/********************************************************************************************** * * rlgl - raylib OpenGL abstraction layer * * rlgl is a wrapper for multiple OpenGL versions (1.1, 2.1, 3.3 Core, ES 2.0) to * pseudo-OpenGL 1.1 style functions (rlVertex, rlTranslate, rlRotate...). * * When chosing an OpenGL version greater than OpenGL 1.1, rlgl stores vertex data on internal * VBO buffers (and VAOs if available). It requires calling 3 functions: * rlglInit() - Initialize internal buffers and auxiliar resources * rlglDraw() - Process internal buffers and send required draw calls * rlglClose() - De-initialize internal buffers data and other auxiliar resources * * CONFIGURATION: * * #define GRAPHICS_API_OPENGL_11 * #define GRAPHICS_API_OPENGL_21 * #define GRAPHICS_API_OPENGL_33 * #define GRAPHICS_API_OPENGL_ES2 * Use selected OpenGL graphics backend, should be supported by platform * Those preprocessor defines are only used on rlgl module, if OpenGL version is * required by any other module, use rlGetVersion() tocheck it * * #define RLGL_IMPLEMENTATION * Generates the implementation of the library into the included file. * If not defined, the library is in header only mode and can be included in other headers * or source files without problems. But only ONE file should hold the implementation. * * #define RLGL_STANDALONE * Use rlgl as standalone library (no raylib dependency) * * #define SUPPORT_VR_SIMULATOR * Support VR simulation functionality (stereo rendering) * * DEPENDENCIES: * raymath - 3D math functionality (Vector3, Matrix, Quaternion) * GLAD - OpenGL extensions loading (OpenGL 3.3 Core only) * * * LICENSE: zlib/libpng * * Copyright (c) 2014-2020 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #ifndef RLGL_H #define RLGL_H #if defined(RLGL_STANDALONE) #define RAYMATH_STANDALONE #define RAYMATH_HEADER_ONLY #define RLAPI // We are building or using rlgl as a static library (or Linux shared library) #if defined(_WIN32) #if defined(BUILD_LIBTYPE_SHARED) #define RLAPI __declspec(dllexport) // We are building raylib as a Win32 shared library (.dll) #elif defined(USE_LIBTYPE_SHARED) #define RLAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll) #endif #endif // Support TRACELOG macros #if !defined(TRACELOG) #define TRACELOG(level, ...) (void)0 #define TRACELOGD(...) (void)0 #endif // Allow custom memory allocators #ifndef RL_MALLOC #define RL_MALLOC(sz) malloc(sz) #endif #ifndef RL_CALLOC #define RL_CALLOC(n,sz) calloc(n,sz) #endif #ifndef RL_REALLOC #define RL_REALLOC(n,sz) realloc(n,sz) #endif #ifndef RL_FREE #define RL_FREE(p) free(p) #endif #else #include "raylib.h" // Required for: Model, Shader, Texture2D, TRACELOG() #endif #include "raymath.h" // Required for: Vector3, Matrix // Security check in case no GRAPHICS_API_OPENGL_* defined #if !defined(GRAPHICS_API_OPENGL_11) && \ !defined(GRAPHICS_API_OPENGL_21) && \ !defined(GRAPHICS_API_OPENGL_33) && \ !defined(GRAPHICS_API_OPENGL_ES2) #define GRAPHICS_API_OPENGL_33 #endif // Security check in case multiple GRAPHICS_API_OPENGL_* defined #if defined(GRAPHICS_API_OPENGL_11) #if defined(GRAPHICS_API_OPENGL_21) #undef GRAPHICS_API_OPENGL_21 #endif #if defined(GRAPHICS_API_OPENGL_33) #undef GRAPHICS_API_OPENGL_33 #endif #if defined(GRAPHICS_API_OPENGL_ES2) #undef GRAPHICS_API_OPENGL_ES2 #endif #endif #if defined(GRAPHICS_API_OPENGL_21) #define GRAPHICS_API_OPENGL_33 #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // This is the maximum amount of elements (quads) per batch // NOTE: Be careful with text, every letter maps to a quad #define MAX_BATCH_ELEMENTS 8192 #elif defined(GRAPHICS_API_OPENGL_ES2) // We reduce memory sizes for embedded systems (RPI and HTML5) // NOTE: On HTML5 (emscripten) this is allocated on heap, by default it's only 16MB!...just take care... #define MAX_BATCH_ELEMENTS 2048 #endif #ifndef MAX_BATCH_BUFFERING #define MAX_BATCH_BUFFERING 1 // Max number of buffers for batching (multi-buffering) #endif #define MAX_MATRIX_STACK_SIZE 32 // Max size of Matrix stack #define MAX_DRAWCALL_REGISTERED 256 // Max draws by state changes (mode, texture) #ifndef DEFAULT_NEAR_CULL_DISTANCE #define DEFAULT_NEAR_CULL_DISTANCE 0.01 // Default near cull distance #endif #ifndef DEFAULT_FAR_CULL_DISTANCE #define DEFAULT_FAR_CULL_DISTANCE 1000.0 // Default far cull distance #endif // Shader and material limits #define MAX_SHADER_LOCATIONS 32 // Maximum number of predefined locations stored in shader struct #define MAX_MATERIAL_MAPS 12 // Maximum number of texture maps stored in shader struct // Texture parameters (equivalent to OpenGL defines) #define RL_TEXTURE_WRAP_S 0x2802 // GL_TEXTURE_WRAP_S #define RL_TEXTURE_WRAP_T 0x2803 // GL_TEXTURE_WRAP_T #define RL_TEXTURE_MAG_FILTER 0x2800 // GL_TEXTURE_MAG_FILTER #define RL_TEXTURE_MIN_FILTER 0x2801 // GL_TEXTURE_MIN_FILTER #define RL_TEXTURE_ANISOTROPIC_FILTER 0x3000 // Anisotropic filter (custom identifier) #define RL_FILTER_NEAREST 0x2600 // GL_NEAREST #define RL_FILTER_LINEAR 0x2601 // GL_LINEAR #define RL_FILTER_MIP_NEAREST 0x2700 // GL_NEAREST_MIPMAP_NEAREST #define RL_FILTER_NEAREST_MIP_LINEAR 0x2702 // GL_NEAREST_MIPMAP_LINEAR #define RL_FILTER_LINEAR_MIP_NEAREST 0x2701 // GL_LINEAR_MIPMAP_NEAREST #define RL_FILTER_MIP_LINEAR 0x2703 // GL_LINEAR_MIPMAP_LINEAR #define RL_WRAP_REPEAT 0x2901 // GL_REPEAT #define RL_WRAP_CLAMP 0x812F // GL_CLAMP_TO_EDGE #define RL_WRAP_MIRROR_REPEAT 0x8370 // GL_MIRRORED_REPEAT #define RL_WRAP_MIRROR_CLAMP 0x8742 // GL_MIRROR_CLAMP_EXT // Matrix modes (equivalent to OpenGL) #define RL_MODELVIEW 0x1700 // GL_MODELVIEW #define RL_PROJECTION 0x1701 // GL_PROJECTION #define RL_TEXTURE 0x1702 // GL_TEXTURE // Primitive assembly draw modes #define RL_LINES 0x0001 // GL_LINES #define RL_TRIANGLES 0x0004 // GL_TRIANGLES #define RL_QUADS 0x0007 // GL_QUADS //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- typedef enum { OPENGL_11 = 1, OPENGL_21, OPENGL_33, OPENGL_ES_20 } GlVersion; typedef unsigned char byte; #if defined(RLGL_STANDALONE) #ifndef __cplusplus // Boolean type typedef enum { false, true } bool; #endif // Color type, RGBA (32bit) typedef struct Color { unsigned char r; unsigned char g; unsigned char b; unsigned char a; } Color; // Rectangle type typedef struct Rectangle { float x; float y; float width; float height; } Rectangle; // Texture2D type // NOTE: Data stored in GPU memory typedef struct Texture2D { unsigned int id; // OpenGL texture id int width; // Texture base width int height; // Texture base height int mipmaps; // Mipmap levels, 1 by default int format; // Data format (PixelFormat) } Texture2D; // Texture type, same as Texture2D typedef Texture2D Texture; // TextureCubemap type, actually, same as Texture2D typedef Texture2D TextureCubemap; // RenderTexture2D type, for texture rendering typedef struct RenderTexture2D { unsigned int id; // OpenGL framebuffer (fbo) id Texture2D texture; // Color buffer attachment texture Texture2D depth; // Depth buffer attachment texture bool depthTexture; // Track if depth attachment is a texture or renderbuffer } RenderTexture2D; // RenderTexture type, same as RenderTexture2D typedef RenderTexture2D RenderTexture; // Vertex data definning a mesh typedef struct Mesh { int vertexCount; // number of vertices stored in arrays int triangleCount; // number of triangles stored (indexed or not) float *vertices; // vertex position (XYZ - 3 components per vertex) (shader-location = 0) float *texcoords; // vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1) float *texcoords2; // vertex second texture coordinates (useful for lightmaps) (shader-location = 5) float *normals; // vertex normals (XYZ - 3 components per vertex) (shader-location = 2) float *tangents; // vertex tangents (XYZW - 4 components per vertex) (shader-location = 4) unsigned char *colors; // vertex colors (RGBA - 4 components per vertex) (shader-location = 3) unsigned short *indices;// vertex indices (in case vertex data comes indexed) // Animation vertex data float *animVertices; // Animated vertex positions (after bones transformations) float *animNormals; // Animated normals (after bones transformations) int *boneIds; // Vertex bone ids, up to 4 bones influence by vertex (skinning) float *boneWeights; // Vertex bone weight, up to 4 bones influence by vertex (skinning) // OpenGL identifiers unsigned int vaoId; // OpenGL Vertex Array Object id unsigned int *vboId; // OpenGL Vertex Buffer Objects id (7 types of vertex data) } Mesh; // Shader and material limits #define MAX_SHADER_LOCATIONS 32 #define MAX_MATERIAL_MAPS 12 // Shader type (generic) typedef struct Shader { unsigned int id; // Shader program id int *locs; // Shader locations array (MAX_SHADER_LOCATIONS) } Shader; // Material texture map typedef struct MaterialMap { Texture2D texture; // Material map texture Color color; // Material map color float value; // Material map value } MaterialMap; // Material type (generic) typedef struct Material { Shader shader; // Material shader MaterialMap *maps; // Material maps (MAX_MATERIAL_MAPS) float *params; // Material generic parameters (if required) } Material; // Camera type, defines a camera position/orientation in 3d space typedef struct Camera { Vector3 position; // Camera position Vector3 target; // Camera target it looks-at Vector3 up; // Camera up vector (rotation over its axis) float fovy; // Camera field-of-view apperture in Y (degrees) } Camera; // Head-Mounted-Display device parameters typedef struct VrDeviceInfo { int hResolution; // HMD horizontal resolution in pixels int vResolution; // HMD vertical resolution in pixels float hScreenSize; // HMD horizontal size in meters float vScreenSize; // HMD vertical size in meters float vScreenCenter; // HMD screen center in meters float eyeToScreenDistance; // HMD distance between eye and display in meters float lensSeparationDistance; // HMD lens separation distance in meters float interpupillaryDistance; // HMD IPD (distance between pupils) in meters float lensDistortionValues[4]; // HMD lens distortion constant parameters float chromaAbCorrection[4]; // HMD chromatic aberration correction parameters } VrDeviceInfo; // VR Stereo rendering configuration for simulator typedef struct VrStereoConfig { Shader distortionShader; // VR stereo rendering distortion shader Matrix eyesProjection[2]; // VR stereo rendering eyes projection matrices Matrix eyesViewOffset[2]; // VR stereo rendering eyes view offset matrices int eyeViewportRight[4]; // VR stereo rendering right eye viewport [x, y, w, h] int eyeViewportLeft[4]; // VR stereo rendering left eye viewport [x, y, w, h] } VrStereoConfig; // TraceLog message types typedef enum { LOG_ALL, LOG_TRACE, LOG_DEBUG, LOG_INFO, LOG_WARNING, LOG_ERROR, LOG_FATAL, LOG_NONE } TraceLogType; // Texture formats (support depends on OpenGL version) typedef enum { UNCOMPRESSED_GRAYSCALE = 1, // 8 bit per pixel (no alpha) UNCOMPRESSED_GRAY_ALPHA, UNCOMPRESSED_R5G6B5, // 16 bpp UNCOMPRESSED_R8G8B8, // 24 bpp UNCOMPRESSED_R5G5B5A1, // 16 bpp (1 bit alpha) UNCOMPRESSED_R4G4B4A4, // 16 bpp (4 bit alpha) UNCOMPRESSED_R8G8B8A8, // 32 bpp UNCOMPRESSED_R32, // 32 bpp (1 channel - float) UNCOMPRESSED_R32G32B32, // 32*3 bpp (3 channels - float) UNCOMPRESSED_R32G32B32A32, // 32*4 bpp (4 channels - float) COMPRESSED_DXT1_RGB, // 4 bpp (no alpha) COMPRESSED_DXT1_RGBA, // 4 bpp (1 bit alpha) COMPRESSED_DXT3_RGBA, // 8 bpp COMPRESSED_DXT5_RGBA, // 8 bpp COMPRESSED_ETC1_RGB, // 4 bpp COMPRESSED_ETC2_RGB, // 4 bpp COMPRESSED_ETC2_EAC_RGBA, // 8 bpp COMPRESSED_PVRT_RGB, // 4 bpp COMPRESSED_PVRT_RGBA, // 4 bpp COMPRESSED_ASTC_4x4_RGBA, // 8 bpp COMPRESSED_ASTC_8x8_RGBA // 2 bpp } PixelFormat; // Texture parameters: filter mode // NOTE 1: Filtering considers mipmaps if available in the texture // NOTE 2: Filter is accordingly set for minification and magnification typedef enum { FILTER_POINT = 0, // No filter, just pixel aproximation FILTER_BILINEAR, // Linear filtering FILTER_TRILINEAR, // Trilinear filtering (linear with mipmaps) FILTER_ANISOTROPIC_4X, // Anisotropic filtering 4x FILTER_ANISOTROPIC_8X, // Anisotropic filtering 8x FILTER_ANISOTROPIC_16X, // Anisotropic filtering 16x } TextureFilterMode; // Color blending modes (pre-defined) typedef enum { BLEND_ALPHA = 0, BLEND_ADDITIVE, BLEND_MULTIPLIED } BlendMode; // Shader location point type typedef enum { LOC_VERTEX_POSITION = 0, LOC_VERTEX_TEXCOORD01, LOC_VERTEX_TEXCOORD02, LOC_VERTEX_NORMAL, LOC_VERTEX_TANGENT, LOC_VERTEX_COLOR, LOC_MATRIX_MVP, LOC_MATRIX_MODEL, LOC_MATRIX_VIEW, LOC_MATRIX_PROJECTION, LOC_VECTOR_VIEW, LOC_COLOR_DIFFUSE, LOC_COLOR_SPECULAR, LOC_COLOR_AMBIENT, LOC_MAP_ALBEDO, // LOC_MAP_DIFFUSE LOC_MAP_METALNESS, // LOC_MAP_SPECULAR LOC_MAP_NORMAL, LOC_MAP_ROUGHNESS, LOC_MAP_OCCLUSION, LOC_MAP_EMISSION, LOC_MAP_HEIGHT, LOC_MAP_CUBEMAP, LOC_MAP_IRRADIANCE, LOC_MAP_PREFILTER, LOC_MAP_BRDF } ShaderLocationIndex; // Shader uniform data types typedef enum { UNIFORM_FLOAT = 0, UNIFORM_VEC2, UNIFORM_VEC3, UNIFORM_VEC4, UNIFORM_INT, UNIFORM_IVEC2, UNIFORM_IVEC3, UNIFORM_IVEC4, UNIFORM_SAMPLER2D } ShaderUniformDataType; #define LOC_MAP_DIFFUSE LOC_MAP_ALBEDO #define LOC_MAP_SPECULAR LOC_MAP_METALNESS // Material map type typedef enum { MAP_ALBEDO = 0, // MAP_DIFFUSE MAP_METALNESS = 1, // MAP_SPECULAR MAP_NORMAL = 2, MAP_ROUGHNESS = 3, MAP_OCCLUSION, MAP_EMISSION, MAP_HEIGHT, MAP_CUBEMAP, // NOTE: Uses GL_TEXTURE_CUBE_MAP MAP_IRRADIANCE, // NOTE: Uses GL_TEXTURE_CUBE_MAP MAP_PREFILTER, // NOTE: Uses GL_TEXTURE_CUBE_MAP MAP_BRDF } MaterialMapType; #define MAP_DIFFUSE MAP_ALBEDO #define MAP_SPECULAR MAP_METALNESS #endif #if defined(__cplusplus) extern "C" { // Prevents name mangling of functions #endif //------------------------------------------------------------------------------------ // Functions Declaration - Matrix operations //------------------------------------------------------------------------------------ RLAPI void rlMatrixMode(int mode); // Choose the current matrix to be transformed RLAPI void rlPushMatrix(void); // Push the current matrix to stack RLAPI void rlPopMatrix(void); // Pop lattest inserted matrix from stack RLAPI void rlLoadIdentity(void); // Reset current matrix to identity matrix RLAPI void rlTranslatef(float x, float y, float z); // Multiply the current matrix by a translation matrix RLAPI void rlRotatef(float angleDeg, float x, float y, float z); // Multiply the current matrix by a rotation matrix RLAPI void rlScalef(float x, float y, float z); // Multiply the current matrix by a scaling matrix RLAPI void rlMultMatrixf(float *matf); // Multiply the current matrix by another matrix RLAPI void rlFrustum(double left, double right, double bottom, double top, double znear, double zfar); RLAPI void rlOrtho(double left, double right, double bottom, double top, double znear, double zfar); RLAPI void rlViewport(int x, int y, int width, int height); // Set the viewport area //------------------------------------------------------------------------------------ // Functions Declaration - Vertex level operations //------------------------------------------------------------------------------------ RLAPI void rlBegin(int mode); // Initialize drawing mode (how to organize vertex) RLAPI void rlEnd(void); // Finish vertex providing RLAPI void rlVertex2i(int x, int y); // Define one vertex (position) - 2 int RLAPI void rlVertex2f(float x, float y); // Define one vertex (position) - 2 float RLAPI void rlVertex3f(float x, float y, float z); // Define one vertex (position) - 3 float RLAPI void rlTexCoord2f(float x, float y); // Define one vertex (texture coordinate) - 2 float RLAPI void rlNormal3f(float x, float y, float z); // Define one vertex (normal) - 3 float RLAPI void rlColor4ub(byte r, byte g, byte b, byte a); // Define one vertex (color) - 4 byte RLAPI void rlColor3f(float x, float y, float z); // Define one vertex (color) - 3 float RLAPI void rlColor4f(float x, float y, float z, float w); // Define one vertex (color) - 4 float //------------------------------------------------------------------------------------ // Functions Declaration - OpenGL equivalent functions (common to 1.1, 3.3+, ES2) // NOTE: This functions are used to completely abstract raylib code from OpenGL layer //------------------------------------------------------------------------------------ RLAPI void rlEnableTexture(unsigned int id); // Enable texture usage RLAPI void rlDisableTexture(void); // Disable texture usage RLAPI void rlTextureParameters(unsigned int id, int param, int value); // Set texture parameters (filter, wrap) RLAPI void rlEnableRenderTexture(unsigned int id); // Enable render texture (fbo) RLAPI void rlDisableRenderTexture(void); // Disable render texture (fbo), return to default framebuffer RLAPI void rlEnableDepthTest(void); // Enable depth test RLAPI void rlDisableDepthTest(void); // Disable depth test RLAPI void rlEnableBackfaceCulling(void); // Enable backface culling RLAPI void rlDisableBackfaceCulling(void); // Disable backface culling RLAPI void rlEnableScissorTest(void); // Enable scissor test RLAPI void rlDisableScissorTest(void); // Disable scissor test RLAPI void rlScissor(int x, int y, int width, int height); // Scissor test RLAPI void rlEnableWireMode(void); // Enable wire mode RLAPI void rlDisableWireMode(void); // Disable wire mode RLAPI void rlDeleteTextures(unsigned int id); // Delete OpenGL texture from GPU RLAPI void rlDeleteRenderTextures(RenderTexture2D target); // Delete render textures (fbo) from GPU RLAPI void rlDeleteShader(unsigned int id); // Delete OpenGL shader program from GPU RLAPI void rlDeleteVertexArrays(unsigned int id); // Unload vertex data (VAO) from GPU memory RLAPI void rlDeleteBuffers(unsigned int id); // Unload vertex data (VBO) from GPU memory RLAPI void rlClearColor(byte r, byte g, byte b, byte a); // Clear color buffer with color RLAPI void rlClearScreenBuffers(void); // Clear used screen buffers (color and depth) RLAPI void rlUpdateBuffer(int bufferId, void *data, int dataSize); // Update GPU buffer with new data RLAPI unsigned int rlLoadAttribBuffer(unsigned int vaoId, int shaderLoc, void *buffer, int size, bool dynamic); // Load a new attributes buffer //------------------------------------------------------------------------------------ // Functions Declaration - rlgl functionality //------------------------------------------------------------------------------------ RLAPI void rlglInit(int width, int height); // Initialize rlgl (buffers, shaders, textures, states) RLAPI void rlglClose(void); // De-inititialize rlgl (buffers, shaders, textures) RLAPI void rlglDraw(void); // Update and draw default internal buffers RLAPI int rlGetVersion(void); // Returns current OpenGL version RLAPI bool rlCheckBufferLimit(int vCount); // Check internal buffer overflow for a given number of vertex RLAPI void rlSetDebugMarker(const char *text); // Set debug marker for analysis RLAPI void rlLoadExtensions(void *loader); // Load OpenGL extensions RLAPI Vector3 rlUnproject(Vector3 source, Matrix proj, Matrix view); // Get world coordinates from screen coordinates // Textures data management RLAPI unsigned int rlLoadTexture(void *data, int width, int height, int format, int mipmapCount); // Load texture in GPU RLAPI unsigned int rlLoadTextureDepth(int width, int height, int bits, bool useRenderBuffer); // Load depth texture/renderbuffer (to be attached to fbo) RLAPI unsigned int rlLoadTextureCubemap(void *data, int size, int format); // Load texture cubemap RLAPI void rlUpdateTexture(unsigned int id, int width, int height, int format, const void *data); // Update GPU texture with new data RLAPI void rlGetGlTextureFormats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType); // Get OpenGL internal formats RLAPI void rlUnloadTexture(unsigned int id); // Unload texture from GPU memory RLAPI void rlGenerateMipmaps(Texture2D *texture); // Generate mipmap data for selected texture RLAPI void *rlReadTexturePixels(Texture2D texture); // Read texture pixel data RLAPI unsigned char *rlReadScreenPixels(int width, int height); // Read screen pixel data (color buffer) // Render texture management (fbo) RLAPI RenderTexture2D rlLoadRenderTexture(int width, int height, int format, int depthBits, bool useDepthTexture); // Load a render texture (with color and depth attachments) RLAPI void rlRenderTextureAttach(RenderTexture target, unsigned int id, int attachType); // Attach texture/renderbuffer to an fbo RLAPI bool rlRenderTextureComplete(RenderTexture target); // Verify render texture is complete // Vertex data management RLAPI void rlLoadMesh(Mesh *mesh, bool dynamic); // Upload vertex data into GPU and provided VAO/VBO ids RLAPI void rlUpdateMesh(Mesh mesh, int buffer, int num); // Update vertex or index data on GPU (upload new data to one buffer) RLAPI void rlUpdateMeshAt(Mesh mesh, int buffer, int num, int index); // Update vertex or index data on GPU, at index RLAPI void rlDrawMesh(Mesh