fileExt, ext) == 0) result = true; } return result; } // Load data from file into a buffer static unsigned char *LoadFileData(const char *fileName, unsigned int *bytesRead) { unsigned char *data = NULL; *bytesRead = 0; if (fileName != NULL) { FILE *file = fopen(fileName, "rb"); if (file != NULL) { // WARNING: On binary streams SEEK_END could not be found, // using fseek() and ftell() could not work in some (rare) cases fseek(file, 0, SEEK_END); int size = ftell(file); fseek(file, 0, SEEK_SET); if (size > 0) { data = (unsigned char *)RL_MALLOC(size*sizeof(unsigned char)); // NOTE: fread() returns number of read elements instead of bytes, so we read [1 byte, size elements] unsigned int count = (unsigned int)fread(data, sizeof(unsigned char), size, file); *bytesRead = count; if (count != size) TRACELOG(LOG_WARNING, "FILEIO: [%s] File partially loaded", fileName); else TRACELOG(LOG_INFO, "FILEIO: [%s] File loaded successfully", fileName); } else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to read file", fileName); fclose(file); } else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to open file", fileName); } else TRACELOG(LOG_WARNING, "FILEIO: File name provided is not valid"); return data; } // Save data to file from buffer static bool SaveFileData(const char *fileName, void *data, unsigned int bytesToWrite) { if (fileName != NULL) { FILE *file = fopen(fileName, "wb"); if (file != NULL) { unsigned int count = (unsigned int)fwrite(data, sizeof(unsigned char), bytesToWrite, file); if (count == 0) TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to write file", fileName); else if (count != bytesToWrite) TRACELOG(LOG_WARNING, "FILEIO: [%s] File partially written", fileName); else TRACELOG(LOG_INFO, "FILEIO: [%s] File saved successfully", fileName); fclose(file); } else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to open file", fileName); } else TRACELOG(LOG_WARNING, "FILEIO: File name provided is not valid"); } // Save text data to file (write), string must be '\0' terminated static bool SaveFileText(const char *fileName, char *text) { if (fileName != NULL) { FILE *file = fopen(fileName, "wt"); if (file != NULL) { int count = fprintf(file, "%s", text); if (count == 0) TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to write text file", fileName); else TRACELOG(LOG_INFO, "FILEIO: [%s] Text file saved successfully", fileName); fclose(file); } else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to open text file", fileName); } else TRACELOG(LOG_WARNING, "FILEIO: File name provided is not valid"); } #endif #undef AudioBuffer