/********************************************************************************************** * * rlgl v3.7 - raylib OpenGL abstraction layer * * rlgl is a wrapper for multiple OpenGL versions (1.1, 2.1, 3.3 Core, ES 2.0) to * pseudo-OpenGL 1.1 style functions (rlVertex, rlTranslate, rlRotate...). * * When chosing an OpenGL version greater than OpenGL 1.1, rlgl stores vertex data on internal * VBO buffers (and VAOs if available). It requires calling 3 functions: * rlglInit() - Initialize internal buffers and auxiliary resources * rlglClose() - De-initialize internal buffers data and other auxiliar resources * * CONFIGURATION: * * #define GRAPHICS_API_OPENGL_11 * #define GRAPHICS_API_OPENGL_21 * #define GRAPHICS_API_OPENGL_33 * #define GRAPHICS_API_OPENGL_ES2 * Use selected OpenGL graphics backend, should be supported by platform * Those preprocessor defines are only used on rlgl module, if OpenGL version is * required by any other module, use rlGetVersion() to check it * * #define RLGL_IMPLEMENTATION * Generates the implementation of the library into the included file. * If not defined, the library is in header only mode and can be included in other headers * or source files without problems. But only ONE file should hold the implementation. * * #define RLGL_STANDALONE * Use rlgl as standalone library (no raylib dependency) * * #define SUPPORT_GL_DETAILS_INFO * Show OpenGL extensions and capabilities detailed logs on init * * DEPENDENCIES: * raymath - 3D math functionality (Vector3, Matrix, Quaternion) * GLAD - OpenGL extensions loading (OpenGL 3.3 Core only) * * * LICENSE: zlib/libpng * * Copyright (c) 2014-2021 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #ifndef RLGL_H #define RLGL_H #if defined(RLGL_STANDALONE) #define RAYMATH_STANDALONE #define RAYMATH_HEADER_ONLY #define RLAPI // We are building or using rlgl as a static library (or Linux shared library) #if defined(_WIN32) #if defined(BUILD_LIBTYPE_SHARED) #define RLAPI __declspec(dllexport) // We are building raylib as a Win32 shared library (.dll) #elif defined(USE_LIBTYPE_SHARED) #define RLAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll) #endif #endif // Support TRACELOG macros #if !defined(TRACELOG) #define TRACELOG(level, ...) (void)0 #define TRACELOGD(...) (void)0 #endif // Allow custom memory allocators #ifndef RL_MALLOC #define RL_MALLOC(sz) malloc(sz) #endif #ifndef RL_CALLOC #define RL_CALLOC(n,sz) calloc(n,sz) #endif #ifndef RL_REALLOC #define RL_REALLOC(n,sz) realloc(n,sz) #endif #ifndef RL_FREE #define RL_FREE(p) free(p) #endif #else #include "raylib.h" // Required for: Shader, Texture2D #endif #include "raymath.h" // Required for: Vector3, Matrix // Security check in case no GRAPHICS_API_OPENGL_* defined #if !defined(GRAPHICS_API_OPENGL_11) && \ !defined(GRAPHICS_API_OPENGL_21) && \ !defined(GRAPHICS_API_OPENGL_33) && \ !defined(GRAPHICS_API_OPENGL_ES2) #define GRAPHICS_API_OPENGL_33 #endif // Security check in case multiple GRAPHICS_API_OPENGL_* defined #if defined(GRAPHICS_API_OPENGL_11) #if defined(GRAPHICS_API_OPENGL_21) #undef GRAPHICS_API_OPENGL_21 #endif #if defined(GRAPHICS_API_OPENGL_33) #undef GRAPHICS_API_OPENGL_33 #endif #if defined(GRAPHICS_API_OPENGL_ES2) #undef GRAPHICS_API_OPENGL_ES2 #endif #endif // OpenGL 2.1 uses most of OpenGL 3.3 Core functionality // WARNING: Specific parts are checked with #if defines #if defined(GRAPHICS_API_OPENGL_21) #define GRAPHICS_API_OPENGL_33 #endif #define SUPPORT_RENDER_TEXTURES_HINT //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- // Default internal render batch limits #ifndef DEFAULT_BATCH_BUFFER_ELEMENTS #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // This is the maximum amount of elements (quads) per batch // NOTE: Be careful with text, every letter maps to a quad #define DEFAULT_BATCH_BUFFER_ELEMENTS 8192 #endif #if defined(GRAPHICS_API_OPENGL_ES2) // We reduce memory sizes for embedded systems (RPI and HTML5) // NOTE: On HTML5 (emscripten) this is allocated on heap, // by default it's only 16MB!...just take care... #define DEFAULT_BATCH_BUFFER_ELEMENTS 2048 #endif #endif #ifndef DEFAULT_BATCH_BUFFERS #define DEFAULT_BATCH_BUFFERS 1 // Default number of batch buffers (multi-buffering) #endif #ifndef DEFAULT_BATCH_DRAWCALLS #define DEFAULT_BATCH_DRAWCALLS 256 // Default number of batch draw calls (by state changes: mode, texture) #endif #ifndef MAX_BATCH_ACTIVE_TEXTURES #define MAX_BATCH_ACTIVE_TEXTURES 4 // Maximum number of additional textures that can be activated on batch drawing (SetShaderValueTexture()) #endif // Internal Matrix stack #ifndef MAX_MATRIX_STACK_SIZE #define MAX_MATRIX_STACK_SIZE 32 // Maximum size of Matrix stack #endif // Vertex buffers id limit #ifndef MAX_MESH_VERTEX_BUFFERS #define MAX_MESH_VERTEX_BUFFERS 7 // Maximum vertex buffers (VBO) per mesh #endif // Shader and material limits #ifndef MAX_SHADER_LOCATIONS #define MAX_SHADER_LOCATIONS 32 // Maximum number of shader locations supported #endif #ifndef MAX_MATERIAL_MAPS #define MAX_MATERIAL_MAPS 12 // Maximum number of shader maps supported #endif // Projection matrix culling #ifndef RL_CULL_DISTANCE_NEAR #define RL_CULL_DISTANCE_NEAR 0.01 // Default near cull distance #endif #ifndef RL_CULL_DISTANCE_FAR #define RL_CULL_DISTANCE_FAR 1000.0 // Default far cull distance #endif // Texture parameters (equivalent to OpenGL defines) #define RL_TEXTURE_WRAP_S 0x2802 // GL_TEXTURE_WRAP_S #define RL_TEXTURE_WRAP_T 0x2803 // GL_TEXTURE_WRAP_T #define RL_TEXTURE_MAG_FILTER 0x2800 // GL_TEXTURE_MAG_FILTER #define RL_TEXTURE_MIN_FILTER 0x2801 // GL_TEXTURE_MIN_FILTER #define RL_TEXTURE_FILTER_NEAREST 0x2600 // GL_NEAREST #define RL_TEXTURE_FILTER_LINEAR 0x2601 // GL_LINEAR #define RL_TEXTURE_FILTER_MIP_NEAREST 0x2700 // GL_NEAREST_MIPMAP_NEAREST #define RL_TEXTURE_FILTER_NEAREST_MIP_LINEAR 0x2702 // GL_NEAREST_MIPMAP_LINEAR #define RL_TEXTURE_FILTER_LINEAR_MIP_NEAREST 0x2701 // GL_LINEAR_MIPMAP_NEAREST #define RL_TEXTURE_FILTER_MIP_LINEAR 0x2703 // GL_LINEAR_MIPMAP_LINEAR #define RL_TEXTURE_FILTER_ANISOTROPIC 0x3000 // Anisotropic filter (custom identifier) #define RL_TEXTURE_WRAP_REPEAT 0x2901 // GL_REPEAT #define RL_TEXTURE_WRAP_CLAMP 0x812F // GL_CLAMP_TO_EDGE #define RL_TEXTURE_WRAP_MIRROR_REPEAT 0x8370 // GL_MIRRORED_REPEAT #define RL_TEXTURE_WRAP_MIRROR_CLAMP 0x8742 // GL_MIRROR_CLAMP_EXT // Matrix modes (equivalent to OpenGL) #define RL_MODELVIEW 0x1700 // GL_MODELVIEW #define RL_PROJECTION 0x1701 // GL_PROJECTION #define RL_TEXTURE 0x1702 // GL_TEXTURE // Primitive assembly draw modes #define RL_LINES 0x0001 // GL_LINES #define RL_TRIANGLES 0x0004 // GL_TRIANGLES #define RL_QUADS 0x0007 // GL_QUADS // GL equivalent data types #define RL_UNSIGNED_BYTE 0x1401 // GL_UNSIGNED_BYTE #define RL_FLOAT 0x1406 // GL_FLOAT //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- typedef enum { OPENGL_11 = 1, OPENGL_21, OPENGL_33, OPENGL_ES_20 } GlVersion; typedef enum { RL_ATTACHMENT_COLOR_CHANNEL0 = 0, RL_ATTACHMENT_COLOR_CHANNEL1, RL_ATTACHMENT_COLOR_CHANNEL2, RL_ATTACHMENT_COLOR_CHANNEL3, RL_ATTACHMENT_COLOR_CHANNEL4, RL_ATTACHMENT_COLOR_CHANNEL5, RL_ATTACHMENT_COLOR_CHANNEL6, RL_ATTACHMENT_COLOR_CHANNEL7, RL_ATTACHMENT_DEPTH = 100, RL_ATTACHMENT_STENCIL = 200, } FramebufferAttachType; typedef enum { RL_ATTACHMENT_CUBEMAP_POSITIVE_X = 0, RL_ATTACHMENT_CUBEMAP_NEGATIVE_X, RL_ATTACHMENT_CUBEMAP_POSITIVE_Y, RL_ATTACHMENT_CUBEMAP_NEGATIVE_Y, RL_ATTACHMENT_CUBEMAP_POSITIVE_Z, RL_ATTACHMENT_CUBEMAP_NEGATIVE_Z, RL_ATTACHMENT_TEXTURE2D = 100, RL_ATTACHMENT_RENDERBUFFER = 200, } FramebufferAttachTextureType; // Dynamic vertex buffers (position + texcoords + colors + indices arrays) typedef struct VertexBuffer { int elementsCount; // Number of elements in the buffer (QUADS) int vCounter; // Vertex position counter to process (and draw) from full buffer int tcCounter; // Vertex texcoord counter to process (and draw) from full buffer int cCounter; // Vertex color counter to process (and draw) from full buffer float *vertices; // Vertex position (XYZ - 3 components per vertex) (shader-location = 0) float *texcoords; // Vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1) unsigned char *colors; // Vertex colors (RGBA - 4 components per vertex) (shader-location = 3) #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) unsigned int *indices; // Vertex indices (in case vertex data comes indexed) (6 indices per quad) #endif #if defined(GRAPHICS_API_OPENGL_ES2) unsigned short *indices; // Vertex indices (in case vertex data comes indexed) (6 indices per quad) #endif unsigned int vaoId; // OpenGL Vertex Array Object id unsigned int vboId[4]; // OpenGL Vertex Buffer Objects id (4 types of vertex data) } VertexBuffer; // Draw call type // NOTE: Only texture changes register