mesh, Material material, Matrix transform); // Draw a 3d mesh with material and transform RLAPI void rlUnloadMesh(Mesh mesh); // Unload mesh data from CPU and GPU // NOTE: There is a set of shader related functions that are available to end user, // to avoid creating function wrappers through core module, they have been directly declared in raylib.h #if defined(RLGL_STANDALONE) //------------------------------------------------------------------------------------ // Shaders System Functions (Module: rlgl) // NOTE: This functions are useless when using OpenGL 1.1 //------------------------------------------------------------------------------------ // Shader loading/unloading functions RLAPI Shader LoadShader(const char *vsFileName, const char *fsFileName); // Load shader from files and bind default locations RLAPI Shader LoadShaderCode(const char *vsCode, const char *fsCode); // Load shader from code strings and bind default locations RLAPI void UnloadShader(Shader shader); // Unload shader from GPU memory (VRAM) RLAPI Shader GetShaderDefault(void); // Get default shader RLAPI Texture2D GetTextureDefault(void); // Get default texture RLAPI Texture2D GetShapesTexture(void); // Get texture to draw shapes RLAPI Rectangle GetShapesTextureRec(void); // Get texture rectangle to draw shapes // Shader configuration functions RLAPI int GetShaderLocation(Shader shader, const char *uniformName); // Get shader uniform location RLAPI void SetShaderValue(Shader shader, int uniformLoc, const void *value, int uniformType); // Set shader uniform value RLAPI void SetShaderValueV(Shader shader, int uniformLoc, const void *value, int uniformType, int count); // Set shader uniform value vector RLAPI void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat); // Set shader uniform value (matrix 4x4) RLAPI void SetMatrixProjection(Matrix proj); // Set a custom projection matrix (replaces internal projection matrix) RLAPI void SetMatrixModelview(Matrix view); // Set a custom modelview matrix (replaces internal modelview matrix) RLAPI Matrix GetMatrixModelview(void); // Get internal modelview matrix // Texture maps generation (PBR) // NOTE: Required shaders should be provided RLAPI Texture2D GenTextureCubemap(Shader shader, Texture2D map, int size); // Generate cubemap texture from HDR texture RLAPI Texture2D GenTextureIrradiance(Shader shader, Texture2D cubemap, int size); // Generate irradiance texture using cubemap data RLAPI Texture2D GenTexturePrefilter(Shader shader, Texture2D cubemap, int size); // Generate prefilter texture using cubemap data RLAPI Texture2D GenTextureBRDF(Shader shader, int size); // Generate BRDF texture using cubemap data // Shading begin/end functions RLAPI void BeginShaderMode(Shader shader); // Begin custom shader drawing RLAPI void EndShaderMode(void); // End custom shader drawing (use default shader) RLAPI void BeginBlendMode(int mode); // Begin blending mode (alpha, additive, multiplied) RLAPI void EndBlendMode(void); // End blending mode (reset to default: alpha blending) // VR control functions RLAPI void InitVrSimulator(void); // Init VR simulator for selected device parameters RLAPI void CloseVrSimulator(void); // Close VR simulator for current device RLAPI void UpdateVrTracking(Camera *camera); // Update VR tracking (position and orientation) and camera RLAPI void SetVrConfiguration(VrDeviceInfo info, Shader distortion); // Set stereo rendering configuration parameters RLAPI bool IsVrSimulatorReady(void); // Detect if VR simulator is ready RLAPI void ToggleVrMode(void); // Enable/Disable VR experience RLAPI void BeginVrDrawing(void); // Begin VR simulator stereo rendering RLAPI void EndVrDrawing(void); // End VR simulator stereo rendering RLAPI char *LoadFileText(const char *fileName); // Load chars array from text file RLAPI int GetPixelDataSize(int width, int height, int format);// Get pixel data size in bytes (image or texture) #endif #if defined(__cplusplus) } #endif #endif // RLGL_H /*********************************************************************************** * * RLGL IMPLEMENTATION * ************************************************************************************/ #if defined(RLGL_IMPLEMENTATION) #if defined(RLGL_STANDALONE) #include // Required for: fopen(), fseek(), fread(), fclose() [LoadFileText] #else // Check if config flags have been externally provided on compilation line #if !defined(EXTERNAL_CONFIG_FLAGS) #include "config.h" // Defines module configuration flags #endif #include "raymath.h" // Required for: Vector3 and Matrix functions #endif #include // Required for: malloc(), free() #include // Required for: strcmp(), strlen() [Used in rlglInit(), on extensions loading] #include // Required for: atan2f(), fabs() #if defined(GRAPHICS_API_OPENGL_11) #if defined(__APPLE__) #include // OpenGL 1.1 library for OSX #include #else // APIENTRY for OpenGL function pointer declarations is required #ifndef APIENTRY #if defined(_WIN32) #define APIENTRY __stdcall #else #define APIENTRY #endif #endif // WINGDIAPI definition. Some Windows OpenGL headers need it #if !defined(WINGDIAPI) && defined(_WIN32) #define WINGDIAPI __declspec(dllimport) #endif #include // OpenGL 1.1 library #endif #endif #if defined(GRAPHICS_API_OPENGL_21) #define GRAPHICS_API_OPENGL_33 // OpenGL 2.1 uses mostly OpenGL 3.3 Core functionality #endif #if defined(GRAPHICS_API_OPENGL_33) #if defined(__APPLE__) #include // OpenGL 3 library for OSX #include // OpenGL 3 extensions library for OSX #else #define GLAD_REALLOC RL_REALLOC #define GLAD_FREE RL_FREE #define GLAD_IMPLEMENTATION #if defined(RLGL_STANDALONE) #include "glad.h" // GLAD extensions loading library, includes OpenGL headers #else #include "external/glad.h" // GLAD extensions loading library, includes OpenGL headers #endif #endif #endif #if defined(GRAPHICS_API_OPENGL_ES2) #include // EGL library #include // OpenGL ES 2.0 library #include // OpenGL ES 2.0 extensions library #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #ifndef GL_SHADING_LANGUAGE_VERSION #define GL_SHADING_LANGUAGE_VERSION 0x8B8C #endif #ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT #define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #endif #ifndef GL_ETC1_RGB8_OES #define GL_ETC1_RGB8_OES 0x8D64 #endif #ifndef GL_COMPRESSED_RGB8_ETC2 #define GL_COMPRESSED_RGB8_ETC2 0x9274 #endif #ifndef GL_COMPRESSED_RGBA8_ETC2_EAC #define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #endif #ifndef GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #endif #ifndef GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_4x4_KHR #define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_8x8_KHR #define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7 #endif #ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT #define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF #endif #ifndef GL_TEXTURE_MAX_ANISOTROPY_EXT #define GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE #endif #if defined(GRAPHICS_API_OPENGL_11) #define GL_UNSIGNED_SHORT_5_6_5 0x8363 #define GL_UNSIGNED_SHORT_5_5_5_1 0x8034 #define GL_UNSIGNED_SHORT_4_4_4_4 0x8033 #endif #if defined(GRAPHICS_API_OPENGL_21) #define GL_LUMINANCE 0x1909 #define GL_LUMINANCE_ALPHA 0x190A #endif #if defined(GRAPHICS_API_OPENGL_ES2) #define glClearDepth glClearDepthf #define GL_READ_FRAMEBUFFER GL_FRAMEBUFFER #define GL_DRAW_FRAMEBUFFER GL_FRAMEBUFFER #endif // Default vertex attribute names on shader to set location points #define DEFAULT_ATTRIB_POSITION_NAME "vertexPosition" // shader-location = 0 #define DEFAULT_ATTRIB_TEXCOORD_NAME "vertexTexCoord" // shader-location = 1 #define DEFAULT_ATTRIB_NORMAL_NAME "vertexNormal" // shader-location = 2 #define DEFAULT_ATTRIB_COLOR_NAME "vertexColor" // shader-location = 3 #define DEFAULT_ATTRIB_TANGENT_NAME "vertexTangent" // shader-location = 4 #define DEFAULT_ATTRIB_TEXCOORD2_NAME "vertexTexCoord2" // shader-location = 5 //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // Dynamic vertex buffers (position + texcoords + colors + indices arrays) typedef struct DynamicBuffer { int vCounter; // vertex position counter to process (and draw) from full buffer int tcCounter; // vertex texcoord counter to process (and draw) from full buffer int cCounter; // vertex color counter to process (and draw) from full buffer float *vertices; // vertex position (XYZ - 3 components per vertex) (shader-location = 0) float *texcoords; // vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1) unsigned char *colors; // vertex colors (RGBA - 4 components per vertex) (shader-location = 3) #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) unsigned int *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad) #elif defined(GRAPHICS_API_OPENGL_ES2) unsigned short *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad) #endif unsigned int vaoId; // OpenGL Vertex Array Object id unsigned int vboId[4]; // OpenGL Vertex Buffer Objects id (4 types of vertex data) } DynamicBuffer; // Draw call type typedef struct DrawCall { int mode; // Drawing mode: LINES, TRIANGLES, QUADS int vertexCount; // Number of vertex of the draw int vertexAlignment; // Number of vertex required for index alignment (LINES, TRIANGLES) //unsigned int vaoId; // Vertex array id to be used on the draw //unsigned int shaderId; // Shader id to be used on the draw unsigned int textureId; // Texture id to be used on the draw //Matrix projection; // Projection matrix for this draw //Matrix modelview; // Modelview matrix for this draw } DrawCall; #if defined(SUPPORT_VR_SIMULATOR) // VR Stereo rendering configuration for simulator typedef struct VrStereoConfig { Shader distortionShader; // VR stereo rendering distortion shader Matrix eyesProjection[2]; // VR stereo rendering eyes projection matrices Matrix eyesViewOffset[2]; // VR stereo rendering eyes view offset matrices int eyeViewportRight[4]; // VR stereo rendering right eye viewport [x, y, w, h] int eyeViewportLeft[4]; // VR stereo rendering left eye viewport [x, y, w, h] } VrStereoConfig; #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) typedef struct rlglData { struct { int currentMatrixMode; // Current matrix mode Matrix *currentMatrix; // Current matrix pointer Matrix modelview; // Default modelview matrix Matrix projection; // Default projection matrix Matrix transform; // Transform matrix to be used with rlTranslate, rlRotate, rlScale bool doTransform; // Use transform matrix against vertex (if required) Matrix stack[MAX_MATRIX_STACK_SIZE];// Matrix stack for push/pop int stackCounter; // Matrix stack counter DynamicBuffer vertexData[MAX_BATCH_BUFFERING];// Default dynamic buffer for elements data int currentBuffer; // Current buffer tracking, multi-buffering system is supported DrawCall *draws; // Draw calls array int drawsCounter; // Draw calls counter Texture2D shapesTexture; // Texture used on shapes drawing (usually a white) Rectangle shapesTextureRec; // Texture source rectangle used on shapes drawing unsigned int defaultTextureId; // Default texture used on shapes/poly drawing (required by shader) unsigned int defaultVShaderId; // Default vertex shader id (used by default shader program) unsigned int defaultFShaderId; // Default fragment shader Id (used by default shader program) Shader defaultShader; // Basic shader, support vertex color and diffuse texture Shader currentShader; // Shader to be used on rendering (by default, defaultShader) float currentDepth; // Current depth value int framebufferWidth; // Default framebuffer width int framebufferHeight; // Default framebuffer height } State; struct { bool vao; // VAO support (OpenGL ES2 could not support VAO extension) bool texNPOT; // NPOT textures full support bool texDepth; // Depth textures supported bool texFloat32; // float textures support (32 bit per channel) bool texCompDXT; // DDS texture compression support bool texCompETC1; // ETC1 texture compression support bool texCompETC2; // ETC2/EAC texture compression support bool texCompPVRT; // PVR texture compression support bool texCompASTC; // ASTC texture compression support bool texMirrorClamp; // Clamp mirror wrap mode supported bool texAnisoFilter; // Anisotropic texture filtering support bool debugMarker; // Debug marker support float maxAnisotropicLevel; // Maximum anisotropy level supported (minimum is 2.0f) int maxDepthBits; // Maximum bits for depth component } ExtSupported; // Extensions supported flags #if defined(SUPPORT_VR_SIMULATOR) struct { VrStereoConfig config; // VR stereo configuration for simulator RenderTexture2D stereoFbo; // VR stereo rendering framebuffer bool simulatorReady; // VR simulator ready flag bool stereoRender; // VR stereo rendering enabled/disabled flag } Vr; #endif // SUPPORT_VR_SIMULATOR } rlglData; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static rlglData RLGL = { 0 }; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: VAO functionality is exposed through extensions (OES) static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays; // Entry point pointer to function glGenVertexArrays() static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray; // Entry point pointer to function glBindVertexArray() static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays; // Entry point pointer to function glDeleteVertexArrays() #endif //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static unsigned int CompileShader(const char *shaderStr, int type); // Compile custom shader and return shader id static unsigned int LoadShaderProgram(unsigned int vShaderId, unsigned int fShaderId); // Load custom shader program static Shader LoadShaderDefault(void); // Load default shader (just vertex positioning and texture coloring) static void SetShaderDefaultLocations(Shader *shader); // Bind default shader locations (attributes and uniforms) static void UnloadShaderDefault(void); // Unload default shader static void LoadBuffersDefault(void); // Load default internal buffers static void UpdateBuffersDefault(void); // Update default internal buffers (VAOs/VBOs) with vertex data static void DrawBuffersDefault(void); // Draw default internal buffers vertex data static void UnloadBuffersDefault(void); // Unload default internal buffers vertex data from CPU and GPU static void GenDrawCube(void); // Generate and draw cube static void GenDrawQuad(void); // Generate and draw quad #if defined(SUPPORT_VR_SIMULATOR) static void SetStereoView(int eye, Matrix matProjection, Matrix matModelView); // Set internal projection and modelview matrix depending on eye #endif #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 #if defined(GRAPHICS_API_OPENGL_11) static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight); static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight); #endif //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlMatrixMode(int mode) { switch (mode) { case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break; case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break; case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break; default: break; } } void rlFrustum(double left, double right, double bottom, double top, double znear, double zfar) { glFrustum(left, right, bottom, top, znear, zfar); } void rlOrtho(double left, double right, double bottom, double top, double znear, double zfar) { glOrtho(left, right, bottom, top, znear, zfar); } void rlPushMatrix(void) { glPushMatrix(); } void rlPopMatrix(void) { glPopMatrix(); } void rlLoadIdentity(void) { glLoadIdentity(); } void rlTranslatef(float x, float y, float z) { glTranslatef(x, y, z); } void rlRotatef(float angleDeg, float x, float y, float z) { glRotatef(angleDeg, x, y, z); } void rlScalef(float x, float y, float z) { glScalef(x, y, z); } void rlMultMatrixf(float *matf) { glMultMatrixf(matf); } #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Choose the current matrix to be transformed void rlMatrixMode(int mode) { if (mode == RL_PROJECTION) RLGL.State.currentMatrix = &RLGL.State.projection; else if (mode == RL_MODELVIEW) RLGL.State.currentMatrix = &RLGL.State.modelview; //else if (mode == RL_TEXTURE) // Not supported RLGL.State.currentMatrixMode = mode; } // Push the current matrix into RLGL.State.stack void rlPushMatrix(void) { if (RLGL.State.stackCounter >= MAX_MATRIX_STACK_SIZE) TRACELOG(LOG_ERROR, "RLGL: Matrix stack overflow (MAX_MATRIX_STACK_SIZE)"); if (RLGL.State.currentMatrixMode == RL_MODELVIEW) { RLGL.State.doTransform = true; RLGL.State.currentMatrix = &RLGL.State.transform; } RLGL.State.stack[RLGL.State.stackCounter] = *RLGL.State.currentMatrix; RLGL.State.stackCounter++; } // Pop lattest inserted matrix from RLGL.State.stack void rlPopMatrix(void) { if (RLGL.State.stackCounter > 0) { Matrix mat = RLGL.State.stack[RLGL.State.stackCounter - 1]; *RLGL.State.currentMatrix = mat; RLGL.State.stackCounter--; } if ((RLGL.State.stackCounter == 0) && (RLGL.State.currentMatrixMode == RL_MODELVIEW)) { RLGL.State.currentMatrix = &RLGL.State.modelview; RLGL.State.doTransform = false; } } // Reset current matrix to identity matrix void rlLoadIdentity(void) { *RLGL.State.currentMatrix = MatrixIdentity(); } // Multiply the current matrix by a translation matrix void rlTranslatef(float x, float y, float z) { Matrix matTranslation = MatrixTranslate(x, y, z); // NOTE: We transpose matrix with multiplication order *RLGL.State.currentMatrix = MatrixMultiply(matTranslation, *RLGL.State.currentMatrix); } // Multiply the current matrix by a rotation matrix void rlRotatef(float angleDeg, float x, float y, float z) { Matrix matRotation = MatrixIdentity(); Vector3 axis = (Vector3){ x, y, z }; matRotation = MatrixRotate(Vector3Normalize(axis), angleDeg*DEG2RAD); // NOTE: We transpose matrix with multiplication order *RLGL.State.currentMatrix = MatrixMultiply(matRotation, *RLGL.State.currentMatrix); } // Multiply the current matrix by a scaling matrix void rlScalef(float x, float y, float z) { Matrix matScale = MatrixScale(x, y, z); // NOTE: We transpose matrix with multiplication order *RLGL.State.currentMatrix = MatrixMultiply(matScale, *RLGL.State.currentMatrix); } // Multiply the current matrix by another matrix void rlMultMatrixf(float *matf) { // Matrix creation from array Matrix mat = { matf[0], matf[4], matf[8], matf[12], matf[1], matf[5], matf[9], matf[13], matf[2], matf[6], matf[10], matf[14], matf[3], matf[7], matf[11], matf[15] }; *RLGL.State.currentMatrix = MatrixMultiply(*RLGL.State.currentMatrix, mat); } // Multiply the current matrix by a perspective matrix generated by parameters void rlFrustum(double left, double right, double bottom, double top, double znear, double zfar) { Matrix matPerps = MatrixFrustum(left, right, bottom, top, znear, zfar); *RLGL.State.currentMatrix = MatrixMultiply(*RLGL.State.currentMatrix, matPerps); } // Multiply the current matrix by an orthographic matrix generated by parameters void rlOrtho(double left, double right, double bottom, double top, double znear, double zfar) { Matrix matOrtho = MatrixOrtho(left, right, bottom, top, znear, zfar); *RLGL.State.currentMatrix = MatrixMultiply(*RLGL.State.currentMatrix, matOrtho); } #endif // Set the viewport area (transformation from normalized device coordinates to window coordinates) // NOTE: Updates global variables: RLGL.State.framebufferWidth, RLGL.State.framebufferHeight void rlViewport(int x, int y, int width, int height) { glViewport(x, y, width, height); } //---------------------------------------------------------------------------------- // Module Functions Definition - Vertex level operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlBegin(int mode) { switch (mode) { case RL_LINES: glBegin(GL_LINES); break; case RL_TRIANGLES: glBegin(GL_TRIANGLES); break; case RL_QUADS: glBegin(GL_QUADS); break; default: break; } } void rlEnd() { glEnd(); } void rlVertex2i(int x, int y) { glVertex2i(x, y); } void rlVertex2f(float x, float y) { glVertex2f(x, y); } void rlVertex3f(float x, float y, float z) { glVertex3f(x, y, z); } void rlTexCoord2f(float x, float y) { glTexCoord2f(x, y); } void rlNormal3f(float x, float y, float z) { glNormal3f(x, y, z); } void rlColor4ub(byte r, byte g, byte b, byte a) { glColor4ub(r, g, b, a); } void rlColor3f(float x, float y, float z) { glColor3f(x, y, z); } void rlColor4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); } #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize drawing mode (how to organize vertex) void rlBegin(int mode) { // Draw mode can be RL_LINES, RL_TRIANGLES and RL_QUADS // NOTE: In all three cases, vertex are accumulated over default internal vertex buffer if (RLGL.State.draws[RLGL.State.drawsCounter - 1].mode != mode) { if (RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount > 0) { // Make sure current RLGL.State.draws[i].vertexCount is aligned a multiple of 4, // that way, following QUADS drawing will keep aligned with index processing // It implies adding some extra alignment vertex at the end of the draw, // those vertex are not processed but they are considered as an additional offset // for the next set of vertex to be drawn if (RLGL.State.draws[RLGL.State.drawsCounter - 1].mode == RL_LINES) RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment = ((RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount < 4)? RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount : RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount%4); else if (RLGL.State.draws[RLGL.State.drawsCounter - 1].mode == RL_TRIANGLES) RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment = ((RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount < 4)? 1 : (4 - (RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount%4))); else RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment = 0; if (rlCheckBufferLimit(RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment)) rlglDraw(); else { RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter += RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment; RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter += RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment; RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter += RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment; RLGL.State.drawsCounter++; } } if (RLGL.State.drawsCounter >= MAX_DRAWCALL_REGISTERED) rlglDraw(); RLGL.State.draws[RLGL.State.drawsCounter - 1].mode = mode; RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount = 0; RLGL.State.draws[RLGL.State.drawsCounter - 1].textureId = RLGL.State.defaultTextureId; } } // Finish vertex providing void rlEnd(void) { // Make sure vertexCount is the same for vertices, texcoords, colors and normals // NOTE: In OpenGL 1.1, one glColor call can be made for all the subsequent glVertex calls // Make sure colors count match vertex count if (RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter != RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter) { int addColors = RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter - RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter; for (int i = 0; i < addColors; i++) { RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter] = RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter - 4]; RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter + 1] = RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter - 3]; RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter + 2] = RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter - 2]; RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter + 3] = RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter - 1]; RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter++; } } // Make sure texcoords count match vertex count if (RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter != RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter) { int addTexCoords = RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter - RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter; for (int i = 0; i < addTexCoords; i++) { RLGL.State.vertexData[RLGL.State.currentBuffer].texcoords[2*RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter] = 0.0f; RLGL.State.vertexData[RLGL.State.currentBuffer].texcoords[2*RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter + 1] = 0.0f; RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter++; } } // TODO: Make sure normals count match vertex count... if normals support is added in a future... :P // NOTE: Depth increment is dependant on rlOrtho(): z-near and z-far values, // as well as depth buffer bit-depth (16bit or 24bit or 32bit) // Correct increment formula would be: depthInc = (zfar - znear)/pow(2, bits) RLGL.State.currentDepth += (1.0f/20000.0f); // Verify internal buffers limits // NOTE: This check is combined with usage of rlCheckBufferLimit() if ((RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter) >= (MAX_BATCH_ELEMENTS*4 - 4)) { // WARNING: If we are between rlPushMatrix() and rlPopMatrix() and we need to force a rlglDraw(), // we need to call rlPopMatrix() before to recover *RLGL.State.currentMatrix (RLGL.State.modelview) for the next forced draw call! // If we have multiple matrix pushed, it will require "RLGL.State.stackCounter" pops before launching the draw for (int i = RLGL.State.stackCounter; i >= 0; i--) rlPopMatrix(); rlglDraw(); } } // Define one vertex (position) // NOTE: Vertex position data is the basic information required for drawing void rlVertex3f(float x, float y, float z) { Vector3 vec = { x, y, z }; // Transform provided vector if required if (RLGL.State.doTransform) vec = Vector3Transform(vec, RLGL.State.transform); // Verify that MAX_BATCH_ELEMENTS limit not reached if (RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter < (MAX_BATCH_ELEMENTS*4)) { RLGL.State.vertexData[RLGL.State.currentBuffer].vertices[3*RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter] = vec.x; RLGL.State.vertexData[RLGL.State.currentBuffer].vertices[3*RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter + 1] = vec.y; RLGL.State.vertexData[RLGL.State.currentBuffer].vertices[3*RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter + 2] = vec.z; RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter++; RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount++; } else TRACELOG(LOG_ERROR, "RLGL: Batch elements overflow (MAX_BATCH_ELEMENTS)"); } // Define one vertex (position) void rlVertex2f(float x, float y) { rlVertex3f(x, y, RLGL.State.currentDepth); } // Define one vertex (position) void rlVertex2i(int x, int y) { rlVertex3f((float)x, (float)y, RLGL.State.currentDepth); } // Define one vertex (texture coordinate) // NOTE: Texture coordinates are limited to QUADS only void rlTexCoord2f(float x, float y) { RLGL.State.vertexData[RLGL.State.currentBuffer].texcoords[2*RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter] = x; RLGL.State.vertexData[RLGL.State.currentBuffer].texcoords[2*RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter + 1] = y; RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter++; } // Define one vertex (normal) // NOTE: Normals limited to TRIANGLES only? void rlNormal3f(float x, float y, float z) { // TODO: Normals usage... } // Define one vertex (color) void rlColor4ub(byte x, byte y, byte z, byte w) { RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter] = x; RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter + 1] = y; RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter + 2] = z; RLGL.State.vertexData[RLGL.State.currentBuffer].colors[4*RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter + 3] = w; RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter++; } // Define one vertex (color) void rlColor4f(float r, float g, float b, float a) { rlColor4ub((byte)(r*255), (byte)(g*255), (byte)(b*255), (byte)(a*255)); } // Define one vertex (color) void rlColor3f(float x, float y, float z) { rlColor4ub((byte)(x*255), (byte)(y*255), (byte)(z*255), 255); } #endif //---------------------------------------------------------------------------------- // Module Functions Definition - OpenGL equivalent functions (common to 1.1, 3.3+, ES2) //---------------------------------------------------------------------------------- // Enable texture usage void rlEnableTexture(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, id); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.State.draws[RLGL.State.drawsCounter - 1].textureId != id) { if (RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount > 0) { // Make sure current RLGL.State.draws[i].vertexCount is aligned a multiple of 4, // that way, following QUADS drawing will keep aligned with index processing // It implies adding some extra alignment vertex at the end of the draw, // those vertex are not processed but they are considered as an additional offset // for the next set of vertex to be drawn if (RLGL.State.draws[RLGL.State.drawsCounter - 1].mode == RL_LINES) RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment = ((RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount < 4)? RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount : RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount%4); else if (RLGL.State.draws[RLGL.State.drawsCounter - 1].mode == RL_TRIANGLES) RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment = ((RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount < 4)? 1 : (4 - (RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount%4))); else RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment = 0; if (rlCheckBufferLimit(RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment)) rlglDraw(); else { RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter += RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment; RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter += RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment; RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter += RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexAlignment; RLGL.State.drawsCounter++; } } if (RLGL.State.drawsCounter >= MAX_DRAWCALL_REGISTERED) rlglDraw(); RLGL.State.draws[RLGL.State.drawsCounter - 1].textureId = id; RLGL.State.draws[RLGL.State.drawsCounter - 1].vertexCount = 0; } #endif } // Disable texture usage void rlDisableTexture(void) { #if defined(GRAPHICS_API_OPENGL_11) glDisable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); #else // NOTE: If quads batch limit is reached, // we force a draw call and next batch starts if (RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter >= (MAX_BATCH_ELEMENTS*4)) rlglDraw(); #endif } // Set texture parameters (wrap mode/filter mode) void rlTextureParameters(unsigned int id, int param, int value) { glBindTexture(GL_TEXTURE_2D, id); switch (param) { case RL_TEXTURE_WRAP_S: case RL_TEXTURE_WRAP_T: { if (value == RL_WRAP_MIRROR_CLAMP) { #if !defined(GRAPHICS_API_OPENGL_11) if (RLGL.ExtSupported.texMirrorClamp) glTexParameteri(GL_TEXTURE_2D, param, value); else TRACELOG(LOG_WARNING, "GL: Clamp mirror wrap mode not supported (GL_MIRROR_CLAMP_EXT)"); #endif } else glTexParameteri(GL_TEXTURE_2D, param, value); } break; case RL_TEXTURE_MAG_FILTER: case RL_TEXTURE_MIN_FILTER: glTexParameteri(GL_TEXTURE_2D, param, value); break; case RL_TEXTURE_ANISOTROPIC_FILTER: { #if !defined(GRAPHICS_API_OPENGL_11) if (value <= RLGL.ExtSupported.maxAnisotropicLevel) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); else if (RLGL.ExtSupported.maxAnisotropicLevel > 0.0f) { TRACELOG(LOG_WARNING, "GL: Maximum anisotropic filter level supported is %iX", id, RLGL.ExtSupported.maxAnisotropicLevel); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); } else TRACELOG(LOG_WARNING, "GL: Anisotropic filtering not supported"); #endif } break; default: break; } glBindTexture(GL_TEXTURE_2D, 0); } // Enable rendering to texture (fbo) void rlEnableRenderTexture(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, id); //glDisable(GL_CULL_FACE); // Allow double side drawing for texture flipping //glCullFace(GL_FRONT); #endif } // Disable rendering to texture void rlDisableRenderTexture(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, 0); //glEnable(GL_CULL_FACE); //glCullFace(GL_BACK); #endif } // Enable depth test void rlEnableDepthTest(void) { glEnable(GL_DEPTH_TEST); } // Disable depth test void rlDisableDepthTest(void) { glDisable(GL_DEPTH_TEST); } // Enable backface culling void rlEnableBackfaceCulling(void) { glEnable(GL_CULL_FACE); } // Disable backface culling void rlDisableBackfaceCulling(void) { glDisable(GL_CULL_FACE); } // Enable scissor test RLAPI void rlEnableScissorTest(void) { glEnable(GL_SCISSOR_TEST); } // Disable scissor test RLAPI void rlDisableScissorTest(void) { glDisable(GL_SCISSOR_TEST); } // Scissor test RLAPI void rlScissor(int x, int y, int width, int height) { glScissor(x, y, width, height); } // Enable wire mode void rlEnableWireMode(void) { #if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif } // Disable wire mode void rlDisableWireMode(void) { #if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } // Unload texture from GPU memory void rlDeleteTextures(unsigned int id) { if (id > 0) glDeleteTextures(1, &id); } // Unload render texture from GPU memory void rlDeleteRenderTextures(RenderTexture2D target) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (target.texture.id > 0) glDeleteTextures(1, &target.texture.id); if (target.depth.id > 0) { if (target.depthTexture) glDeleteTextures(1, &target.depth.id); else glDeleteRenderbuffers(1, &target.depth.id); } if (target.id > 0) glDeleteFramebuffers(1, &target.id); TRACELOG(LOG_INFO, "FBO: [ID %i] Unloaded render texture data from VRAM (GPU)", target.id); #endif } // Unload shader from GPU memory void rlDeleteShader(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (id != 0) glDeleteProgram(id); #endif } // Unload vertex data (VAO) from GPU memory void rlDeleteVertexArrays(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.vao) { if (id != 0) glDeleteVertexArrays(1, &id); TRACELOG(LOG_INFO, "VAO: [ID %i] Unloaded vertex data from VRAM (GPU)", id); } #endif } // Unload vertex data (VBO) from GPU memory void rlDeleteBuffers(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (id != 0) { glDeleteBuffers(1, &id); if (!RLGL.ExtSupported.vao) TRACELOG(LOG_INFO, "VBO: [ID %i] Unloaded vertex data from VRAM (GPU)", id); } #endif } // Clear color buffer with color void rlClearColor(byte r, byte g, byte b, byte a) { // Color values clamp to 0.0f(0) and 1.0f(255) float cr = (float)r/255; float cg = (float)g/255; float cb = (float)b/255; float ca = (float)a/255; glClearColor(cr, cg, cb, ca); } // Clear used screen buffers (color and depth) void rlClearScreenBuffers(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D) //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used... } // Update GPU buffer with new data void rlUpdateBuffer(int bufferId, void *data, int dataSize) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ARRAY_BUFFER, bufferId); glBufferSubData(GL_ARRAY_BUFFER, 0, dataSize, data); #endif } //---------------------------------------------------------------------------------- // Module Functions Definition - rlgl Functions //---------------------------------------------------------------------------------- // Initialize rlgl: OpenGL extensions, default buffers/shaders/textures, OpenGL states void rlglInit(int width, int height) { // Check OpenGL information and capabilities //------------------------------------------------------------------------------ // Print current OpenGL and GLSL version TRACELOG(LOG_INFO, "GL: OpenGL device information:"); TRACELOG(LOG_INFO, " > Vendor: %s", glGetString(GL_VENDOR)); TRACELOG(LOG_INFO, " > Renderer: %s", glGetString(GL_RENDERER)); TRACELOG(LOG_INFO, " > Version: %s", glGetString(GL_VERSION)); TRACELOG(LOG_INFO, " > GLSL: %s", glGetString(GL_SHADING_LANGUAGE_VERSION)); // NOTE: We can get a bunch of extra information about GPU capabilities (glGet*) //int maxTexSize; //glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTexSize); //TRACELOG(LOG_INFO, "GL: Maximum texture size: %i", maxTexSize); //GL_MAX_TEXTURE_IMAGE_UNITS //GL_MAX_VIEWPORT_DIMS //int numAuxBuffers; //glGetIntegerv(GL_AUX_BUFFERS, &numAuxBuffers); //TRACELOG(LOG_INFO, "GL: Number of aixiliar buffers: %i", numAuxBuffers); //GLint numComp = 0; //GLint format[32] = { 0 }; //glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numComp); //glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, format); //for (int i = 0; i < numComp; i++) TRACELOG(LOG_INFO, "GL: Supported compressed format: 0x%x", format[i]); // NOTE: We don't need that much data on screen... right now... // TODO: Automatize extensions loading using rlLoadExtensions() and GLAD // Actually, when rlglInit() is called in InitWindow() in core.c, // OpenGL required extensions have already been loaded (PLATFORM_DESKTOP) #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Get supported extensions list GLint numExt = 0; #if defined(GRAPHICS_API_OPENGL_33) // NOTE: On OpenGL 3.3 VAO and NPOT are supported by default RLGL.ExtSupported.vao = true; // Multiple texture extensions supported by default RLGL.ExtSupported.texNPOT = true; RLGL.ExtSupported.texFloat32 = true; RLGL.ExtSupported.texDepth = true; // We get a list of available extensions and we check for some of them (compressed textures) // NOTE: We don't need to check again supported extensions but we do (GLAD already dealt with that) glGetIntegerv(GL_NUM_EXTENSIONS, &numExt); // Allocate numExt strings pointers const char **extList = RL_MALLOC(sizeof(const char *)*numExt); // Get extensions strings for (int i = 0; i < numExt; i++) extList[i] = (const char *)glGetStringi(GL_EXTENSIONS, i); #elif defined(GRAPHICS_API_OPENGL_ES2) // Allocate 512 strings pointers (2 KB) const char **extList = RL_MALLOC(sizeof(const char *)*512); const char *extensions = (const char *)glGetString(GL_EXTENSIONS); // One big const string // NOTE: We have to duplicate string because glGetString() returns a const string int len = strlen(extensions) + 1; char *extensionsDup = (char *)RL_CALLOC(len, sizeof(char)); strcpy(extensionsDup, extensions); extList[numExt] = extensionsDup; for (int i = 0; i < len; i++) { if (extensionsDup[i] == ' ') { extensionsDup[i] = '\0'; numExt++; extList[numExt] = &extensionsDup[i + 1]; } } // NOTE: Duplicated string (extensionsDup) must be deallocated #endif TRACELOG(LOG_INFO, "GL: Supported extensions count: %i", numExt); // Show supported extensions //for (int i = 0; i < numExt; i++) TRACELOG(LOG_INFO, "Supported extension: %s", extList[i]); // Check required extensions for (int i = 0; i < numExt; i++) { #if defined(GRAPHICS_API_OPENGL_ES2) // Check VAO support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has VAO support as core feature if (strcmp(extList[i], (const char *)"GL_OES_vertex_array_object") == 0) { // The extension is supported by our hardware and driver, try to get related functions pointers // NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance... glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)eglGetProcAddress("glGenVertexArraysOES"); glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)eglGetProcAddress("glBindVertexArrayOES"); glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)eglGetProcAddress("glDeleteVertexArraysOES"); //glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)eglGetProcAddress("glIsVertexArrayOES"); // NOTE: Fails in WebGL, omitted if ((glGenVertexArrays != NULL) && (glBindVertexArray != NULL) && (glDeleteVertexArrays != NULL)) RLGL.ExtSupported.vao = true; } // Check NPOT textures support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has NPOT textures full support as core feature if (strcmp(extList[i], (const char *)"GL_OES_texture_npot") == 0) RLGL.ExtSupported.texNPOT = true; // Check texture float support if (strcmp(extList[i], (const char *)"GL_OES_texture_float") == 0) RLGL.ExtSupported.texFloat32 = true; // Check depth texture support if ((strcmp(extList[i], (const char *)"GL_OES_depth_texture") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_depth_texture") == 0)) RLGL.ExtSupported.texDepth = true; if (strcmp(extList[i], (const char *)"GL_OES_depth24") == 0) RLGL.ExtSupported.maxDepthBits = 24; if (strcmp(extList[i], (const char *)"GL_OES_depth32") == 0) RLGL.ExtSupported.maxDepthBits = 32; #endif // DDS texture compression support if ((strcmp(extList[i], (const char *)"GL_EXT_texture_compression_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBKIT_WEBGL_compressed_texture_s3tc") == 0)) RLGL.ExtSupported.texCompDXT = true; // ETC1 texture compression support if ((strcmp(extList[i], (const char *)"GL_OES_compressed_ETC1_RGB8_texture") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_etc1") == 0)) RLGL.ExtSupported.texCompETC1 = true; // ETC2/EAC texture compression support if (strcmp(extList[i], (const char *)"GL_ARB_ES3_compatibility") == 0) RLGL.ExtSupported.texCompETC2 = true; // PVR texture compression support if (strcmp(extList[i], (const char *)"GL_IMG_texture_compression_pvrtc") == 0) RLGL.ExtSupported.texCompPVRT = true; // ASTC texture compression support if (strcmp(extList[i], (const char *)"GL_KHR_texture_compression_astc_hdr") == 0) RLGL.ExtSupported.texCompASTC = true; // Anisotropic texture filter support if (strcmp(extList[i], (const char *)"GL_EXT_texture_filter_anisotropic") == 0) { RLGL.ExtSupported.texAnisoFilter = true; glGetFloatv(0x84FF, &RLGL.ExtSupported.maxAnisotropicLevel); // GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT } // Clamp mirror wrap mode supported if (strcmp(extList[i], (const char *)"GL_EXT_texture_mirror_clamp") == 0) RLGL.ExtSupported.texMirrorClamp = true; // Debug marker support if (strcmp(extList[i], (const char *)"GL_EXT_debug_marker") == 