a new draw, other state-change-related elements are not // used at this moment (vaoId, shaderId, matrices), raylib just forces a batch draw call if any // of those state-change happens (this is done in core module) typedef struct DrawCall { int mode; // Drawing mode: LINES, TRIANGLES, QUADS int vertexCount; // Number of vertex of the draw int vertexAlignment; // Number of vertex required for index alignment (LINES, TRIANGLES) //unsigned int vaoId; // Vertex array id to be used on the draw -> Using RLGL.currentBatch->vertexBuffer.vaoId //unsigned int shaderId; // Shader id to be used on the draw -> Using RLGL.currentShader.id unsigned int textureId; // Texture id to be used on the draw -> Use to create new draw call if changes //Matrix projection; // Projection matrix for this draw -> Using RLGL.projection by default //Matrix modelview; // Modelview matrix for this draw -> Using RLGL.modelview by default } DrawCall; // RenderBatch type typedef struct RenderBatch { int buffersCount; // Number of vertex buffers (multi-buffering support) int currentBuffer; // Current buffer tracking in case of multi-buffering VertexBuffer *vertexBuffer; // Dynamic buffer(s) for vertex data DrawCall *draws; // Draw calls array, depends on textureId int drawsCounter; // Draw calls counter float currentDepth; // Current depth value for next draw } RenderBatch; // Shader attribute data types typedef enum { SHADER_ATTRIB_FLOAT = 0, SHADER_ATTRIB_VEC2, SHADER_ATTRIB_VEC3, SHADER_ATTRIB_VEC4 } ShaderAttributeDataType; #if defined(RLGL_STANDALONE) #ifndef __cplusplus // Boolean type typedef enum { false, true } bool; #endif // Color type, RGBA (32bit) typedef struct Color { unsigned char r; unsigned char g; unsigned char b; unsigned char a; } Color; // Texture type // NOTE: Data stored in GPU memory typedef struct Texture2D { unsigned int id; // OpenGL texture id int width; // Texture base width int height; // Texture base height int mipmaps; // Mipmap levels, 1 by default int format; // Data format (PixelFormat) } Texture2D; // Shader type (generic) typedef struct Shader { unsigned int id; // Shader program id int *locs; // Shader locations array (MAX_SHADER_LOCATIONS) } Shader; // TraceLog message types typedef enum { LOG_ALL, LOG_TRACE, LOG_DEBUG, LOG_INFO, LOG_WARNING, LOG_ERROR, LOG_FATAL, LOG_NONE } TraceLogLevel; // Texture formats (support depends on OpenGL version) typedef enum { PIXELFORMAT_UNCOMPRESSED_GRAYSCALE = 1, // 8 bit per pixel (no alpha) PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA, PIXELFORMAT_UNCOMPRESSED_R5G6B5, // 16 bpp PIXELFORMAT_UNCOMPRESSED_R8G8B8, // 24 bpp PIXELFORMAT_UNCOMPRESSED_R5G5B5A1, // 16 bpp (1 bit alpha) PIXELFORMAT_UNCOMPRESSED_R4G4B4A4, // 16 bpp (4 bit alpha) PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, // 32 bpp PIXELFORMAT_UNCOMPRESSED_R32, // 32 bpp (1 channel - float) PIXELFORMAT_UNCOMPRESSED_R32G32B32, // 32*3 bpp (3 channels - float) PIXELFORMAT_UNCOMPRESSED_R32G32B32A32, // 32*4 bpp (4 channels - float) PIXELFORMAT_COMPRESSED_DXT1_RGB, // 4 bpp (no alpha) PIXELFORMAT_COMPRESSED_DXT1_RGBA, // 4 bpp (1 bit alpha) PIXELFORMAT_COMPRESSED_DXT3_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_DXT5_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_ETC1_RGB, // 4 bpp PIXELFORMAT_COMPRESSED_ETC2_RGB, // 4 bpp PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_PVRT_RGB, // 4 bpp PIXELFORMAT_COMPRESSED_PVRT_RGBA, // 4 bpp PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA // 2 bpp } PixelFormat; // Texture parameters: filter mode // NOTE 1: Filtering considers mipmaps if available in the texture // NOTE 2: Filter is accordingly set for minification and magnification typedef enum { TEXTURE_FILTER_POINT = 0, // No filter, just pixel aproximation TEXTURE_FILTER_BILINEAR, // Linear filtering TEXTURE_FILTER_TRILINEAR, // Trilinear filtering (linear with mipmaps) TEXTURE_FILTER_ANISOTROPIC_4X, // Anisotropic filtering 4x TEXTURE_FILTER_ANISOTROPIC_8X, // Anisotropic filtering 8x TEXTURE_FILTER_ANISOTROPIC_16X, // Anisotropic filtering 16x } TextureFilter; // Texture parameters: wrap mode typedef enum { TEXTURE_WRAP_REPEAT = 0, // Repeats texture in tiled mode TEXTURE_WRAP_CLAMP, // Clamps texture to edge pixel in tiled mode TEXTURE_WRAP_MIRROR_REPEAT, // Mirrors and repeats the texture in tiled mode TEXTURE_WRAP_MIRROR_CLAMP // Mirrors and clamps