0) RLGL.ExtSupported.debugMarker = true; } // Free extensions pointers RL_FREE(extList); #if defined(GRAPHICS_API_OPENGL_ES2) RL_FREE(extensionsDup); // Duplicated string must be deallocated if (RLGL.ExtSupported.vao) TRACELOG(LOG_INFO, "GL: VAO extension detected, VAO functions initialized successfully"); else TRACELOG(LOG_WARNING, "GL: VAO extension not found, VAO usage not supported"); if (RLGL.ExtSupported.texNPOT) TRACELOG(LOG_INFO, "GL: NPOT textures extension detected, full NPOT textures supported"); else TRACELOG(LOG_WARNING, "GL: NPOT textures extension not found, limited NPOT support (no-mipmaps, no-repeat)"); #endif if (RLGL.ExtSupported.texCompDXT) TRACELOG(LOG_INFO, "GL: DXT compressed textures supported"); if (RLGL.ExtSupported.texCompETC1) TRACELOG(LOG_INFO, "GL: ETC1 compressed textures supported"); if (RLGL.ExtSupported.texCompETC2) TRACELOG(LOG_INFO, "GL: ETC2/EAC compressed textures supported"); if (RLGL.ExtSupported.texCompPVRT) TRACELOG(LOG_INFO, "GL: PVRT compressed textures supported"); if (RLGL.ExtSupported.texCompASTC) TRACELOG(LOG_INFO, "GL: ASTC compressed textures supported"); if (RLGL.ExtSupported.texAnisoFilter) TRACELOG(LOG_INFO, "GL: Anisotropic textures filtering supported (max: %.0fX)", RLGL.ExtSupported.maxAnisotropicLevel); if (RLGL.ExtSupported.texMirrorClamp) TRACELOG(LOG_INFO, "GL: Mirror clamp wrap texture mode supported"); if (RLGL.ExtSupported.debugMarker) TRACELOG(LOG_INFO, "GL: Debug Marker supported"); // Initialize buffers, default shaders and default textures //---------------------------------------------------------- // Init default white texture unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes) RLGL.State.defaultTextureId = rlLoadTexture(pixels, 1, 1, UNCOMPRESSED_R8G8B8A8, 1); if (RLGL.State.defaultTextureId != 0) TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Default texture loaded successfully", RLGL.State.defaultTextureId); else TRACELOG(LOG_WARNING, "TEXTURE: Failed to load default texture"); // Init default Shader (customized for GL 3.3 and ES2) RLGL.State.defaultShader = LoadShaderDefault(); RLGL.State.currentShader = RLGL.State.defaultShader; // Init default vertex arrays buffers LoadBuffersDefault(); // Init transformations matrix accumulator RLGL.State.transform = MatrixIdentity(); // Init draw calls tracking system RLGL.State.draws = (DrawCall *)RL_MALLOC(sizeof(DrawCall)*MAX_DRAWCALL_REGISTERED); for (int i = 0; i < MAX_DRAWCALL_REGISTERED; i++) { RLGL.State.draws[i].mode = RL_QUADS; RLGL.State.draws[i].vertexCount = 0; RLGL.State.draws[i].vertexAlignment = 0; //RLGL.State.draws[i].vaoId = 0; //RLGL.State.draws[i].shaderId = 0; RLGL.State.draws[i].textureId = RLGL.State.defaultTextureId; //RLGL.State.draws[i].RLGL.State.projection = MatrixIdentity(); //RLGL.State.draws[i].RLGL.State.modelview = MatrixIdentity(); } RLGL.State.drawsCounter = 1; // Init RLGL.State.stack matrices (emulating OpenGL 1.1) for (int i = 0; i < MAX_MATRIX_STACK_SIZE; i++) RLGL.State.stack[i] = MatrixIdentity(); // Init RLGL.State.projection and RLGL.State.modelview matrices RLGL.State.projection = MatrixIdentity(); RLGL.State.modelview = MatrixIdentity(); RLGL.State.currentMatrix = &RLGL.State.modelview; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 // Initialize OpenGL default states //---------------------------------------------------------- // Init state: Depth test glDepthFunc(GL_LEQUAL); // Type of depth testing to apply glDisable(GL_DEPTH_TEST); // Disable depth testing for 2D (only used for 3D) // Init state: Blending mode glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed) glEnable(GL_BLEND); // Enable color blending (required to work with transparencies) // Init state: Culling // NOTE: All shapes/models triangles are drawn CCW glCullFace(GL_BACK); // Cull the back face (default) glFrontFace(GL_CCW); // Front face are defined counter clockwise (default) glEnable(GL_CULL_FACE); // Enable backface culling #if defined(GRAPHICS_API_OPENGL_11) // Init state: Color hints (deprecated in OpenGL 3.0+) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation) #endif // Init state: Color/Depth buffers clear glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set clear color (black) glClearDepth(1.0f); // Set clear depth value (default) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear color and depth buffers (depth buffer required for 3D) // Store screen size into global variables RLGL.State.framebufferWidth = width; RLGL.State.framebufferHeight = height; // Init texture and rectangle used on basic shapes drawing RLGL.State.shapesTexture = GetTextureDefault(); RLGL.State.shapesTextureRec = (Rectangle){ 0.0f, 0.0f, 1.0f, 1.0f }; TRACELOG(LOG_INFO, "RLGL: Default state initialized successfully"); } // Vertex Buffer Object deinitialization (memory free) void rlglClose(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) UnloadShaderDefault(); // Unload default shader UnloadBuffersDefault(); // Unload default buffers glDeleteTextures(1, &RLGL.State.defaultTextureId); // Unload default texture TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Unloaded default texture data from VRAM (GPU)", RLGL.State.defaultTextureId); RL_FREE(RLGL.State.draws); #endif } // Update and draw internal buffers void rlglDraw(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Only process data if we have data to process if (RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter > 0) { UpdateBuffersDefault(); DrawBuffersDefault(); // NOTE: Stereo rendering is checked inside } #endif } // Returns current OpenGL version int rlGetVersion(void) { #if defined(GRAPHICS_API_OPENGL_11) return OPENGL_11; #elif defined(GRAPHICS_API_OPENGL_21) #if defined(__APPLE__) return OPENGL_33; // NOTE: Force OpenGL 3.3 on OSX #else return OPENGL_21; #endif #elif defined(GRAPHICS_API_OPENGL_33) return OPENGL_33; #elif defined(GRAPHICS_API_OPENGL_ES2) return OPENGL_ES_20; #endif } // Check internal buffer overflow for a given number of vertex bool rlCheckBufferLimit(int vCount) { bool overflow = false; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter + vCount) >= (MAX_BATCH_ELEMENTS*4)) overflow = true; #endif return overflow; } // Set debug marker void rlSetDebugMarker(const char *text) { #if defined(GRAPHICS_API_OPENGL_33) if (RLGL.ExtSupported.debugMarker) glInsertEventMarkerEXT(0, text); #endif } // Load OpenGL extensions // NOTE: External loader function could be passed as a pointer void rlLoadExtensions(void *loader) { #if defined(GRAPHICS_API_OPENGL_33) // NOTE: glad is generated and contains only required OpenGL 3.3 Core extensions (and lower versions) #if !defined(__APPLE__) if (!gladLoadGLLoader((GLADloadproc)loader)) TRACELOG(LOG_WARNING, "GLAD: Cannot load OpenGL extensions"); else TRACELOG(LOG_INFO, "GLAD: OpenGL extensions loaded successfully"); #if defined(GRAPHICS_API_OPENGL_21) if (GLAD_GL_VERSION_2_1) TRACELOG(LOG_INFO, "GL: OpenGL 2.1 profile supported"); #elif defined(GRAPHICS_API_OPENGL_33) if (GLAD_GL_VERSION_3_3) TRACELOG(LOG_INFO, "GL: OpenGL 3.3 Core profile supported"); else TRACELOG(LOG_ERROR, "GL: OpenGL 3.3 Core profile not supported"); #endif #endif // With GLAD, we can check if an extension is supported using the GLAD_GL_xxx booleans //if (GLAD_GL_ARB_vertex_array_object) // Use GL_ARB_vertex_array_object #endif } // Get world coordinates from screen coordinates Vector3 rlUnproject(Vector3 source, Matrix proj, Matrix view) { Vector3 result = { 0.0f, 0.0f, 0.0f }; // Calculate unproject matrix (multiply view patrix by projection matrix) and invert it Matrix matViewProj = MatrixMultiply(view, proj); matViewProj = MatrixInvert(matViewProj); // Create quaternion from source point Quaternion quat = { source.x, source.y, source.z, 1.0f }; // Multiply quat point by unproject matrix quat = QuaternionTransform(quat, matViewProj); // Normalized world points in vectors result.x = quat.x/quat.w; result.y = quat.y/quat.w; result.z = quat.z/quat.w; return result; } // Convert image data to OpenGL texture (returns OpenGL valid Id) unsigned int rlLoadTexture(void *data, int width, int height, int format, int mipmapCount) { glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding unsigned int id = 0; // Check texture format support by OpenGL 1.1 (compressed textures not supported) #if defined(GRAPHICS_API_OPENGL_11) if (format >= COMPRESSED_DXT1_RGB) { TRACELOG(LOG_WARNING, "GL: OpenGL 1.1 does not support GPU compressed texture formats"); return id; } #else if ((!RLGL.ExtSupported.texCompDXT) && ((format == COMPRESSED_DXT1_RGB) || (format == COMPRESSED_DXT1_RGBA) || (format == COMPRESSED_DXT3_RGBA) || (format == COMPRESSED_DXT5_RGBA))) { TRACELOG(LOG_WARNING, "GL: DXT compressed texture format not supported"); return id; } #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((!RLGL.ExtSupported.texCompETC1) && (format == COMPRESSED_ETC1_RGB)) { TRACELOG(LOG_WARNING, "GL: ETC1 compressed texture format not supported"); return id; } if ((!RLGL.ExtSupported.texCompETC2) && ((format == COMPRESSED_ETC2_RGB) || (format == COMPRESSED_ETC2_EAC_RGBA))) { TRACELOG(LOG_WARNING, "GL: ETC2 compressed texture format not supported"); return id; } if ((!RLGL.ExtSupported.texCompPVRT) && ((format == COMPRESSED_PVRT_RGB) || (format == COMPRESSED_PVRT_RGBA))) { TRACELOG(LOG_WARNING, "GL: PVRT compressed texture format not supported"); return id; } if ((!RLGL.ExtSupported.texCompASTC) && ((format == COMPRESSED_ASTC_4x4_RGBA) || (format == COMPRESSED_ASTC_8x8_RGBA))) { TRACELOG(LOG_WARNING, "GL: ASTC compressed texture format not supported"); return id; } #endif #endif // GRAPHICS_API_OPENGL_11 glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glGenTextures(1, &id); // Generate texture id #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) //glActiveTexture(GL_TEXTURE0); // If not defined, using GL_TEXTURE0 by default (shader texture) #endif glBindTexture(GL_TEXTURE_2D, id); int mipWidth = width; int mipHeight = height; int mipOffset = 0; // Mipmap data offset TRACELOGD("TEXTURE: Load texture from data memory address: 0x%x", data); // Load the different mipmap levels for (int i = 0; i < mipmapCount; i++) { unsigned int mipSize = GetPixelDataSize(mipWidth, mipHeight, format); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(format, &glInternalFormat, &glFormat, &glType); TRACELOGD("TEXTURE: Load mipmap level %i (%i x %i), size: %i, offset: %i", i, mipWidth, mipHeight, mipSize, mipOffset); if (glInternalFormat != -1) { if (format < COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, glFormat, glType, (unsigned char *)data + mipOffset); #if !defined(GRAPHICS_API_OPENGL_11) else glCompressedTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, mipSize, (unsigned char *)data + mipOffset); #endif #if defined(GRAPHICS_API_OPENGL_33) if (format == UNCOMPRESSED_GRAYSCALE) { GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE }; glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } else if (format == UNCOMPRESSED_GRAY_ALPHA) { #if defined(GRAPHICS_API_OPENGL_21) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA }; #elif defined(GRAPHICS_API_OPENGL_33) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN }; #endif glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } #endif } mipWidth /= 2; mipHeight /= 2; mipOffset += mipSize; // Security check for NPOT textures if (mipWidth < 1) mipWidth = 1; if (mipHeight < 1) mipHeight = 1; } // Texture parameters configuration // NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used if (RLGL.ExtSupported.texNPOT) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis } else { // NOTE: If using negative texture coordinates (LoadOBJ()), it does not work! glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis } #else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis #endif // Magnification and minification filters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Alternative: GL_LINEAR glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Alternative: GL_LINEAR #if defined(GRAPHICS_API_OPENGL_33) if (mipmapCount > 1) { // Activate Trilinear filtering if mipmaps are available glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); } #endif // At this point we have the texture loaded in GPU and texture parameters configured // NOTE: If mipmaps were not in data, they are not generated automatically // Unbind current texture glBindTexture(GL_TEXTURE_2D, 0); if (id > 0) TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Texture created successfully (%ix%i - %i mipmaps)", id, width, height, mipmapCount); else TRACELOG(LOG_WARNING, "TEXTURE: Failed to load texture"); return id; } // Load depth texture/renderbuffer (to be attached to fbo) // WARNING: OpenGL ES 2.0 requires GL_OES_depth_texture/WEBGL_depth_texture extensions unsigned int rlLoadTextureDepth(int width, int height, int bits, bool useRenderBuffer) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int glInternalFormat = GL_DEPTH_COMPONENT16; if ((bits != 16) && (bits != 24) && (bits != 32)) bits = 16; if (bits == 24) { #if defined(GRAPHICS_API_OPENGL_33) glInternalFormat = GL_DEPTH_COMPONENT24; #elif defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.maxDepthBits >= 24) glInternalFormat = GL_DEPTH_COMPONENT24_OES; #endif } if (bits == 32) { #if defined(GRAPHICS_API_OPENGL_33) glInternalFormat = GL_DEPTH_COMPONENT32; #elif defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.maxDepthBits == 32) glInternalFormat = GL_DEPTH_COMPONENT32_OES; #endif } if (!useRenderBuffer && RLGL.ExtSupported.texDepth) { glGenTextures(1, &id); glBindTexture(GL_TEXTURE_2D, id); glTexImage2D(GL_TEXTURE_2D, 0, glInternalFormat, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, 0); } else { // Create the renderbuffer that will serve as the depth attachment for the framebuffer // NOTE: A renderbuffer is simpler than a texture and could offer better performance on embedded devices glGenRenderbuffers(1, &id); glBindRenderbuffer(GL_RENDERBUFFER, id); glRenderbufferStorage(GL_RENDERBUFFER, glInternalFormat, width, height); glBindRenderbuffer(GL_RENDERBUFFER, 0); } #endif return id; } // Load texture cubemap // NOTE: Cubemap data is expected to be 6 images in a single column, // expected the following convention: +X, -X, +Y, -Y, +Z, -Z unsigned int rlLoadTextureCubemap(void *data, int size, int format) { unsigned int cubemapId = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int dataSize = GetPixelDataSize(size, size, format); glGenTextures(1, &cubemapId); glBindTexture(GL_TEXTURE_CUBE_MAP, cubemapId); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(format, &glInternalFormat, &glFormat, &glType); if (glInternalFormat != -1) { // Load cubemap faces for (unsigned int i = 0; i < 6; i++) { if (format < COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, glFormat, glType, (unsigned char *)data + i*dataSize); else glCompressedTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, dataSize, (unsigned char *)data + i*dataSize); #if defined(GRAPHICS_API_OPENGL_33) if (format == UNCOMPRESSED_GRAYSCALE) { GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE }; glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } else if (format == UNCOMPRESSED_GRAY_ALPHA) { #if defined(GRAPHICS_API_OPENGL_21) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA }; #elif defined(GRAPHICS_API_OPENGL_33) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN }; #endif glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } #endif } } // Set cubemap texture sampling parameters glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); #if defined(GRAPHICS_API_OPENGL_33) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); // Flag not supported on OpenGL ES 2.0 #endif glBindTexture(GL_TEXTURE_CUBE_MAP, 0); #endif return cubemapId; } // Update already loaded texture in GPU with new data // NOTE: We don't know safely if internal texture format is the expected one... void rlUpdateTexture(unsigned int id, int width, int height, int format, const void *data) { glBindTexture(GL_TEXTURE_2D, id); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(format, &glInternalFormat, &glFormat, &glType); if ((glInternalFormat != -1) && (format < COMPRESSED_DXT1_RGB)) { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, glFormat, glType, (unsigned char *)data); } else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to update for current texture format (%i)", id, format); } // Get OpenGL internal formats and data type from raylib PixelFormat void rlGetGlTextureFormats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType) { *glInternalFormat = -1; *glFormat = -1; *glType = -1; switch (format) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_21) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA case UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_LUMINANCE_ALPHA; *glFormat = GL_LUMINANCE_ALPHA; *glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break; case UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break; case UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break; case UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break; #if !defined(GRAPHICS_API_OPENGL_11) case UNCOMPRESSED_R32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float case UNCOMPRESSED_R32G32B32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float case UNCOMPRESSED_R32G32B32A32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float #endif #elif defined(GRAPHICS_API_OPENGL_33) case UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_R8; *glFormat = GL_RED; *glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_RG8; *glFormat = GL_RG; *glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB565; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break; case UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB8; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGB5_A1; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break; case UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA4; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break; case UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA8; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_R32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_R32F; *glFormat = GL_RED; *glType = GL_FLOAT; break; case UNCOMPRESSED_R32G32B32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGB32F; *glFormat = GL_RGB; *glType = GL_FLOAT; break; case UNCOMPRESSED_R32G32B32A32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA32F; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; #endif #if !defined(GRAPHICS_API_OPENGL_11) case COMPRESSED_DXT1_RGB: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; break; case COMPRESSED_DXT1_RGBA: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break; case COMPRESSED_DXT3_RGBA: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case COMPRESSED_DXT5_RGBA: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; case COMPRESSED_ETC1_RGB: if (RLGL.ExtSupported.texCompETC1) *glInternalFormat = GL_ETC1_RGB8_OES; break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3 case COMPRESSED_ETC2_RGB: if (RLGL.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGB8_ETC2; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_ETC2_EAC_RGBA: if (RLGL.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGBA8_ETC2_EAC; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_PVRT_RGB: if (RLGL.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU case COMPRESSED_PVRT_RGBA: if (RLGL.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU case COMPRESSED_ASTC_4x4_RGBA: if (RLGL.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_4x4_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 case COMPRESSED_ASTC_8x8_RGBA: if (RLGL.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_8x8_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 #endif default: TRACELOG(LOG_WARNING, "TEXTURE: Current format not supported (%i)", format); break; } } // Unload texture from GPU memory void rlUnloadTexture(unsigned int id) { if (id > 0) glDeleteTextures(1, &id); } // Load a texture to be used for rendering (fbo with default color and depth attachments) // NOTE: If colorFormat or depthBits are no supported, no attachment is done RenderTexture2D rlLoadRenderTexture(int width, int height, int format, int depthBits, bool useDepthTexture) { RenderTexture2D target = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (useDepthTexture && RLGL.ExtSupported.texDepth) target.depthTexture = true; // Create the framebuffer object glGenFramebuffers(1, &target.id); glBindFramebuffer(GL_FRAMEBUFFER, target.id); // Create fbo color texture attachment //----------------------------------------------------------------------------------------------------- if ((format != -1) && (format < COMPRESSED_DXT1_RGB)) { // WARNING: Some texture formats are not supported for fbo color attachment target.texture.id = rlLoadTexture(NULL, width, height, format, 1); target.texture.width = width; target.texture.height = height; target.texture.format = format; target.texture.mipmaps = 1; } //----------------------------------------------------------------------------------------------------- // Create fbo depth renderbuffer/texture //----------------------------------------------------------------------------------------------------- if (depthBits > 0) { target.depth.id = rlLoadTextureDepth(width, height, depthBits, !useDepthTexture); target.depth.width = width; target.depth.height = height; target.depth.format = 19; //DEPTH_COMPONENT_24BIT? target.depth.mipmaps = 1; } //----------------------------------------------------------------------------------------------------- // Attach color texture and depth renderbuffer to FBO //----------------------------------------------------------------------------------------------------- rlRenderTextureAttach(target, target.texture.id, 0); // COLOR attachment rlRenderTextureAttach(target, target.depth.id, 1); // DEPTH attachment //----------------------------------------------------------------------------------------------------- // Check if fbo is complete with attachments (valid) //----------------------------------------------------------------------------------------------------- if (rlRenderTextureComplete(target)) TRACELOG(LOG_INFO, "FBO: [ID %i] Framebuffer object created successfully", target.id); //----------------------------------------------------------------------------------------------------- glBindFramebuffer(GL_FRAMEBUFFER, 0); #endif return target; } // Attach color buffer texture to an fbo (unloads previous attachment) // NOTE: Attach type: 0-Color, 1-Depth renderbuffer, 2-Depth texture void rlRenderTextureAttach(RenderTexture2D target, unsigned int id, int attachType) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, target.id); if (attachType == 0) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, id, 0); else if (attachType == 1) { if (target.depthTexture) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, id, 0); else glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, id); } glBindFramebuffer(GL_FRAMEBUFFER, 0); #endif } // Verify render texture is complete bool rlRenderTextureComplete(RenderTexture target) { bool result = false; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, target.id); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { switch (status) { case GL_FRAMEBUFFER_UNSUPPORTED: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer is unsupported", target.id); break; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete attachment", target.id); break; #if defined(GRAPHICS_API_OPENGL_ES2) case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete dimensions", target.id); break; #endif case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has a missing attachment", target.id); break; default: break; } } glBindFramebuffer(GL_FRAMEBUFFER, 0); result = (status == GL_FRAMEBUFFER_COMPLETE); #endif return result; } // Generate mipmap data for selected texture void rlGenerateMipmaps(Texture2D *texture) { glBindTexture(GL_TEXTURE_2D, texture->id); // Check if texture is power-of-two (POT) bool texIsPOT = false; if (((texture->width > 0) && ((texture->width & (texture->width - 1)) == 0)) && ((texture->height > 0) && ((texture->height & (texture->height - 1)) == 0))) texIsPOT = true; #if defined(GRAPHICS_API_OPENGL_11) if (texIsPOT) { // WARNING: Manual mipmap generation only works for RGBA 32bit textures! if (texture->format == UNCOMPRESSED_R8G8B8A8) { // Retrieve texture data from VRAM void *data = rlReadTexturePixels(*texture); // NOTE: data size is reallocated to fit mipmaps data // NOTE: CPU mipmap generation only supports RGBA 32bit data int mipmapCount = GenerateMipmaps(data, texture->width, texture->height); int size = texture->width*texture->height*4; int offset = size; int mipWidth = texture->width/2; int mipHeight = texture->height/2; // Load the mipmaps for (int level = 1; level < mipmapCount; level++) { glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, mipWidth, mipHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data + offset); size = mipWidth*mipHeight*4; offset += size; mipWidth /= 2; mipHeight /= 2; } texture->mipmaps = mipmapCount + 1; RL_FREE(data); // Once mipmaps have been generated and data has been uploaded to GPU VRAM, we can discard RAM data TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Mipmaps generated manually on CPU side, total: %i", texture->id, texture->mipmaps); } else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to generate mipmaps for provided texture format", texture->id); } #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((texIsPOT) || (RLGL.ExtSupported.texNPOT)) { //glHint(GL_GENERATE_MIPMAP_HINT, GL_DONT_CARE); // Hint for mipmaps generation algorythm: GL_FASTEST, GL_NICEST, GL_DONT_CARE glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate Trilinear filtering for mipmaps #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) texture->mipmaps = 1 + (int)floor(log(MAX(texture->width, texture->height))/log(2)); TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Mipmaps generated automatically, total: %i", texture->id, texture->mipmaps); } #endif else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to generate mipmaps", texture->id); glBindTexture(GL_TEXTURE_2D, 0); } // Upload vertex data into a VAO (if supported) and VBO void rlLoadMesh(Mesh *mesh, bool dynamic) { if (mesh->vaoId > 0) { // Check if mesh has already been loaded in GPU TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId); return; } mesh->vaoId = 0; // Vertex Array Object mesh->vboId[0] = 0; // Vertex positions VBO mesh->vboId[1] = 0; // Vertex texcoords VBO mesh->vboId[2] = 0; // Vertex normals VBO mesh->vboId[3] = 0; // Vertex colors VBO mesh->vboId[4] = 0; // Vertex tangents VBO mesh->vboId[5] = 0; // Vertex texcoords2 VBO mesh->vboId[6] = 0; // Vertex indices VBO #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) int drawHint = GL_STATIC_DRAW; if (dynamic) drawHint = GL_DYNAMIC_DRAW; if (RLGL.ExtSupported.vao) { // Initialize Quads VAO (Buffer A) glGenVertexArrays(1, &mesh->vaoId); glBindVertexArray(mesh->vaoId); } // NOTE: Attributes must be uploaded considering default locations points // Enable vertex attributes: position (shader-location = 0) glGenBuffers(1, &mesh->vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->vertices, drawHint); glVertexAttribPointer(0, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(0); // Enable vertex attributes: texcoords (shader-location = 1) glGenBuffers(1, &mesh->vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords, drawHint); glVertexAttribPointer(1, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(1); // Enable vertex attributes: normals (shader-location = 2) if (mesh->normals != NULL) { glGenBuffers(1, &mesh->vboId[2]); glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[2]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->normals, drawHint); glVertexAttribPointer(2, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(2); } else { // Default color vertex attribute set to WHITE glVertexAttrib3f(2, 1.0f, 1.0f, 1.0f); glDisableVertexAttribArray(2); } // Default color vertex attribute (shader-location = 3) if (mesh->colors != NULL) { glGenBuffers(1, &mesh->vboId[3]); glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[3]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*mesh->vertexCount, mesh->colors, drawHint); glVertexAttribPointer(3, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(3); } else { // Default color vertex attribute set to WHITE glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f); glDisableVertexAttribArray(3); } // Default tangent vertex attribute (shader-location = 4) if (mesh->tangents != NULL) { glGenBuffers(1, &mesh->vboId[4]); glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[4]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*mesh->vertexCount, mesh->tangents, drawHint); glVertexAttribPointer(4, 4, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(4); } else { // Default tangents vertex attribute glVertexAttrib4f(4, 0.0f, 0.0f, 0.0f, 0.0f); glDisableVertexAttribArray(4); } // Default texcoord2 vertex attribute (shader-location = 5) if (mesh->texcoords2 != NULL) { glGenBuffers(1, &mesh->vboId[5]); glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[5]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords2, drawHint); glVertexAttribPointer(5, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(5); } else { // Default texcoord2 vertex attribute glVertexAttrib2f(5, 0.0f, 0.0f); glDisableVertexAttribArray(5); } if (mesh->indices != NULL) { glGenBuffers(1, &mesh->vboId[6]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh->vboId[6]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned short)*mesh->triangleCount*3, mesh->indices, drawHint); } if (RLGL.ExtSupported.vao) { if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId); else TRACELOG(LOG_WARNING, "VAO: Failed to load mesh to VRAM (GPU)"); } else { TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)"); } #endif } // Load a new attributes buffer unsigned int rlLoadAttribBuffer(unsigned int vaoId, int shaderLoc, void *buffer, int size, bool dynamic) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) int drawHint = GL_STATIC_DRAW; if (dynamic) drawHint = GL_DYNAMIC_DRAW; if (RLGL.ExtSupported.vao) glBindVertexArray(vaoId); glGenBuffers(1, &id); glBindBuffer(GL_ARRAY_BUFFER, id); glBufferData(GL_ARRAY_BUFFER, size, buffer, drawHint); glVertexAttribPointer(shaderLoc, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(shaderLoc); if (RLGL.ExtSupported.vao) glBindVertexArray(0); #endif return id; } // Update vertex or index data on GPU (upload new data to one buffer) void rlUpdateMesh(Mesh mesh, int buffer, int num) { rlUpdateMeshAt(mesh, buffer, num, 0); } // Update vertex or index data on GPU, at index // WARNING: error checking is in place that will cause the data to not be // updated if offset + size exceeds what the buffer can hold void rlUpdateMeshAt(Mesh mesh, int buffer, int num, int index) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Activate mesh VAO if (RLGL.ExtSupported.vao) glBindVertexArray(mesh.vaoId); switch (buffer) { case 0: // Update vertices (vertex position) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]); if (index == 0 && num >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*num, mesh.vertices, GL_DYNAMIC_DRAW); else if (index + num >= mesh.vertexCount) break; else glBufferSubData(GL_ARRAY_BUFFER, sizeof(float)*3*index, sizeof(float)*3*num, mesh.vertices); } break; case 1: // Update texcoords (vertex texture coordinates) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]); if (index == 0 && num >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*num, mesh.texcoords, GL_DYNAMIC_DRAW); else if (index + num >= mesh.vertexCount) break; else glBufferSubData(GL_ARRAY_BUFFER, sizeof(float)*2*index, sizeof(float)*2*num, mesh.texcoords); } break; case 2: // Update normals (vertex normals) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]); if (index == 0 && num >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*num, mesh.normals, GL_DYNAMIC_DRAW); else if (index + num >= mesh.vertexCount) break; else glBufferSubData(GL_ARRAY_BUFFER, sizeof(float)*3*index, sizeof(float)*3*num, mesh.normals); } break; case 3: // Update colors (vertex colors) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[3]); if (index == 0 && num >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*num, mesh.colors, GL_DYNAMIC_DRAW); else if (index + num >= mesh.vertexCount) break; else glBufferSubData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*index, sizeof(unsigned char)*4*num, mesh.colors); } break; case 4: // Update tangents (vertex tangents) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[4]); if (index == 0 && num >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*num, mesh.tangents, GL_DYNAMIC_DRAW); else if (index + num >= mesh.vertexCount) break; else glBufferSubData(GL_ARRAY_BUFFER, sizeof(float)*4*index, sizeof(float)*4*num, mesh.tangents); } break; case 5: // Update texcoords2 (vertex second texture coordinates) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[5]); if (index == 0 && num >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*num, mesh.texcoords2, GL_DYNAMIC_DRAW); else if (index + num >= mesh.vertexCount) break; else glBufferSubData(GL_ARRAY_BUFFER, sizeof(float)*2*index, sizeof(float)*2*num, mesh.texcoords2); } break; case 6: // Update indices (triangle index buffer) { // the * 3 is because each triangle has 3 indices unsigned short *indices = mesh.indices; glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vboId[6]); if (index == 0 && num >= mesh.triangleCount) glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(*indices)*num*3, indices, GL_DYNAMIC_DRAW); else if (index + num >= mesh.triangleCount) break; else glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, sizeof(*indices)*index*3, sizeof(*indices)*num*3, indices); } break; default: break; } // Unbind the current VAO if (RLGL.ExtSupported.vao) glBindVertexArray(0); // Another option would be using buffer mapping... //mesh.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); // Now we can modify vertices //glUnmapBuffer(GL_ARRAY_BUFFER); #endif } // Draw a 3d mesh with material and transform void rlDrawMesh(Mesh mesh, Material material, Matrix transform) { #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, material.maps[MAP_DIFFUSE].texture.id); // NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array if (mesh.normals != NULL) glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array if (mesh.colors != NULL) glEnableClientState(GL_COLOR_ARRAY); // Enable colors array glVertexPointer(3, GL_FLOAT, 0, mesh.vertices); // Pointer to vertex coords array glTexCoordPointer(2, GL_FLOAT, 0, mesh.texcoords); // Pointer to texture coords array if (mesh.normals != NULL) glNormalPointer(GL_FLOAT, 0, mesh.normals); // Pointer to normals array if (mesh.colors != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh.colors); // Pointer to colors array rlPushMatrix(); rlMultMatrixf(MatrixToFloat(transform)); rlColor4ub(material.maps[MAP_DIFFUSE].color.r, material.maps[MAP_DIFFUSE].color.g, material.maps[MAP_DIFFUSE].color.b, material.maps[MAP_DIFFUSE].color.a); if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, mesh.indices); else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount); rlPopMatrix(); glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array if (mesh.normals != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array if (mesh.colors != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable colors array glDisable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Bind shader program glUseProgram(material.shader.id); // Matrices and other values required by shader //----------------------------------------------------- // Calculate and send to shader model matrix (used by PBR shader) if (material.shader.locs[LOC_MATRIX_MODEL] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_MODEL], transform); // Upload to shader material.colDiffuse if (material.shader.locs[LOC_COLOR_DIFFUSE] != -1) glUniform4f(material.shader.locs[LOC_COLOR_DIFFUSE], (float)material.maps[MAP_DIFFUSE].color.r/255.0f, (float)material.maps[MAP_DIFFUSE].color.g/255.0f, (float)material.maps[MAP_DIFFUSE].color.b/255.0f, (float)material.maps[MAP_DIFFUSE].color.a/255.0f); // Upload to shader material.colSpecular (if available) if (material.shader.locs[LOC_COLOR_SPECULAR] != -1) glUniform4f(material.shader.locs[LOC_COLOR_SPECULAR], (float)material.maps[MAP_SPECULAR].color.r/255.0f, (float)material.maps[MAP_SPECULAR].color.g/255.0f, (float)material.maps[MAP_SPECULAR].color.b/255.0f, (float)material.maps[MAP_SPECULAR].color.a/255.0f); if (material.shader.locs[LOC_MATRIX_VIEW] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_VIEW], RLGL.State.modelview); if (material.shader.locs[LOC_MATRIX_PROJECTION] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_PROJECTION], RLGL.State.projection); // At this point the modelview matrix just contains the view matrix (camera) // That's because BeginMode3D() sets it an no model-drawing function modifies it, all use rlPushMatrix() and rlPopMatrix() Matrix matView = RLGL.State.modelview; // View matrix (camera) Matrix matProjection = RLGL.State.projection; // Projection matrix (perspective) // TODO: Consider possible transform matrices in the RLGL.State.stack // Is this the right order? or should we start with the first stored matrix instead of the last one? //Matrix matStackTransform = MatrixIdentity(); //for (int i = RLGL.State.stackCounter; i > 0; i--) matStackTransform = MatrixMultiply(RLGL.State.stack[i], matStackTransform); // Transform to camera-space coordinates Matrix matModelView = MatrixMultiply(transform, MatrixMultiply(RLGL.State.transform, matView)); //----------------------------------------------------- // Bind active texture maps (if available) for (int i = 0; i < MAX_MATERIAL_MAPS; i++) { if (material.maps[i].texture.id > 0) { glActiveTexture(GL_TEXTURE0 + i); if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, material.maps[i].texture.id); else glBindTexture(GL_TEXTURE_2D, material.maps[i].texture.id); glUniform1i(material.shader.locs[LOC_MAP_DIFFUSE + i], i); } } // Bind vertex array objects (or VBOs) if (RLGL.ExtSupported.vao) glBindVertexArray(mesh.vaoId); else { // Bind mesh VBO data: vertex position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]); glVertexAttribPointer(material.shader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_POSITION]); // Bind mesh VBO data: vertex texcoords (shader-location = 1) glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]); glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD01]); // Bind mesh VBO data: vertex normals (shader-location = 2, if available) if (material.shader.locs[LOC_VERTEX_NORMAL] != -1) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]); glVertexAttribPointer(material.shader.locs[LOC_VERTEX_NORMAL], 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_NORMAL]); } // Bind mesh VBO data: vertex colors (shader-location = 3, if available) if (material.shader.locs[LOC_VERTEX_COLOR] != -1) { if (mesh.vboId[3] != 0) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[3]); glVertexAttribPointer(material.shader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]); } else { // Set default value for unused attribute // NOTE: Required when using default shader and no VAO support glVertexAttrib4f(material.shader.locs[LOC_VERTEX_COLOR], 1.0f, 1.0f, 1.0f, 1.0f); glDisableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]); } } // Bind mesh VBO data: vertex tangents (shader-location = 4, if available) if (material.shader.locs[LOC_VERTEX_TANGENT] != -1) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[4]); glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TANGENT], 4, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TANGENT]); } // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available) if (material.shader.locs[LOC_VERTEX_TEXCOORD02] != -1) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[5]); glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD02], 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD02]); } if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vboId[6]); } int eyesCount = 1; #if defined(SUPPORT_VR_SIMULATOR) if (RLGL.Vr.stereoRender) eyesCount = 2; #endif for (int eye = 0; eye < eyesCount; eye++) { if (eyesCount == 1) RLGL.State.modelview = matModelView; #if defined(SUPPORT_VR_SIMULATOR) else SetStereoView(eye, matProjection, matModelView); #endif // Calculate model-view-projection matrix (MVP) Matrix matMVP = MatrixMultiply(RLGL.State.modelview, RLGL.State.projection); // Transform to screen-space coordinates // Send combined model-view-projection matrix to shader glUniformMatrix4fv(material.shader.locs[LOC_MATRIX_MVP], 1, false, MatrixToFloat(matMVP)); // Draw call! if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, 0); // Indexed vertices draw else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount); } // Unbind all binded texture maps for (int i = 0; i < MAX_MATERIAL_MAPS; i++) { glActiveTexture(GL_TEXTURE0 + i); // Set shader active texture if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, 0); else glBindTexture(GL_TEXTURE_2D, 0); // Unbind current active texture } // Unind vertex array objects (or VBOs) if (RLGL.ExtSupported.vao) glBindVertexArray(0); else { glBindBuffer(GL_ARRAY_BUFFER, 0); if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } // Unbind shader program glUseProgram(0); // Restore RLGL.State.projection/RLGL.State.modelview matrices // NOTE: In stereo rendering matrices are being