to border the texture in tiled mode } TextureWrap; // Color blending modes (pre-defined) typedef enum { BLEND_ALPHA = 0, // Blend textures considering alpha (default) BLEND_ADDITIVE, // Blend textures adding colors BLEND_MULTIPLIED, // Blend textures multiplying colors BLEND_ADD_COLORS, // Blend textures adding colors (alternative) BLEND_SUBTRACT_COLORS, // Blend textures subtracting colors (alternative) BLEND_CUSTOM // Belnd textures using custom src/dst factors (use SetBlendModeCustom()) } BlendMode; // Shader location point type typedef enum { SHADER_LOC_VERTEX_POSITION = 0, SHADER_LOC_VERTEX_TEXCOORD01, SHADER_LOC_VERTEX_TEXCOORD02, SHADER_LOC_VERTEX_NORMAL, SHADER_LOC_VERTEX_TANGENT, SHADER_LOC_VERTEX_COLOR, SHADER_LOC_MATRIX_MVP, SHADER_LOC_MATRIX_MODEL, SHADER_LOC_MATRIX_VIEW, SHADER_LOC_MATRIX_NORMAL, SHADER_LOC_MATRIX_PROJECTION, SHADER_LOC_VECTOR_VIEW, SHADER_LOC_COLOR_DIFFUSE, SHADER_LOC_COLOR_SPECULAR, SHADER_LOC_COLOR_AMBIENT, SHADER_LOC_MAP_ALBEDO, // SHADER_LOC_MAP_DIFFUSE SHADER_LOC_MAP_METALNESS, // SHADER_LOC_MAP_SPECULAR SHADER_LOC_MAP_NORMAL, SHADER_LOC_MAP_ROUGHNESS, SHADER_LOC_MAP_OCCLUSION, SHADER_LOC_MAP_EMISSION, SHADER_LOC_MAP_HEIGHT, SHADER_LOC_MAP_CUBEMAP, SHADER_LOC_MAP_IRRADIANCE, SHADER_LOC_MAP_PREFILTER, SHADER_LOC_MAP_BRDF } ShaderLocationIndex; #define SHADER_LOC_MAP_DIFFUSE SHADER_LOC_MAP_ALBEDO #define SHADER_LOC_MAP_SPECULAR SHADER_LOC_MAP_METALNESS // Shader uniform data types typedef enum { SHADER_UNIFORM_FLOAT = 0, SHADER_UNIFORM_VEC2, SHADER_UNIFORM_VEC3, SHADER_UNIFORM_VEC4, SHADER_UNIFORM_INT, SHADER_UNIFORM_IVEC2, SHADER_UNIFORM_IVEC3, SHADER_UNIFORM_IVEC4, SHADER_UNIFORM_SAMPLER2D } ShaderUniformDataType; #endif #if defined(__cplusplus) extern "C" { // Prevents name mangling of functions #endif //------------------------------------------------------------------------------------ // Functions Declaration - Matrix operations //------------------------------------------------------------------------------------ RLAPI void rlMatrixMode(int mode); // Choose the current matrix to be transformed RLAPI void rlPushMatrix(void); // Push the current matrix to stack RLAPI void rlPopMatrix(void); // Pop lattest inserted matrix from stack RLAPI void rlLoadIdentity(void); // Reset current matrix to identity matrix RLAPI void rlTranslatef(float x, float y, float z); // Multiply the current matrix by a translation matrix RLAPI void rlRotatef(float angleDeg, float x, float y, float z); // Multiply the current matrix by a rotation matrix RLAPI void rlScalef(float x, float y, float z); // Multiply the current matrix by a scaling matrix RLAPI void rlMultMatrixf(float *matf); // Multiply the current matrix by another matrix RLAPI void rlFrustum(double left, double right, double bottom, double top, double znear, double zfar); RLAPI void rlOrtho(double left, double right, double bottom, double top, double znear, double zfar); RLAPI void rlViewport(int x, int y, int width, int height); // Set the viewport area //------------------------------------------------------------------------------------ // Functions Declaration - Vertex level operations //------------------------------------------------------------------------------------ RLAPI void rlBegin(int mode); // Initialize drawing mode (how to organize vertex) RLAPI void rlEnd(void); // Finish vertex providing RLAPI void rlVertex2i(int x, int y); // Define one vertex (position) - 2 int RLAPI void rlVertex2f(float x, float y); // Define one vertex (position) - 2 float RLAPI void rlVertex3f(float x, float y, float z); // Define one vertex (position) - 3 float RLAPI void rlTexCoord2f(float x, float y); // Define one vertex (texture coordinate) - 2 float RLAPI void rlNormal3f(float x, float y, float z); // Define one vertex (normal) - 3 float RLAPI void rlColor4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a); // Define one vertex (color) - 4 byte RLAPI void rlColor3f(float x, float y, float z); // Define one vertex (color) - 3 float RLAPI void rlColor4f(float x, float y, float z, float w); // Define one vertex (color) - 4 float //------------------------------------------------------------------------------------ // Functions Declaration - OpenGL style functions (common to 1.1, 3.3+, ES2) // NOTE: This functions are used to completely abstract raylib code from OpenGL layer, // some of them are direct wrappers over OpenGL