modified to fit every eye RLGL.State.projection = matProjection; RLGL.State.modelview = matView; #endif } // Unload mesh data from CPU and GPU void rlUnloadMesh(Mesh mesh) { RL_FREE(mesh.vertices); RL_FREE(mesh.texcoords); RL_FREE(mesh.normals); RL_FREE(mesh.colors); RL_FREE(mesh.tangents); RL_FREE(mesh.texcoords2); RL_FREE(mesh.indices); RL_FREE(mesh.animVertices); RL_FREE(mesh.animNormals); RL_FREE(mesh.boneWeights); RL_FREE(mesh.boneIds); rlDeleteBuffers(mesh.vboId[0]); // vertex rlDeleteBuffers(mesh.vboId[1]); // texcoords rlDeleteBuffers(mesh.vboId[2]); // normals rlDeleteBuffers(mesh.vboId[3]); // colors rlDeleteBuffers(mesh.vboId[4]); // tangents rlDeleteBuffers(mesh.vboId[5]); // texcoords2 rlDeleteBuffers(mesh.vboId[6]); // indices rlDeleteVertexArrays(mesh.vaoId); } // Read screen pixel data (color buffer) unsigned char *rlReadScreenPixels(int width, int height) { unsigned char *screenData = (unsigned char *)RL_CALLOC(width*height*4, sizeof(unsigned char)); // NOTE 1: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer // NOTE 2: We are getting alpha channel! Be careful, it can be transparent if not cleared properly! glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData); // Flip image vertically! unsigned char *imgData = (unsigned char *)RL_MALLOC(width*height*sizeof(unsigned char)*4); for (int y = height - 1; y >= 0; y--) { for (int x = 0; x < (width*4); x++) { imgData[((height - 1) - y)*width*4 + x] = screenData[(y*width*4) + x]; // Flip line // Set alpha component value to 255 (no trasparent image retrieval) // NOTE: Alpha value has already been applied to RGB in framebuffer, we don't need it! if (((x + 1)%4) == 0) imgData[((height - 1) - y)*width*4 + x] = 255; } } RL_FREE(screenData); return imgData; // NOTE: image data should be freed } // Read texture pixel data void *rlReadTexturePixels(Texture2D texture) { void *pixels = NULL; #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) glBindTexture(GL_TEXTURE_2D, texture.id); // NOTE: Using texture.id, we can retrieve some texture info (but not on OpenGL ES 2.0) // Possible texture info: GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE //int width, height, format; //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width); //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height); //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format); // NOTE: Each row written to or read from by OpenGL pixel operations like glGetTexImage are aligned to a 4 byte boundary by default, which may add some padding. // Use glPixelStorei to modify padding with the GL_[UN]PACK_ALIGNMENT setting. // GL_PACK_ALIGNMENT affects operations that read from OpenGL memory (glReadPixels, glGetTexImage, etc.) // GL_UNPACK_ALIGNMENT affects operations that write to OpenGL memory (glTexImage, etc.) glPixelStorei(GL_PACK_ALIGNMENT, 1); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(texture.format, &glInternalFormat, &glFormat, &glType); unsigned int size = GetPixelDataSize(texture.width, texture.height, texture.format); if ((glInternalFormat != -1) && (texture.format < COMPRESSED_DXT1_RGB)) { pixels = (unsigned char *)RL_MALLOC(size); glGetTexImage(GL_TEXTURE_2D, 0, glFormat, glType, pixels); } else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Data retrieval not suported for pixel format (%i)", texture.id, texture.format); glBindTexture(GL_TEXTURE_2D, 0); #endif #if defined(GRAPHICS_API_OPENGL_ES2) // glGetTexImage() is not available on OpenGL ES 2.0 // Texture2D width and height are required on OpenGL ES 2.0. There is no way to get it from texture id. // Two possible Options: // 1 - Bind texture to color fbo attachment and glReadPixels() // 2 - Create an fbo, activate it, render quad with texture, glReadPixels() // We are using Option 1, just need to care for texture format on retrieval // NOTE: This behaviour could be conditioned by graphic driver... RenderTexture2D fbo = rlLoadRenderTexture(texture.width, texture.height, UNCOMPRESSED_R8G8B8A8, 16, false); glBindFramebuffer(GL_FRAMEBUFFER, fbo.id); glBindTexture(GL_TEXTURE_2D, 0); // Attach our texture to FBO // NOTE: Previoust attached texture is automatically detached glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture.id, 0); // We read data as RGBA because FBO texture is configured as RGBA, despite binding another texture format pixels = (unsigned char *)RL_MALLOC(GetPixelDataSize(texture.width, texture.height, UNCOMPRESSED_R8G8B8A8)); glReadPixels(0, 0, texture.width, texture.height, GL_RGBA, GL_UNSIGNED_BYTE, pixels); // Re-attach internal FBO color texture before deleting it glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fbo.texture.id, 0); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Clean up temporal fbo rlDeleteRenderTextures(fbo); #endif return pixels; } //---------------------------------------------------------------------------------- // Module Functions Definition - Shaders Functions // NOTE: Those functions are exposed directly to the user in raylib.h //---------------------------------------------------------------------------------- // Get default internal texture (white texture) Texture2D GetTextureDefault(void) { Texture2D texture = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) texture.id = RLGL.State.defaultTextureId; texture.width = 1; texture.height = 1; texture.mipmaps = 1; texture.format = UNCOMPRESSED_R8G8B8A8; #endif return texture; } // Get texture to draw shapes (RAII) Texture2D GetShapesTexture(void) { return RLGL.State.shapesTexture; } // Get texture rectangle to draw shapes Rectangle GetShapesTextureRec(void) { return RLGL.State.shapesTextureRec; } // Define default texture used to draw shapes void SetShapesTexture(Texture2D texture, Rectangle source) { RLGL.State.shapesTexture = texture; RLGL.State.shapesTextureRec = source; } // Get default shader Shader GetShaderDefault(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) return RLGL.State.defaultShader; #else Shader shader = { 0 }; return shader; #endif } // Load shader from files and bind default locations // NOTE: If shader string is NULL, using default vertex/fragment shaders Shader LoadShader(const char *vsFileName, const char *fsFileName) { Shader shader = { 0 }; // NOTE: Shader.locs is allocated by LoadShaderCode() char *vShaderStr = NULL; char *fShaderStr = NULL; if (vsFileName != NULL) vShaderStr = LoadFileText(vsFileName); if (fsFileName != NULL) fShaderStr = LoadFileText(fsFileName); shader = LoadShaderCode(vShaderStr, fShaderStr); if (vShaderStr != NULL) RL_FREE(vShaderStr); if (fShaderStr != NULL) RL_FREE(fShaderStr); return shader; } // Load shader from code strings // NOTE: If shader string is NULL, using default vertex/fragment shaders Shader LoadShaderCode(const char *vsCode, const char *fsCode) { Shader shader = { 0 }; shader.locs = (int *)RL_CALLOC(MAX_SHADER_LOCATIONS, sizeof(int)); // NOTE: All locations must be reseted to -1 (no location) for (int i = 0; i < MAX_SHADER_LOCATIONS; i++) shader.locs[i] = -1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int vertexShaderId = RLGL.State.defaultVShaderId; unsigned int fragmentShaderId = RLGL.State.defaultFShaderId; if (vsCode != NULL) vertexShaderId = CompileShader(vsCode, GL_VERTEX_SHADER); if (fsCode != NULL) fragmentShaderId = CompileShader(fsCode, GL_FRAGMENT_SHADER); if ((vertexShaderId == RLGL.State.defaultVShaderId) && (fragmentShaderId == RLGL.State.defaultFShaderId)) shader = RLGL.State.defaultShader; else { shader.id = LoadShaderProgram(vertexShaderId, fragmentShaderId); if (vertexShaderId != RLGL.State.defaultVShaderId) glDeleteShader(vertexShaderId); if (fragmentShaderId != RLGL.State.defaultFShaderId) glDeleteShader(fragmentShaderId); if (shader.id == 0) { TRACELOG(LOG_WARNING, "SHADER: Failed to load custom shader code"); shader = RLGL.State.defaultShader; } // After shader loading, we TRY to set default location names if (shader.id > 0) SetShaderDefaultLocations(&shader); } // Get available shader uniforms // NOTE: This information is useful for debug... int uniformCount = -1; glGetProgramiv(shader.id, GL_ACTIVE_UNIFORMS, &uniformCount); for (int i = 0; i < uniformCount; i++) { int namelen = -1; int num = -1; char name[256]; // Assume no variable names longer than 256 GLenum type = GL_ZERO; // Get the name of the uniforms glGetActiveUniform(shader.id, i,sizeof(name) - 1, &namelen, &num, &type, name); name[namelen] = 0; TRACELOGD("SHADER: [ID %i] Active uniform (%s) set at location: %i", shader.id, name, glGetUniformLocation(shader.id, name)); } #endif return shader; } // Unload shader from GPU memory (VRAM) void UnloadShader(Shader shader) { if (shader.id > 0) { rlDeleteShader(shader.id); TRACELOG(LOG_INFO, "SHADER: [ID %i] Unloaded shader program data from VRAM (GPU)", shader.id); } RL_FREE(shader.locs); } // Begin custom shader mode void BeginShaderMode(Shader shader) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.State.currentShader.id != shader.id) { rlglDraw(); RLGL.State.currentShader = shader; } #endif } // End custom shader mode (returns to default shader) void EndShaderMode(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) BeginShaderMode(RLGL.State.defaultShader); #endif } // Get shader uniform location int GetShaderLocation(Shader shader, const char *uniformName) { int location = -1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) location = glGetUniformLocation(shader.id, uniformName); if (location == -1) TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader uniform: %s", shader.id, uniformName); else TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader uniform (%s) set at location: %i", shader.id, uniformName, location); #endif return location; } // Set shader uniform value void SetShaderValue(Shader shader, int uniformLoc, const void *value, int uniformType) { SetShaderValueV(shader, uniformLoc, value, uniformType, 1); } // Set shader uniform value vector void SetShaderValueV(Shader shader, int uniformLoc, const void *value, int uniformType, int count) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUseProgram(shader.id); switch (uniformType) { case UNIFORM_FLOAT: glUniform1fv(uniformLoc, count, (float *)value); break; case UNIFORM_VEC2: glUniform2fv(uniformLoc, count, (float *)value); break; case UNIFORM_VEC3: glUniform3fv(uniformLoc, count, (float *)value); break; case UNIFORM_VEC4: glUniform4fv(uniformLoc, count, (float *)value); break; case UNIFORM_INT: glUniform1iv(uniformLoc, count, (int *)value); break; case UNIFORM_IVEC2: glUniform2iv(uniformLoc, count, (int *)value); break; case UNIFORM_IVEC3: glUniform3iv(uniformLoc, count, (int *)value); break; case UNIFORM_IVEC4: glUniform4iv(uniformLoc, count, (int *)value); break; case UNIFORM_SAMPLER2D: glUniform1iv(uniformLoc, count, (int *)value); break; default: TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to set uniform, data type not recognized", shader.id); } //glUseProgram(0); // Avoid reseting current shader program, in case other uniforms are set #endif } // Set shader uniform value (matrix 4x4) void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUseProgram(shader.id); glUniformMatrix4fv(uniformLoc, 1, false, MatrixToFloat(mat)); //glUseProgram(0); #endif } // Set shader uniform value for texture void SetShaderValueTexture(Shader shader, int uniformLoc, Texture2D texture) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUseProgram(shader.id); glUniform1i(uniformLoc, texture.id); //glUseProgram(0); #endif } // Set a custom projection matrix (replaces internal projection matrix) void SetMatrixProjection(Matrix projection) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.projection = projection; #endif } // Return internal projection matrix Matrix GetMatrixProjection(void) { #if defined(GRAPHICS_API_OPENGL_11) float mat[16]; glGetFloatv(GL_PROJECTION_MATRIX,mat); Matrix m; m.m0 = mat[0]; m.m1 = mat[1]; m.m2 = mat[2]; m.m3 = mat[3]; m.m4 = mat[4]; m.m5 = mat[5]; m.m6 = mat[6]; m.m7 = mat[7]; m.m8 = mat[8]; m.m9 = mat[9]; m.m10 = mat[10]; m.m11 = mat[11]; m.m12 = mat[12]; m.m13 = mat[13]; m.m14 = mat[14]; m.m15 = mat[15]; return m; #else return RLGL.State.projection; #endif # } // Set a custom modelview matrix (replaces internal modelview matrix) void SetMatrixModelview(Matrix view) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.modelview = view; #endif } // Return internal modelview matrix Matrix GetMatrixModelview(void) { Matrix matrix = MatrixIdentity(); #if defined(GRAPHICS_API_OPENGL_11) float mat[16]; glGetFloatv(GL_MODELVIEW_MATRIX, mat); matrix.m0 = mat[0]; matrix.m1 = mat[1]; matrix.m2 = mat[2]; matrix.m3 = mat[3]; matrix.m4 = mat[4]; matrix.m5 = mat[5]; matrix.m6 = mat[6]; matrix.m7 = mat[7]; matrix.m8 = mat[8]; matrix.m9 = mat[9]; matrix.m10 = mat[10]; matrix.m11 = mat[11]; matrix.m12 = mat[12]; matrix.m13 = mat[13]; matrix.m14 = mat[14]; matrix.m15 = mat[15]; #else matrix = RLGL.State.modelview; #endif return matrix; } // Generate cubemap texture from HDR texture // TODO: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24 Texture2D GenTextureCubemap(Shader shader, Texture2D map, int size) { Texture2D cubemap = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: SetShaderDefaultLocations() already setups locations for projection and view Matrix in shader // Other locations should be setup externally in shader before calling the function // Set up depth face culling and cubemap seamless glDisable(GL_CULL_FACE); #if defined(GRAPHICS_API_OPENGL_33) glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); // Flag not supported on OpenGL ES 2.0 #endif // Setup framebuffer unsigned int fbo, rbo; glGenFramebuffers(1, &fbo); glGenRenderbuffers(1, &rbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glBindRenderbuffer(GL_RENDERBUFFER, rbo); #if defined(GRAPHICS_API_OPENGL_33) glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size); #elif defined(GRAPHICS_API_OPENGL_ES2) glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size); #endif glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo); // Set up cubemap to render and attach to framebuffer // NOTE: Faces are stored as 32 bit floating point values glGenTextures(1, &cubemap.id); glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap.id); for (unsigned int i = 0; i < 6; i++) { #if defined(GRAPHICS_API_OPENGL_33) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB32F, size, size, 0, GL_RGB, GL_FLOAT, NULL); #elif defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.texFloat32) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, size, size, 0, GL_RGB, GL_FLOAT, NULL); #endif } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); #if defined(GRAPHICS_API_OPENGL_33) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); // Flag not supported on OpenGL ES 2.0 #endif glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Create projection and different views for each face Matrix fboProjection = MatrixPerspective(90.0*DEG2RAD, 1.0, DEFAULT_NEAR_CULL_DISTANCE, DEFAULT_FAR_CULL_DISTANCE); Matrix fboViews[6] = { MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ -1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }) }; // Convert HDR equirectangular environment map to cubemap equivalent glUseProgram(shader.id); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, map.id); SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_PROJECTION], fboProjection); // Note: don't forget to configure the viewport to the capture dimensions glViewport(0, 0, size, size); glBindFramebuffer(GL_FRAMEBUFFER, fbo); for (int i = 0; i < 6; i++) { SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_VIEW], fboViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, cubemap.id, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); GenDrawCube(); } // Unbind framebuffer and textures glBindFramebuffer(GL_FRAMEBUFFER, 0); // Reset viewport dimensions to default glViewport(0, 0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight); //glEnable(GL_CULL_FACE); // NOTE: Texture2D is a GL_TEXTURE_CUBE_MAP, not a GL_TEXTURE_2D! cubemap.width = size; cubemap.height = size; cubemap.mipmaps = 1; cubemap.format = UNCOMPRESSED_R32G32B32; #endif return cubemap; } // Generate irradiance texture using cubemap data // TODO: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24 Texture2D GenTextureIrradiance(Shader shader, Texture2D cubemap, int size) { Texture2D irradiance = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) // || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: SetShaderDefaultLocations() already setups locations for projection and view Matrix in shader // Other locations should be setup externally in shader before calling the function // Setup framebuffer unsigned int fbo, rbo; glGenFramebuffers(1, &fbo); glGenRenderbuffers(1, &rbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glBindRenderbuffer(GL_RENDERBUFFER, rbo); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo); // Create an irradiance cubemap, and re-scale capture FBO to irradiance scale glGenTextures(1, &irradiance.id); glBindTexture(GL_TEXTURE_CUBE_MAP, irradiance.id); for (unsigned int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, size, size, 0, GL_RGB, GL_FLOAT, NULL); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Create projection (transposed) and different views for each face Matrix fboProjection = MatrixPerspective(90.0*DEG2RAD, 1.0, DEFAULT_NEAR_CULL_DISTANCE, DEFAULT_FAR_CULL_DISTANCE); Matrix fboViews[6] = { MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ -1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }) }; // Solve diffuse integral by convolution to create an irradiance cubemap glUseProgram(shader.id); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap.id); SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_PROJECTION], fboProjection); // Note: don't forget to configure the viewport to the capture dimensions glViewport(0, 0, size, size); glBindFramebuffer(GL_FRAMEBUFFER, fbo); for (int i = 0; i < 6; i++) { SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_VIEW], fboViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradiance.id, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); GenDrawCube(); } // Unbind framebuffer and textures glBindFramebuffer(GL_FRAMEBUFFER, 0); // Reset viewport dimensions to default glViewport(0, 0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight); irradiance.width = size; irradiance.height = size; irradiance.mipmaps = 1; //irradiance.format = UNCOMPRESSED_R16G16B16; #endif return irradiance; } // Generate prefilter texture using cubemap data // TODO: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24 Texture2D GenTexturePrefilter(Shader shader, Texture2D cubemap, int size) { Texture2D prefilter = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) // || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: SetShaderDefaultLocations() already setups locations for projection and view Matrix in shader // Other locations should be setup externally in shader before calling the function // TODO: Locations should be taken out of this function... too shader dependant... int roughnessLoc = GetShaderLocation(shader, "roughness"); // Setup framebuffer unsigned int fbo, rbo; glGenFramebuffers(1, &fbo); glGenRenderbuffers(1, &rbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glBindRenderbuffer(GL_RENDERBUFFER, rbo); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo); // Create a prefiltered HDR environment map glGenTextures(1, &prefilter.id); glBindTexture(GL_TEXTURE_CUBE_MAP, prefilter.id); for (unsigned int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, size, size, 0, GL_RGB, GL_FLOAT, NULL); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Generate mipmaps for the prefiltered HDR texture glGenerateMipmap(GL_TEXTURE_CUBE_MAP); // Create projection (transposed) and different views for each face Matrix fboProjection = MatrixPerspective(90.0*DEG2RAD, 1.0, DEFAULT_NEAR_CULL_DISTANCE, DEFAULT_FAR_CULL_DISTANCE); Matrix fboViews[6] = { MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ -1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }), MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }) }; // Prefilter HDR and store data into mipmap levels glUseProgram(shader.id); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap.id); SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_PROJECTION], fboProjection); glBindFramebuffer(GL_FRAMEBUFFER, fbo); #define MAX_MIPMAP_LEVELS 5 // Max number of prefilter texture mipmaps for (int mip = 0; mip < MAX_MIPMAP_LEVELS; mip++) { // Resize framebuffer according to mip-level size. unsigned int mipWidth = size*(int)powf(0.5f, (float)mip); unsigned int mipHeight = size*(int)powf(0.5f, (float)mip); glBindRenderbuffer(GL_RENDERBUFFER, rbo); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight); glViewport(0, 0, mipWidth, mipHeight); float roughness = (float)mip/(float)(MAX_MIPMAP_LEVELS - 1); glUniform1f(roughnessLoc, roughness); for (int i = 0; i < 6; i++) { SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_VIEW], fboViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilter.id, mip); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); GenDrawCube(); } } // Unbind framebuffer and textures glBindFramebuffer(GL_FRAMEBUFFER, 0); // Reset viewport dimensions to default glViewport(0, 0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight); prefilter.width = size; prefilter.height = size; //prefilter.mipmaps = 1 + (int)floor(log(size)/log(2)); //prefilter.format = UNCOMPRESSED_R16G16B16; #endif return prefilter; } // Generate BRDF texture using cubemap data // NOTE: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24 // TODO: Review implementation: https://github.com/HectorMF/BRDFGenerator Texture2D GenTextureBRDF(Shader shader, int size) { Texture2D brdf = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Generate BRDF convolution texture glGenTextures(1, &brdf.id); glBindTexture(GL_TEXTURE_2D, brdf.id); #if defined(GRAPHICS_API_OPENGL_33) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB32F, size, size, 0, GL_RGB, GL_FLOAT, NULL); #elif defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.texFloat32) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_FLOAT, NULL); #endif glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Render BRDF LUT into a quad using FBO unsigned int fbo, rbo; glGenFramebuffers(1, &fbo); glGenRenderbuffers(1, &rbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glBindRenderbuffer(GL_RENDERBUFFER, rbo); #if defined(GRAPHICS_API_OPENGL_33) glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size); #elif defined(GRAPHICS_API_OPENGL_ES2) glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size); #endif glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdf.id, 0); glViewport(0, 0, size, size); glUseProgram(shader.id); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); GenDrawQuad(); // Unbind framebuffer and textures glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unload framebuffer but keep color texture glDeleteRenderbuffers(1, &rbo); glDeleteFramebuffers(1, &fbo); // Reset viewport dimensions to default glViewport(0, 0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight); brdf.width = size; brdf.height = size; brdf.mipmaps = 1; brdf.format = UNCOMPRESSED_R32G32B32; #endif return brdf; } // Begin blending mode (alpha, additive, multiplied) // NOTE: Only 3 blending modes supported, default blend mode is alpha void BeginBlendMode(int mode) { static int blendMode = 0; // Track current blending mode if ((blendMode != mode) && (mode < 3)) { rlglDraw(); switch (mode) { case BLEND_ALPHA: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); break; case BLEND_ADDITIVE: glBlendFunc(GL_SRC_ALPHA, GL_ONE); break; // Alternative: glBlendFunc(GL_ONE, GL_ONE); case BLEND_MULTIPLIED: glBlendFunc(GL_DST_COLOR, GL_ONE_MINUS_SRC_ALPHA); break; default: break; } blendMode = mode; } } // End blending mode (reset to default: alpha blending) void EndBlendMode(void) { BeginBlendMode(BLEND_ALPHA); } #if defined(SUPPORT_VR_SIMULATOR) // Init VR simulator for selected device parameters // NOTE: It modifies the global variable: RLGL.Vr.stereoFbo void InitVrSimulator(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize framebuffer and textures for stereo rendering // NOTE: Screen size should match HMD aspect ratio RLGL.Vr.stereoFbo = rlLoadRenderTexture(RLGL.State.framebufferWidth, RLGL.State.framebufferHeight, UNCOMPRESSED_R8G8B8A8, 24, false); RLGL.Vr.simulatorReady = true; #else TRACELOG(LOG_WARNING, "RLGL: VR Simulator not supported on OpenGL 1.1"); #endif } // Update VR tracking (position and orientation) and camera // NOTE: Camera (position, target, up) gets update with head tracking information void UpdateVrTracking(Camera *camera) { // TODO: Simulate 1st person camera system } // Close VR simulator for current device void CloseVrSimulator(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.Vr.simulatorReady) rlDeleteRenderTextures(RLGL.Vr.stereoFbo); // Unload stereo framebuffer and texture #endif } // Set stereo rendering configuration parameters void SetVrConfiguration(VrDeviceInfo hmd, Shader distortion) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Reset RLGL.Vr.config for a new values assignment memset(&RLGL.Vr.config, 0, sizeof(RLGL.Vr.config)); // Assign distortion shader RLGL.Vr.config.distortionShader = distortion; // Compute aspect ratio float aspect = ((float)hmd.hResolution*0.5f)/(float)hmd.vResolution; // Compute lens parameters float lensShift = (hmd.hScreenSize*0.25f - hmd.lensSeparationDistance*0.5f)/hmd.hScreenSize; float leftLensCenter[2] = { 0.25f + lensShift, 0.5f }; float rightLensCenter[2] = { 0.75f - lensShift, 0.5f }; float leftScreenCenter[2] = { 0.25f, 0.5f }; float rightScreenCenter[2] = { 0.75f, 0.5f }; // Compute distortion scale parameters // NOTE: To get lens max radius, lensShift must be normalized to [-1..1] float lensRadius = fabsf(-1.0f - 4.0f*lensShift); float lensRadiusSq = lensRadius*lensRadius; float distortionScale = hmd.lensDistortionValues[0] + hmd.lensDistortionValues[1]*lensRadiusSq + hmd.lensDistortionValues[2]*lensRadiusSq*lensRadiusSq + hmd.lensDistortionValues[3]*lensRadiusSq*lensRadiusSq*lensRadiusSq; TRACELOGD("RLGL: VR device configuration:"); TRACELOGD(" > Distortion Scale: %f", distortionScale); float normScreenWidth = 0.5f; float normScreenHeight = 1.0f; float scaleIn[2] = { 2.0f/normScreenWidth, 2.0f/normScreenHeight/aspect }; float scale[2] = { normScreenWidth*0.5f/distortionScale, normScreenHeight*0.5f*aspect/distortionScale }; TRACELOGD(" > Distortion Shader: LeftLensCenter = { %f, %f }", leftLensCenter[0], leftLensCenter[1]); TRACELOGD(" > Distortion Shader: RightLensCenter = { %f, %f }", rightLensCenter[0], rightLensCenter[1]); TRACELOGD(" > Distortion Shader: Scale = { %f, %f }", scale[0], scale[1]); TRACELOGD(" > Distortion Shader: ScaleIn = { %f, %f }", scaleIn[0], scaleIn[1]); // Fovy is normally computed with: 2*atan2f(hmd.vScreenSize, 2*hmd.eyeToScreenDistance) // ...but with lens distortion it is increased (see Oculus SDK Documentation) //float fovy = 2.0f*atan2f(hmd.vScreenSize*0.5f*distortionScale, hmd.eyeToScreenDistance); // Really need distortionScale? float fovy = 2.0f*(float)atan2f(hmd.vScreenSize*0.5f, hmd.eyeToScreenDistance); // Compute camera projection matrices float projOffset = 4.0f*lensShift; // Scaled to projection space coordinates [-1..1] Matrix proj = MatrixPerspective(fovy, aspect, DEFAULT_NEAR_CULL_DISTANCE, DEFAULT_FAR_CULL_DISTANCE); RLGL.Vr.config.eyesProjection[0] = MatrixMultiply(proj, MatrixTranslate(projOffset, 0.0f, 0.0f)); RLGL.Vr.config.eyesProjection[1] = MatrixMultiply(proj, MatrixTranslate(-projOffset, 0.0f, 0.0f)); // Compute camera transformation matrices // NOTE: Camera movement might seem more natural if we model the head. // Our axis of rotation is the base of our head, so we might want to add // some y (base of head to eye level) and -z (center of head to eye protrusion) to the camera positions. RLGL.Vr.config.eyesViewOffset[0] = MatrixTranslate(-hmd.interpupillaryDistance*0.5f, 0.075f, 0.045f); RLGL.Vr.config.eyesViewOffset[1] = MatrixTranslate(hmd.interpupillaryDistance*0.5f, 0.075f, 0.045f); // Compute eyes Viewports RLGL.Vr.config.eyeViewportRight[2] = hmd.hResolution/2; RLGL.Vr.config.eyeViewportRight[3] = hmd.vResolution; RLGL.Vr.config.eyeViewportLeft[0] = hmd.hResolution/2; RLGL.Vr.config.eyeViewportLeft[1] = 0; RLGL.Vr.config.eyeViewportLeft[2] = hmd.hResolution/2; RLGL.Vr.config.eyeViewportLeft[3] = hmd.vResolution; if (RLGL.Vr.config.distortionShader.id > 0) { // Update distortion shader with lens and distortion-scale parameters SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "leftLensCenter"), leftLensCenter, UNIFORM_VEC2); SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "rightLensCenter"), rightLensCenter, UNIFORM_VEC2); SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "leftScreenCenter"), leftScreenCenter, UNIFORM_VEC2); SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "rightScreenCenter"), rightScreenCenter, UNIFORM_VEC2); SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "scale"), scale, UNIFORM_VEC2); SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "scaleIn"), scaleIn, UNIFORM_VEC2); SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "hmdWarpParam"), hmd.lensDistortionValues, UNIFORM_VEC4); SetShaderValue(RLGL.Vr.config.distortionShader, GetShaderLocation(RLGL.Vr.config.distortionShader, "chromaAbParam"), hmd.chromaAbCorrection, UNIFORM_VEC4); } #endif } // Detect if VR simulator is running bool IsVrSimulatorReady(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) return RLGL.Vr.simulatorReady; #else return false; #endif } // Enable/Disable VR experience (device or simulator) void ToggleVrMode(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.Vr.simulatorReady = !RLGL.Vr.simulatorReady; if (!RLGL.Vr.simulatorReady) { RLGL.Vr.stereoRender = false; // Reset viewport and default projection-modelview matrices rlViewport(0, 0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight); RLGL.State.projection = MatrixOrtho(0.0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight, 0.0, 0.0, 1.0); RLGL.State.modelview = MatrixIdentity(); } else RLGL.Vr.stereoRender = true; #endif } // Begin VR drawing configuration void BeginVrDrawing(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.Vr.simulatorReady) { rlEnableRenderTexture(RLGL.Vr.stereoFbo.id); // Setup framebuffer for stereo rendering //glEnable(GL_FRAMEBUFFER_SRGB); // Enable SRGB framebuffer (only if required) //glViewport(0, 0, buffer.width, buffer.height); // Useful if rendering to separate framebuffers (every eye) rlClearScreenBuffers(); // Clear current framebuffer RLGL.Vr.stereoRender = true; } #endif } // End VR drawing process (and desktop mirror) void EndVrDrawing(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.Vr.simulatorReady) { RLGL.Vr.stereoRender = false; // Disable stereo render rlDisableRenderTexture(); // Unbind current framebuffer rlClearScreenBuffers(); // Clear current framebuffer // Set viewport to default framebuffer size (screen size) rlViewport(0, 0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight); // Let rlgl reconfigure internal matrices rlMatrixMode(RL_PROJECTION); // Enable internal projection matrix rlLoadIdentity(); // Reset internal projection matrix rlOrtho(0.0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight, 0.0, 0.0, 1.0); // Recalculate internal RLGL.State.projection matrix rlMatrixMode(RL_MODELVIEW); // Enable internal modelview matrix rlLoadIdentity(); // Reset internal modelview matrix // Draw RenderTexture (RLGL.Vr.stereoFbo) using distortion shader if available if (RLGL.Vr.config.distortionShader.id > 0) RLGL.State.currentShader = RLGL.Vr.config.distortionShader; else RLGL.State.currentShader = GetShaderDefault(); rlEnableTexture(RLGL.Vr.stereoFbo.texture.id); rlPushMatrix(); rlBegin(RL_QUADS); rlColor4ub(255, 255, 255, 255); rlNormal3f(0.0f, 0.0f, 1.0f); // Bottom-left corner for texture and quad rlTexCoord2f(0.0f, 1.0f); rlVertex2f(0.0f, 0.0f); // Bottom-right corner for texture and quad rlTexCoord2f(0.0f, 0.0f); rlVertex2f(0.0f, (float)RLGL.Vr.stereoFbo.texture.height); // Top-right corner for texture and quad rlTexCoord2f(1.0f, 0.0f); rlVertex2f((float)RLGL.Vr.stereoFbo.texture.width, (float)RLGL.Vr.stereoFbo.texture.height); // Top-left corner for texture and quad rlTexCoord2f(1.0f, 1.0f); rlVertex2f((float)RLGL.Vr.stereoFbo.texture.width, 0.0f); rlEnd(); rlPopMatrix(); rlDisableTexture(); // Update and draw render texture fbo with distortion to backbuffer UpdateBuffersDefault(); DrawBuffersDefault(); // Restore RLGL.State.defaultShader RLGL.State.currentShader = RLGL.State.defaultShader; // Reset viewport and default projection-modelview matrices rlViewport(0, 0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight); RLGL.State.projection = MatrixOrtho(0.0, RLGL.State.framebufferWidth, RLGL.State.framebufferHeight, 0.0, 0.0, 1.0); RLGL.State.modelview = MatrixIdentity(); rlDisableDepthTest(); } #endif } #endif // SUPPORT_VR_SIMULATOR //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Compile custom shader and return shader id static unsigned int CompileShader(const char *shaderStr, int type) { unsigned int shader = glCreateShader(type); glShaderSource(shader, 1, &shaderStr, NULL); GLint success = 0; glCompileShader(shader); glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (success != GL_TRUE) { TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile shader code", shader); int maxLength = 0; int length; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength); #if defined(_MSC_VER) char *log = RL_MALLOC(maxLength); #else char log[maxLength]; #endif glGetShaderInfoLog(shader, maxLength, &length, log); TRACELOG(LOG_WARNING, "SHADER: [ID %i] Compile error: %s", shader, log); #if defined(_MSC_VER) RL_FREE(log); #endif } else TRACELOG(LOG_INFO, "SHADER: [ID %i] Compiled successfully", shader); return shader; } // Load custom shader strings and return program id static unsigned int LoadShaderProgram(unsigned int vShaderId, unsigned int fShaderId) { unsigned int program = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLint success = 0; program = glCreateProgram(); glAttachShader(program, vShaderId); glAttachShader(program, fShaderId); // NOTE: Default attribute shader locations must be binded before linking glBindAttribLocation(program, 0, DEFAULT_ATTRIB_POSITION_NAME); glBindAttribLocation(program, 1, DEFAULT_ATTRIB_TEXCOORD_NAME); glBindAttribLocation(program, 2, DEFAULT_ATTRIB_NORMAL_NAME); glBindAttribLocation(program, 3, DEFAULT_ATTRIB_COLOR_NAME); glBindAttribLocation(program, 4, DEFAULT_ATTRIB_TANGENT_NAME); glBindAttribLocation(program, 5, DEFAULT_ATTRIB_TEXCOORD2_NAME); // NOTE: If some attrib name is no found on the shader, it locations becomes -1 glLinkProgram(program); // NOTE: All uniform variables are intitialised to 0 when a program links glGetProgramiv(program, GL_LINK_STATUS, &success); if (success == GL_FALSE) { TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to link shader program", program); int maxLength = 0; int length; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength); #if defined(_MSC_VER) char *log = RL_MALLOC(maxLength); #else char log[maxLength]; #endif glGetProgramInfoLog(program, maxLength, &length, log); TRACELOG(LOG_WARNING, "SHADER: [ID %i] Link error: %s", program, log); #if defined(_MSC_VER) RL_FREE(log); #endif glDeleteProgram(program); program = 0; } else TRACELOG(LOG_INFO, "SHADER: [ID %i] Program loaded successfully", program); #endif return program; } // Load default shader (just vertex positioning and texture coloring) // NOTE: This shader program is used for internal buffers static Shader LoadShaderDefault(void) { Shader shader = { 0 }; shader.locs = (int *)RL_CALLOC(MAX_SHADER_LOCATIONS, sizeof(int)); // NOTE: All locations must be reseted to -1 (no location) for (int i = 0; i < MAX_SHADER_LOCATIONS; i++) shader.locs[i] = -1; // Vertex shader directly defined, no external file required const char *defaultVShaderStr = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" #elif defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" #endif #if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21) "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec4 vertexColor; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec3 vertexPosition; \n" "in vec2 vertexTexCoord; \n" "in vec4 vertexColor; \n" "out vec2 fragTexCoord; \n" "out vec4 fragColor; \n" #endif "uniform mat4 mvp; \n" "void main() \n" "{ \n" " fragTexCoord = vertexTexCoord; \n" " fragColor = vertexColor; \n" " gl_Position = mvp*vec4(vertexPosition, 1.0); \n" "} \n"; // Fragment shader directly defined, no external file required const char *defaultFShaderStr = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" #elif defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" "precision mediump float; \n" // precision required for OpenGL ES2 (WebGL) #endif #if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21) "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec2 fragTexCoord; \n" "in vec4 fragColor; \n" "out vec4 finalColor; \n" #endif "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" #if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21) " vec4 texelColor = texture2D(texture0, fragTexCoord); \n" // NOTE: texture2D() is deprecated on OpenGL 3.3 and ES 3.0 " gl_FragColor = texelColor*colDiffuse*fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) " vec4 texelColor = texture(texture0, fragTexCoord); \n" " finalColor = texelColor*colDiffuse*fragColor; \n" #endif "} \n"; // NOTE: Compiled vertex/fragment shaders are kept for re-use RLGL.State.defaultVShaderId = CompileShader(defaultVShaderStr, GL_VERTEX_SHADER); // Compile default vertex shader RLGL.State.defaultFShaderId = CompileShader(defaultFShaderStr, GL_FRAGMENT_SHADER); // Compile default fragment shader shader.id = LoadShaderProgram(RLGL.State.defaultVShaderId, RLGL.State.defaultFShaderId); if (shader.id > 0) { TRACELOG(LOG_INFO, "SHADER: [ID %i] Default shader loaded successfully", shader.id); // Set default shader locations: attributes locations shader.locs[LOC_VERTEX_POSITION] = glGetAttribLocation(shader.id, "vertexPosition"); shader.locs[LOC_VERTEX_TEXCOORD01] = glGetAttribLocation(shader.id, "vertexTexCoord"); shader.locs[LOC_VERTEX_COLOR] = glGetAttribLocation(shader.id, "vertexColor"); // Set default shader locations: uniform locations shader.locs[LOC_MATRIX_MVP] = glGetUniformLocation(shader.id, "mvp"); shader.locs[LOC_COLOR_DIFFUSE] = glGetUniformLocation(shader.id, "colDiffuse"); shader.locs[LOC_MAP_DIFFUSE] = glGetUniformLocation(shader.id, "texture0"); // NOTE: We could also use below function but in case DEFAULT_ATTRIB_* points are // changed for external custom shaders, we just use direct bindings above //SetShaderDefaultLocations(&shader); } else TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to load default shader", shader.id); return shader; } // Get location handlers to for shader attributes and uniforms // NOTE: If any location is not found, loc point becomes -1 static void SetShaderDefaultLocations(Shader *shader) { // NOTE: Default shader attrib locations have been fixed before linking: // vertex position location = 0 // vertex texcoord location = 1 // vertex normal location = 2 // vertex color location = 3 // vertex tangent location = 4 // vertex texcoord2 location = 5 // Get handles to GLSL input attibute locations shader->locs[LOC_VERTEX_POSITION] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_POSITION_NAME); shader->locs[LOC_VERTEX_TEXCOORD01] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD_NAME); shader->locs[LOC_VERTEX_TEXCOORD02] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD2_NAME); shader->locs[LOC_VERTEX_NORMAL] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_NORMAL_NAME); shader->locs[LOC_VERTEX_TANGENT] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TANGENT_NAME); shader->locs[LOC_VERTEX_COLOR] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_COLOR_NAME); // Get handles to GLSL uniform locations (vertex shader) shader->locs[LOC_MATRIX_MVP] = glGetUniformLocation(shader->id, "mvp"); shader->locs[LOC_MATRIX_PROJECTION] = glGetUniformLocation(shader->id, "projection"); shader->locs[LOC_MATRIX_VIEW] = glGetUniformLocation(shader->id, "view"); // Get handles to GLSL uniform locations (fragment shader) shader->locs[LOC_COLOR_DIFFUSE] = glGetUniformLocation(shader->id, "colDiffuse"); shader->locs[LOC_MAP_DIFFUSE] = glGetUniformLocation(shader->id, "texture0"); shader->locs[LOC_MAP_SPECULAR] = glGetUniformLocation(shader->id, "texture1"); shader->locs[LOC_MAP_NORMAL] = glGetUniformLocation(shader->id, "texture2"); } // Unload default shader static void UnloadShaderDefault(void) { glUseProgram(0); glDetachShader(RLGL.State.defaultShader.id, RLGL.State.defaultVShaderId); glDetachShader(RLGL.State.defaultShader.id, RLGL.State.defaultFShaderId); glDeleteShader(RLGL.State.defaultVShaderId); glDeleteShader(RLGL.State.defaultFShaderId); glDeleteProgram(RLGL.State.defaultShader.id); } // Load default internal buffers static void LoadBuffersDefault(void) { // Initialize CPU (RAM) arrays (vertex position, texcoord, color data and indexes) //-------------------------------------------------------------------------------------------- for (int i = 0; i < MAX_BATCH_BUFFERING; i++) { RLGL.State.vertexData[i].vertices = (float *)RL_MALLOC(sizeof(float)*3*4*MAX_BATCH_ELEMENTS); // 3 float by vertex, 4 vertex by quad RLGL.State.vertexData[i].texcoords = (float *)RL_MALLOC(sizeof(float)*2*4*MAX_BATCH_ELEMENTS); // 2 float by texcoord, 4 texcoord by quad RLGL.State.vertexData[i].colors = (unsigned char *)RL_MALLOC(sizeof(unsigned char)*4*4*MAX_BATCH_ELEMENTS); // 4 float by color, 4 colors by quad #if defined(GRAPHICS_API_OPENGL_33) RLGL.State.vertexData[i].indices = (unsigned int *)RL_MALLOC(sizeof(unsigned int)*6*MAX_BATCH_ELEMENTS); // 6 int by quad (indices) #elif defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.vertexData[i].indices = (unsigned short *)RL_MALLOC(sizeof(unsigned short)*6*MAX_BATCH_ELEMENTS); // 6 int by quad (indices) #endif for (int j = 0; j < (3*4*MAX_BATCH_ELEMENTS); j++) RLGL.State.vertexData[i].vertices[j] = 0.0f; for (int j = 0; j < (2*4*MAX_BATCH_ELEMENTS); j++) RLGL.State.vertexData[i].texcoords[j] = 0.0f; for (int j = 0; j < (4*4*MAX_BATCH_ELEMENTS); j++) RLGL.State.vertexData[i].colors[j] = 0; int k = 0; // Indices can be initialized right now for (int j = 0; j < (6*MAX_BATCH_ELEMENTS); j += 6) { RLGL.State.vertexData[i].indices[j] = 4*k; RLGL.State.vertexData[i].indices[j + 1] = 4*k + 1; RLGL.State.vertexData[i].indices[j + 2] = 4*k + 2; RLGL.State.vertexData[i].indices[j + 3] = 4*k; RLGL.State.vertexData[i].indices[j + 4] = 4*k + 2; RLGL.State.vertexData[i].indices[j + 5] = 4*k + 3; k++; } RLGL.State.vertexData[i].vCounter = 0; RLGL.State.vertexData[i].tcCounter = 0; RLGL.State.vertexData[i].cCounter = 0; } TRACELOG(LOG_INFO, "RLGL: Internal vertex buffers initialized successfully in RAM (CPU)"); //-------------------------------------------------------------------------------------------- // Upload to GPU (VRAM) vertex data and initialize VAOs/VBOs //-------------------------------------------------------------------------------------------- for (int i = 0; i < MAX_BATCH_BUFFERING; i++) { if (RLGL.ExtSupported.vao) { // Initialize Quads VAO glGenVertexArrays(1, &RLGL.State.vertexData[i].vaoId); glBindVertexArray(RLGL.State.vertexData[i].vaoId); } // Quads - Vertex buffers binding and attributes enable // Vertex position buffer (shader-location = 0) glGenBuffers(1, &RLGL.State.vertexData[i].vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[i].vboId[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[i].vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(RLGL.State.currentShader.locs[LOC_VERTEX_POSITION]); glVertexAttribPointer(RLGL.State.currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0); // Vertex texcoord buffer (shader-location = 1) glGenBuffers(1, &RLGL.State.vertexData[i].vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[i].vboId[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[i].texcoords, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(RLGL.State.currentShader.locs[LOC_VERTEX_TEXCOORD01]); glVertexAttribPointer(RLGL.State.currentShader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0); // Vertex color buffer (shader-location = 3) glGenBuffers(1, &RLGL.State.vertexData[i].vboId[2]); glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[i].vboId[2]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*4*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[i].colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(RLGL.State.currentShader.locs[LOC_VERTEX_COLOR]); glVertexAttribPointer(RLGL.State.currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); // Fill index buffer glGenBuffers(1, &RLGL.State.vertexData[i].vboId[3]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, RLGL.State.vertexData[i].vboId[3]); #if defined(GRAPHICS_API_OPENGL_33) glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*6*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[i].indices, GL_STATIC_DRAW); #elif defined(GRAPHICS_API_OPENGL_ES2) glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short)*6*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[i].indices, GL_STATIC_DRAW); #endif } TRACELOG(LOG_INFO, "RLGL: Internal vertex buffers uploaded successfully to VRAM (GPU)"); // Unbind the current VAO if (RLGL.ExtSupported.vao) glBindVertexArray(0); //-------------------------------------------------------------------------------------------- } // Update default internal buffers (VAOs/VBOs) with vertex array data // NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0) // TODO: If no data changed on the CPU arrays --> No need to re-update GPU arrays (change flag required) static void UpdateBuffersDefault(void) { // Update vertex buffers data if (RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter > 0) { // Activate elements VAO if (RLGL.ExtSupported.vao) glBindVertexArray(RLGL.State.vertexData[RLGL.State.currentBuffer].vaoId); // Vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[RLGL.State.currentBuffer].vboId[0]); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter, RLGL.State.vertexData[RLGL.State.currentBuffer].vertices); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[RLGL.State.currentBuffer].vertices, GL_DYNAMIC_DRAW); // Update all buffer // Texture coordinates buffer glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[RLGL.State.currentBuffer].vboId[1]); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter, RLGL.State.vertexData[RLGL.State.currentBuffer].texcoords); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[RLGL.State.currentBuffer].texcoords, GL_DYNAMIC_DRAW); // Update all buffer // Colors buffer glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[RLGL.State.currentBuffer].vboId[2]); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter, RLGL.State.vertexData[RLGL.State.currentBuffer].colors); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*MAX_BATCH_ELEMENTS, RLGL.State.vertexData[RLGL.State.currentBuffer].colors, GL_DYNAMIC_DRAW); // Update all buffer // NOTE: glMapBuffer() causes sync issue. // If GPU is working with this buffer, glMapBuffer() will wait(stall) until GPU to finish its job. // To avoid waiting (idle), you can call first glBufferData() with NULL pointer before glMapBuffer(). // If you do that, the previous data in PBO will be discarded and glMapBuffer() returns a new // allocated pointer immediately even if GPU is still working with the previous data. // Another option: map the buffer object into client's memory // Probably this code could be moved somewhere else... // RLGL.State.vertexData[RLGL.State.currentBuffer].vertices = (float *)glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); // if (RLGL.State.vertexData[RLGL.State.currentBuffer].vertices) // { // Update vertex data // } // glUnmapBuffer(GL_ARRAY_BUFFER); // Unbind the current VAO if (RLGL.ExtSupported.vao) glBindVertexArray(0); } } // Draw default internal buffers vertex data static void DrawBuffersDefault(void) { Matrix matProjection = RLGL.State.projection; Matrix matModelView = RLGL.State.modelview; int eyesCount = 1; #if defined(SUPPORT_VR_SIMULATOR) if (RLGL.Vr.stereoRender) eyesCount = 2; #endif for (int eye = 0; eye < eyesCount; eye++) { #if defined(SUPPORT_VR_SIMULATOR) if (eyesCount == 2) SetStereoView(eye, matProjection, matModelView); #endif // Draw buffers if (RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter > 0) { // Set current shader and upload current MVP matrix glUseProgram(RLGL.State.currentShader.id); // Create modelview-projection matrix Matrix matMVP = MatrixMultiply(RLGL.State.modelview, RLGL.State.projection); glUniformMatrix4fv(RLGL.State.currentShader.locs[LOC_MATRIX_MVP], 1, false, MatrixToFloat(matMVP)); glUniform4f(RLGL.State.currentShader.locs[LOC_COLOR_DIFFUSE], 1.0f, 1.0f, 1.0f, 1.0f); glUniform1i(RLGL.State.currentShader.locs[LOC_MAP_DIFFUSE], 0); // Provided value refers to the texture unit (active) // TODO: Support additional texture units on custom shader //if (RLGL.State.currentShader->locs[LOC_MAP_SPECULAR] > 0) glUniform1i(RLGL.State.currentShader.locs[LOC_MAP_SPECULAR], 1); //if (RLGL.State.currentShader->locs[LOC_MAP_NORMAL] > 0) glUniform1i(RLGL.State.currentShader.locs[LOC_MAP_NORMAL], 2); // NOTE: Right now additional map textures not considered for default buffers drawing int vertexOffset = 0; if (RLGL.ExtSupported.vao) glBindVertexArray(RLGL.State.vertexData[RLGL.State.currentBuffer].vaoId); else { // Bind vertex attrib: position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[RLGL.State.currentBuffer].vboId[0]); glVertexAttribPointer(RLGL.State.currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(RLGL.State.currentShader.locs[LOC_VERTEX_POSITION]); // Bind vertex attrib: texcoord (shader-location = 1) glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[RLGL.State.currentBuffer].vboId[1]); glVertexAttribPointer(RLGL.State.currentShader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(RLGL.State.currentShader.locs[LOC_VERTEX_TEXCOORD01]); // Bind vertex attrib: color (shader-location = 3) glBindBuffer(GL_ARRAY_BUFFER, RLGL.State.vertexData[RLGL.State.currentBuffer].vboId[2]); glVertexAttribPointer(RLGL.State.currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(RLGL.State.currentShader.locs[LOC_VERTEX_COLOR]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, RLGL.State.vertexData[RLGL.State.currentBuffer].vboId[3]); } glActiveTexture(GL_TEXTURE0); for (int i = 0; i < RLGL.State.drawsCounter; i++) { glBindTexture(GL_TEXTURE_2D, RLGL.State.draws[i].textureId); // TODO: Find some way to bind additional textures --> Use global texture IDs? Register them on draw[i]? //if (RLGL.State.currentShader->locs[LOC_MAP_SPECULAR] > 0) { glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textureUnit1_id); } //if (RLGL.State.currentShader->locs[LOC_MAP_SPECULAR] > 0) { glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, textureUnit2_id); } if ((RLGL.State.draws[i].mode == RL_LINES) || (RLGL.State.draws[i].mode == RL_TRIANGLES)) glDrawArrays(RLGL.State.draws[i].mode, vertexOffset, RLGL.State.draws[i].vertexCount); else { #if defined(GRAPHICS_API_OPENGL_33) // We need to define the number of indices to be processed: quadsCount*6 // NOTE: The final parameter tells the GPU the offset in bytes from the // start of the index buffer to the location of the first index to process glDrawElements(GL_TRIANGLES, RLGL.State.draws[i].vertexCount/4*6, GL_UNSIGNED_INT, (GLvoid *)(sizeof(GLuint)*vertexOffset/4*6)); #elif defined(GRAPHICS_API_OPENGL_ES2) glDrawElements(GL_TRIANGLES, RLGL.State.draws[i].vertexCount/4*6, GL_UNSIGNED_SHORT, (GLvoid *)(sizeof(GLushort)*vertexOffset/4*6)); #endif } vertexOffset += (RLGL.State.draws[i].vertexCount + RLGL.State.draws[i].vertexAlignment); } if (!RLGL.ExtSupported.vao) { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures } if (RLGL.ExtSupported.vao) glBindVertexArray(0); // Unbind VAO glUseProgram(0); // Unbind shader program } // Reset vertex counters for next frame RLGL.State.vertexData[RLGL.State.currentBuffer].vCounter = 0; RLGL.State.vertexData[RLGL.State.currentBuffer].tcCounter = 0; RLGL.State.vertexData[RLGL.State.currentBuffer].cCounter = 0; // Reset depth for next draw RLGL.State.currentDepth = -1.0f; // Restore projection/modelview matrices RLGL.State.projection = matProjection; RLGL.State.modelview = matModelView; // Reset RLGL.State.draws array for (int i = 0; i < MAX_DRAWCALL_REGISTERED; i++) { RLGL.State.draws[i].mode = RL_QUADS; RLGL.State.draws[i].vertexCount = 0; RLGL.State.draws[i].textureId = RLGL.State.defaultTextureId; } RLGL.State.drawsCounter = 1; // Change to next buffer in the list RLGL.State.currentBuffer++; if (RLGL.State.currentBuffer >= MAX_BATCH_BUFFERING) RLGL.State.currentBuffer = 0; } // Unload default internal buffers vertex data from CPU and GPU static void UnloadBuffersDefault(void) { // Unbind everything if (RLGL.ExtSupported.vao) glBindVertexArray(0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glDisableVertexAttribArray(2); glDisableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); for (int i = 0; i < MAX_BATCH_BUFFERING; i++) { // Delete VBOs from GPU (VRAM) glDeleteBuffers(1, &RLGL.State.vertexData[i].vboId[0]); glDeleteBuffers(1, &RLGL.State.vertexData[i].vboId[1]); glDeleteBuffers(1, &RLGL.State.vertexData[i].vboId[2]); glDeleteBuffers(1, &RLGL.State.vertexData[i].vboId[3]); // Delete VAOs from GPU (VRAM) if (RLGL.ExtSupported.vao) glDeleteVertexArrays(1, &RLGL.State.vertexData[i].vaoId); // Free vertex arrays memory from CPU (RAM) RL_FREE(RLGL.State.vertexData[i].vertices); RL_FREE(RLGL.State.vertexData[i].texcoords); RL_FREE(RLGL.State.vertexData[i].colors); RL_FREE(RLGL.State.vertexData[i].indices); } } // Renders a 1x1 XY quad in NDC static void GenDrawQuad(void) { unsigned int quadVAO = 0; unsigned int quadVBO = 0; float vertices[] = { // Positions // Texture Coords -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, }; // Set up plane VAO glGenVertexArrays(1, &quadVAO); glGenBuffers(1, &quadVBO); glBindVertexArray(quadVAO); // Fill buffer glBindBuffer(GL_ARRAY_BUFFER, quadVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), &vertices, GL_STATIC_DRAW); // Link vertex attributes glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)0); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)(3*sizeof(float))); // Draw quad glBindVertexArray(quadVAO); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindVertexArray(0); glDeleteBuffers(1, &quadVBO); glDeleteVertexArrays(1, &quadVAO); } // Renders a 1x1 3D cube in NDC static void GenDrawCube(void) { unsigned int cubeVAO = 0; unsigned int cubeVBO = 0; float vertices[] = { -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, -1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f }; // Set up cube VAO glGenVertexArrays(1, &cubeVAO); glGenBuffers(1, &cubeVBO); // Fill buffer glBindBuffer(GL_ARRAY_BUFFER, cubeVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // Link vertex attributes glBindVertexArray(cubeVAO); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)0); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(3*sizeof(float))); glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(6*sizeof(float))); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); // Draw cube glBindVertexArray(cubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); glBindVertexArray(0); glDeleteBuffers(1, &cubeVBO); glDeleteVertexArrays(1, &cubeVAO); } #if defined(SUPPORT_VR_SIMULATOR) // Set internal projection and modelview matrix depending on eyes tracking data static void SetStereoView(int eye, Matrix matProjection, Matrix matModelView) { Matrix eyeProjection = matProjection; Matrix eyeModelView = matModelView; // Setup viewport and projection/modelview matrices using tracking data rlViewport(eye*RLGL.State.framebufferWidth/2, 0, RLGL.State.framebufferWidth/2, RLGL.State.framebufferHeight); // Apply view offset to modelview matrix eyeModelView = MatrixMultiply(matModelView, RLGL.Vr.config.eyesViewOffset[eye]); // Set current eye projection matrix eyeProjection = RLGL.Vr.config.eyesProjection[eye]; SetMatrixModelview(eyeModelView); SetMatrixProjection(eyeProjection); } #endif // SUPPORT_VR_SIMULATOR #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 #if defined(GRAPHICS_API_OPENGL_11) // Mipmaps data is generated after image data // NOTE: Only works with RGBA (4 bytes) data! static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight) { int mipmapCount = 1; // Required mipmap levels count (including base level) int width = baseWidth; int height = baseHeight; int size = baseWidth*baseHeight*4; // Size in bytes (will include mipmaps...), RGBA only // Count mipmap levels required while ((width != 1) && (height != 1)) { if (width != 1) width /= 2; if (height != 1) height /= 2; TRACELOGD("TEXTURE: Next mipmap size: %i x %i", width, height); mipmapCount++; size += (width*height*4); // Add mipmap size (in bytes) } TRACELOGD("TEXTURE: Total mipmaps required: %i", mipmapCount); TRACELOGD("TEXTURE: Total size of data required: %i", size); unsigned char *temp = RL_REALLOC(data, size); if (temp != NULL) data = temp; else TRACELOG(LOG_WARNING, "TEXTURE: Failed to allocate required mipmaps memory"); width = baseWidth; height = baseHeight; size = (width*height*4); // Generate mipmaps // NOTE: Every mipmap data is stored after data Color *image = (Color *)RL_MALLOC(width*height*sizeof(Color)); Color *mipmap = NULL; int offset = 0; int j = 0; for (int i = 0; i < size; i += 4) { image[j].r = data[i]; image[j].g = data[i + 1]; image[j].b = data[i + 2]; image[j].a = data[i + 3]; j++; } TRACELOGD("TEXTURE: Mipmap base size (%ix%i)", width, height); for (int mip = 1; mip < mipmapCount; mip++) { mipmap = GenNextMipmap(image, width, height); offset += (width*height*4); // Size of last mipmap j = 0; width /= 2; height /= 2; size = (width*height*4); // Mipmap size to store after offset // Add mipmap to data for (int i = 0; i < size; i += 4) { data[offset + i] = mipmap[j].r; data[offset + i + 1] = mipmap[j].g; data[offset + i + 2] = mipmap[j].b; data[offset + i + 3] = mipmap[j].a; j++; } RL_FREE(image); image = mipmap; mipmap = NULL; } RL_FREE(mipmap); // free mipmap data return mipmapCount; } // Manual mipmap generation (basic scaling algorithm) static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight) { int x2, y2; Color prow, pcol; int width = srcWidth/2; int height = srcHeight/2; Color *mipmap = (Color *)RL_MALLOC(width*height*sizeof(Color)); // Scaling algorithm works perfectly (box-filter) for (int y = 0; y < height; y++) { y2 = 2*y; for (int x = 0; x < width; x++) { x2 = 2*x; prow.r = (srcData[y2*srcWidth + x2].r + srcData[y2*srcWidth + x2 + 1].r)/2; prow.g = (srcData[y2*srcWidth + x2].g + srcData[y2*srcWidth + x2 + 1].g)/2; prow.b = (srcData[y2*srcWidth + x2].b + srcData[y2*srcWidth + x2 + 1].b)/2; prow.a = (srcData[y2*srcWidth + x2].a + srcData[y2*srcWidth + x2 + 1].a)/2; pcol.r = (srcData[(y2+1)*srcWidth + x2].r + srcData[(y2+1)*srcWidth + x2 + 1].r)/2; pcol.g = (srcData[(y2+1)*srcWidth + x2].g + srcData[(y2+1)*srcWidth + x2 + 1].g)/2; pcol.b = (srcData[(y2+1)*srcWidth + x2].b + srcData[(y2+1)*srcWidth + x2 + 1].b)/2; pcol.a = (srcData[(y2+1)*srcWidth + x2].a + srcData[(y2+1)*srcWidth + x2 + 1].a)/2; mipmap[y*width + x].r = (prow.r + pcol.r)/2; mipmap[y*width + x].g = (prow.g + pcol.g)/2; mipmap[y*width + x].b = (prow.b + pcol.b)/2; mipmap[y*width + x].a = (prow.a + pcol.a)/2; } } TRACELOGD("TEXTURE: Mipmap generated successfully (%ix%i)", width, height); return mipmap; } #endif #if defined(RLGL_STANDALONE) // Load text data from file, returns a '\0' terminated string // NOTE: text chars array should be freed manually char *LoadFileText(const char *fileName) { char *text = NULL; if (fileName != NULL) { FILE *textFile = fopen(fileName, "rt"); if (textFile != NULL) { // WARNING: When reading a file as 'text' file, // text mode causes carriage return-linefeed translation... // ...but using fseek() should return correct byte-offset fseek(textFile, 0, SEEK_END); int size = ftell(textFile); fseek(textFile, 0, SEEK_SET); if (size > 0) { text = (char *)RL_MALLOC(sizeof(char)*(size + 1)); int count = fread(text, sizeof(char), size, textFile); // WARNING: \r\n is converted to \n on reading, so, // read bytes count gets reduced by the number of lines if (count < size) text = RL_REALLOC(text, count + 1); // Zero-terminate the string text[count] = '\0'; TRACELOG(LOG_INFO, "FILEIO: [%s] Text file loaded successfully", fileName); } else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to read text file", fileName); fclose(textFile); } else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to open text file", fileName); } else TRACELOG(LOG_WARNING, "FILEIO: File name provided is not valid"); return text; } // Get pixel data size in bytes (image or texture) // NOTE: Size depends on pixel format int GetPixelDataSize(int width, int height, int format) { int dataSize = 0; // Size in bytes int bpp = 0; // Bits per pixel switch (format) { case UNCOMPRESSED_GRAYSCALE: bpp = 8; break; case UNCOMPRESSED_GRAY_ALPHA: case UNCOMPRESSED_R5G6B5: case UNCOMPRESSED_R5G5B5A1: case UNCOMPRESSED_R4G4B4A4: bpp = 16; break; case UNCOMPRESSED_R8G8B8A8: bpp = 32; break; case UNCOMPRESSED_R8G8B8: bpp = 24; break; case UNCOMPRESSED_R32: bpp = 32; break; case UNCOMPRESSED_R32G32B32: bpp = 32*3; break; case UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break; case COMPRESSED_DXT1_RGB: case COMPRESSED_DXT1_RGBA: case COMPRESSED_ETC1_RGB: case COMPRESSED_ETC2_RGB: case COMPRESSED_PVRT_RGB: case COMPRESSED_PVRT_RGBA: bpp = 4; break; case COMPRESSED_DXT3_RGBA: case COMPRESSED_DXT5_RGBA: case COMPRESSED_ETC2_EAC_RGBA: case COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break; case COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break; default: break; } dataSize = width*height*bpp/8; // Total data size in bytes // Most compressed formats works on 4x4 blocks, // if texture is smaller, minimum dataSize is 8 or 16 if ((width < 4) && (height < 4)) { if ((format >= COMPRESSED_DXT1_RGB) && (format < COMPRESSED_DXT3_RGBA)) dataSize = 8; else if ((format >= COMPRESSED_DXT3_RGBA) && (format < COMPRESSED_ASTC_8x8_RGBA)) dataSize = 16; } return dataSize; } #endif // RLGL_STANDALONE #endif // RLGL_IMPLEMENTATION