calls, some others are custom //------------------------------------------------------------------------------------ // Vertex buffers state RLAPI bool rlEnableVertexArray(unsigned int vaoId); // Enable vertex array (VAO, if supported) RLAPI void rlDisableVertexArray(void); // Disable vertex array (VAO, if supported) RLAPI void rlEnableVertexBuffer(unsigned int id); // Enable vertex buffer (VBO) RLAPI void rlDisableVertexBuffer(void); // Disable vertex buffer (VBO) RLAPI void rlEnableVertexBufferElement(unsigned int id);// Enable vertex buffer element (VBO element) RLAPI void rlDisableVertexBufferElement(void); // Disable vertex buffer element (VBO element) RLAPI void rlEnableVertexAttribute(unsigned int index); // Enable vertex attribute index RLAPI void rlDisableVertexAttribute(unsigned int index);// Disable vertex attribute index #if defined(GRAPHICS_API_OPENGL_11) RLAPI void rlEnableStatePointer(int vertexAttribType, void *buffer); RLAPI void rlDisableStatePointer(int vertexAttribType); #endif // Textures state RLAPI void rlActiveTextureSlot(int slot); // Select and active a texture slot RLAPI void rlEnableTexture(unsigned int id); // Enable texture RLAPI void rlDisableTexture(void); // Disable texture RLAPI void rlEnableTextureCubemap(unsigned int id); // Enable texture cubemap RLAPI void rlDisableTextureCubemap(void); // Disable texture cubemap RLAPI void rlTextureParameters(unsigned int id, int param, int value); // Set texture parameters (filter, wrap) // Shader state RLAPI void rlEnableShader(unsigned int id); // Enable shader program RLAPI void rlDisableShader(void); // Disable shader program // Framebuffer state RLAPI void rlEnableFramebuffer(unsigned int id); // Enable render texture (fbo) RLAPI void rlDisableFramebuffer(void); // Disable render texture (fbo), return to default framebuffer // General render state RLAPI void rlEnableDepthTest(void); // Enable depth test RLAPI void rlDisableDepthTest(void); // Disable depth test RLAPI void rlEnableDepthMask(void); // Enable depth write RLAPI void rlDisableDepthMask(void); // Disable depth write RLAPI void rlEnableBackfaceCulling(void); // Enable backface culling RLAPI void rlDisableBackfaceCulling(void); // Disable backface culling RLAPI void rlEnableScissorTest(void); // Enable scissor test RLAPI void rlDisableScissorTest(void); // Disable scissor test RLAPI void rlScissor(int x, int y, int width, int height); // Scissor test RLAPI void rlEnableWireMode(void); // Enable wire mode RLAPI void rlDisableWireMode(void); // Disable wire mode RLAPI void rlSetLineWidth(float width); // Set the line drawing width RLAPI float rlGetLineWidth(void); // Get the line drawing width RLAPI void rlEnableSmoothLines(void); // Enable line aliasing RLAPI void rlDisableSmoothLines(void); // Disable line aliasing RLAPI void rlEnableStereoRender(void); // Enable stereo rendering RLAPI void rlDisableStereoRender(void); // Disable stereo rendering RLAPI bool rlIsStereoRenderEnabled(void); // Check if stereo render is enabled RLAPI void rlClearColor(unsigned char r, unsigned char g, unsigned char b, unsigned char a); // Clear color buffer with color RLAPI void rlClearScreenBuffers(void); // Clear used screen buffers (color and depth) RLAPI void rlCheckErrors(void); // Check and log OpenGL error codes RLAPI void rlSetBlendMode(int mode); // Set blending mode RLAPI void rlSetBlendFactors(int glSrcFactor, int glDstFactor, int glEquation); // Set blending mode factor and equation (using OpenGL factors) //------------------------------------------------------------------------------------ // Functions Declaration - rlgl functionality //------------------------------------------------------------------------------------ // rlgl initialization functions RLAPI void rlglInit(int width, int height); // Initialize rlgl (buffers, shaders, textures, states) RLAPI void rlglClose(void); // De-inititialize rlgl (buffers, shaders, textures) RLAPI void rlLoadExtensions(void* loader); // Load OpenGL extensions (loader function pointer required) RLAPI int rlGetVersion(void); // Returns current OpenGL version RLAPI int rlGetFramebufferWidth(void); // Get default framebuffer width RLAPI int rlGetFramebufferHeight(void); // Get default framebuffer height RLAPI Shader rlGetShaderDefault(void); // Get default shader RLAPI Texture2D rlGetTextureDefault(void); // Get default texture // Render batch management // NOTE: rlgl provides a default render batch to behave like OpenGL 1.1 immediate mode // but this render batch API is exposed in case of custom batches are required RLAPI RenderBatch rlLoadRenderBatch(int numBuffers, int bufferElements); // Load a render batch system RLAPI void rlUnloadRenderBatch(RenderBatch batch); // Unload render batch system RLAPI void rlDrawRenderBatch(RenderBatch *batch); // Draw render batch data (Update->Draw->Reset) RLAPI void rlSetRenderBatchActive(RenderBatch *batch); // Set the active render batch for rlgl (NULL for default internal) RLAPI void rlDrawRenderBatchActive(void); // Update and draw internal render batch RLAPI bool rlCheckRenderBatchLimit(int vCount); // Check internal buffer overflow for a given number of vertex RLAPI void rlSetTexture(unsigned int id); // Set current texture for render batch and check buffers limits //------------------------------------------------------------------------------------------------------------------------ // Vertex buffers management RLAPI unsigned int rlLoadVertexArray(void); // Load vertex array (vao) if supported RLAPI unsigned int rlLoadVertexBuffer(void *buffer, int size, bool dynamic); // Load a vertex buffer attribute RLAPI unsigned int rlLoadVertexBufferElement(void *buffer, int size, bool dynamic); // Load a new attributes element buffer RLAPI void rlUpdateVertexBuffer(int bufferId, void *data, int dataSize, int offset); // Update GPU buffer with new data RLAPI void rlUnloadVertexArray(unsigned int vaoId); RLAPI void rlUnloadVertexBuffer(unsigned int vboId); RLAPI void rlSetVertexAttribute(unsigned int index, int compSize, int type, bool normalized, int stride, void *pointer); RLAPI void rlSetVertexAttributeDivisor(unsigned int index, int divisor); RLAPI void rlSetVertexAttributeDefault(int locIndex, const void *value, int attribType, int count); // Set vertex attribute default value RLAPI void rlDrawVertexArray(int offset, int count); RLAPI void rlDrawVertexArrayElements(int offset, int count, void *buffer); RLAPI void rlDrawVertexArrayInstanced(int offset, int count, int instances); RLAPI void rlDrawVertexArrayElementsInstanced(int offset, int count, void *buffer, int instances); // Textures management RLAPI unsigned int rlLoadTexture(void *data, int width, int height, int format, int mipmapCount); // Load texture in GPU RLAPI unsigned int rlLoadTextureDepth(int width, int height, bool useRenderBuffer); // Load depth texture/renderbuffer (to be attached to fbo) RLAPI unsigned int rlLoadTextureCubemap(void *data, int size, int format); // Load texture cubemap RLAPI void rlUpdateTexture(unsigned int id, int offsetX, int offsetY, int width, int height, int format, const void *data); // Update GPU texture with new data RLAPI void rlGetGlTextureFormats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType); // Get OpenGL internal formats RLAPI void rlUnloadTexture(unsigned int id); // Unload texture from GPU memory RLAPI void rlGenerateMipmaps(Texture2D *texture); // Generate mipmap data for selected texture RLAPI void *rlReadTexturePixels(Texture2D texture); // Read texture pixel data RLAPI unsigned char *rlReadScreenPixels(int width, int height); // Read screen pixel data (color buffer) // Framebuffer management (fbo) RLAPI unsigned int rlLoadFramebuffer(int width, int height); // Load an empty framebuffer RLAPI void rlFramebufferAttach(unsigned int fboId, unsigned int texId, int attachType, int texType, int mipLevel); // Attach texture/renderbuffer to a framebuffer RLAPI bool rlFramebufferComplete(unsigned int id); // Verify framebuffer is complete RLAPI void rlUnloadFramebuffer(unsigned int id); // Delete framebuffer from GPU // Shaders management RLAPI unsigned int rlLoadShaderCode(const char *vsCode, const char *fsCode); // Load shader from code strings RLAPI unsigned int rlCompileShader(const char *shaderCode, int type); // Compile custom shader and return shader id (type: GL_VERTEX_SHADER, GL_FRAGMENT_SHADER) RLAPI unsigned int rlLoadShaderProgram(unsigned int vShaderId, unsigned int fShaderId); // Load custom shader program RLAPI void rlUnloadShaderProgram(unsigned int id); // Unload shader program RLAPI int rlGetLocationUniform(unsigned int shaderId, const char *uniformName); // Get shader location uniform RLAPI int rlGetLocationAttrib(unsigned int shaderId, const char *attribName); // Get shader location attribute RLAPI void rlSetUniform(int locIndex, const void *value, int uniformType, int count); // Set shader value uniform RLAPI void rlSetUniformMatrix(int locIndex, Matrix mat); // Set shader value matrix RLAPI void rlSetUniformSampler(int locIndex, unsigned int textureId); // Set shader value sampler RLAPI void rlSetShader(Shader shader); // Set shader currently active // Matrix state management RLAPI Matrix rlGetMatrixModelview(void); // Get internal modelview matrix RLAPI Matrix rlGetMatrixProjection(void); // Get internal projection matrix RLAPI Matrix rlGetMatrixTransform(void); // Get internal accumulated transform matrix RLAPI Matrix rlGetMatrixProjectionStereo(int eye); // Get internal projection matrix for stereo render (selected eye) RLAPI Matrix rlGetMatrixViewOffsetStereo(int eye); // Get internal view offset matrix for stereo render (selected eye) RLAPI void rlSetMatrixProjection(Matrix proj); // Set a custom projection matrix (replaces internal projection matrix) RLAPI void rlSetMatrixModelview(Matrix view); // Set a custom modelview matrix (replaces internal modelview matrix) RLAPI void rlSetMatrixProjectionStereo(Matrix right, Matrix left); // Set eyes projection matrices for stereo rendering RLAPI void rlSetMatrixViewOffsetStereo(Matrix right, Matrix left); // Set eyes view offsets matrices for stereo rendering // Quick and dirty cube/quad buffers load->draw->unload RLAPI void rlLoadDrawCube(void); // Load and draw a cube RLAPI void rlLoadDrawQuad(void); // Load and draw a quad #if defined(__cplusplus) } #endif #endif // RLGL_H /*********************************************************************************** * * RLGL IMPLEMENTATION * ************************************************************************************/ #if defined(RLGL_IMPLEMENTATION) #if !defined(RLGL_STANDALONE) // Check if config flags have been externally provided on compilation line #if !defined(EXTERNAL_CONFIG_FLAGS) #include "config.h" // Defines module configuration flags #endif #include "raymath.h" // Required for: Vector3 and Matrix functions #endif #include // Required for: malloc(), free() #include // Required for: strcmp(), strlen() [Used in rlglInit(), on extensions loading] #if defined(GRAPHICS_API_OPENGL_11) #if defined(__APPLE__) #include // OpenGL 1.1 library for OSX #include #else // APIENTRY for OpenGL function pointer declarations is required #ifndef APIENTRY #if defined(_WIN32) #define APIENTRY __stdcall #else #define APIENTRY #endif #endif // WINGDIAPI definition. Some Windows OpenGL headers need it #if !defined(WINGDIAPI) && defined(_WIN32) #define WINGDIAPI __declspec(dllimport) #endif #include // OpenGL 1.1 library #endif #endif #if defined(GRAPHICS_API_OPENGL_33) #if defined(__APPLE__) #include // OpenGL 3 library for OSX #include // OpenGL 3 extensions library for OSX #else #define GLAD_REALLOC RL_REALLOC #define GLAD_FREE RL_FREE #define GLAD_IMPLEMENTATION #if defined(RLGL_STANDALONE) #include "glad.h" // GLAD extensions loading library, includes OpenGL headers #else #include "external/glad.h" // GLAD extensions loading library, includes OpenGL headers #endif #endif #endif #if defined(GRAPHICS_API_OPENGL_ES2) #define GL_GLEXT_PROTOTYPES #include // EGL library #include // OpenGL ES 2.0 library #include // OpenGL ES 2.0 extensions library // It seems OpenGL ES 2.0 instancing entry points are not defined on Raspberry Pi // provided headers (despite being defined in official Khronos GLES2 headers) #if defined(PLATFORM_RPI) || defined(PLATFORM_DRM) typedef void (GL_APIENTRYP PFNGLDRAWARRAYSINSTANCEDEXTPROC) (GLenum mode, GLint start, GLsizei count, GLsizei primcount); typedef void (GL_APIENTRYP PFNGLDRAWELEMENTSINSTANCEDEXTPROC) (GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei primcount); typedef void (GL_APIENTRYP PFNGLVERTEXATTRIBDIVISOREXTPROC) (GLuint index, GLuint divisor); #endif #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #ifndef GL_SHADING_LANGUAGE_VERSION #define GL_SHADING_LANGUAGE_VERSION 0x8B8C #endif #ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT #define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #endif #ifndef GL_ETC1_RGB8_OES #define GL_ETC1_RGB8_OES 0x8D64 #endif #ifndef GL_COMPRESSED_RGB8_ETC2 #define GL_COMPRESSED_RGB8_ETC2 0x9274 #endif #ifndef GL_COMPRESSED_RGBA8_ETC2_EAC #define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #endif #ifndef GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #endif #ifndef GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_4x4_KHR #define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_8x8_KHR #define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7 #endif #ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT #define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF #endif #ifndef GL_TEXTURE_MAX_ANISOTROPY_EXT #define GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE #endif #if defined(GRAPHICS_API_OPENGL_11) #define GL_UNSIGNED_SHORT_5_6_5 0x8363 #define GL_UNSIGNED_SHORT_5_5_5_1 0x8034 #define GL_UNSIGNED_SHORT_4_4_4_4 0x8033 #endif #if defined(GRAPHICS_API_OPENGL_21) #define GL_LUMINANCE 0x1909 #define GL_LUMINANCE_ALPHA 0x190A #endif #if defined(GRAPHICS_API_OPENGL_ES2) #define glClearDepth glClearDepthf #define GL_READ_FRAMEBUFFER GL_FRAMEBUFFER #define GL_DRAW_FRAMEBUFFER GL_FRAMEBUFFER #endif // Default shader vertex attribute names to set location points #ifndef DEFAULT_SHADER_ATTRIB_NAME_POSITION #define DEFAULT_SHADER_ATTRIB_NAME_POSITION "vertexPosition" // Binded by default to shader location: 0 #endif #ifndef DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD #define DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD "vertexTexCoord" // Binded by default to shader location: 1 #endif #ifndef DEFAULT_SHADER_ATTRIB_NAME_NORMAL #define DEFAULT_SHADER_ATTRIB_NAME_NORMAL "vertexNormal" // Binded by default to shader location: 2 #endif #ifndef DEFAULT_SHADER_ATTRIB_NAME_COLOR #define DEFAULT_SHADER_ATTRIB_NAME_COLOR "vertexColor" // Binded by default to shader location: 3 #endif #ifndef DEFAULT_SHADER_ATTRIB_NAME_TANGENT #define DEFAULT_SHADER_ATTRIB_NAME_TANGENT "vertexTangent" // Binded by default to shader location: 4 #endif #ifndef DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2 #define DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2 "vertexTexCoord2" // Binded by default to shader location: 5 #endif //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) typedef struct rlglData { RenderBatch *currentBatch; // Current render batch RenderBatch defaultBatch; // Default internal render batch struct { int currentMatrixMode; // Current matrix mode Matrix *currentMatrix; // Current matrix pointer Matrix modelview; // Default modelview matrix Matrix projection; // Default projection matrix Matrix transform; // Transform matrix to be used with rlTranslate, rlRotate, rlScale bool transformRequired; // Require transform matrix application to current draw-call vertex (if required) Matrix stack[MAX_MATRIX_STACK_SIZE];// Matrix stack for push/pop int stackCounter; // Matrix stack counter unsigned int defaultTextureId; // Default texture used on shapes/poly drawing (required by shader) unsigned int activeTextureId[MAX_BATCH_ACTIVE_TEXTURES]; // Active texture ids to be enabled on batch drawing (0 active by default) unsigned int defaultVShaderId; // Default vertex shader id (used by default shader program) unsigned int defaultFShaderId; // Default fragment shader Id (used by default shader program) Shader defaultShader; // Basic shader, support vertex color and diffuse texture Shader currentShader; // Shader to be used on rendering (by default, defaultShader) bool stereoRender; // Stereo rendering flag Matrix projectionStereo[2]; // VR stereo rendering eyes projection matrices Matrix viewOffsetStereo[2]; // VR stereo rendering eyes view offset matrices int currentBlendMode; // Blending mode active int glBlendSrcFactor; // Blending source factor int glBlendDstFactor; // Blending destination factor int glBlendEquation; // Blending equation int framebufferWidth; // Default framebuffer width int framebufferHeight; // Default framebuffer height } State; // Renderer state struct { bool vao; // VAO support (OpenGL ES2 could not support VAO extension) (GL_ARB_vertex_array_object) bool instancing; // Instancing supported (GL_ANGLE_instanced_arrays, GL_EXT_draw_instanced + GL_EXT_instanced_arrays) bool texNPOT; // NPOT textures full support (GL_ARB_texture_non_power_of_two, GL_OES_texture_npot) bool texDepth; // Depth textures supported (GL_ARB_depth_texture, GL_WEBGL_depth_texture, GL_OES_depth_texture) bool texFloat32; // float textures support (32 bit per channel) (GL_OES_texture_float) bool texCompDXT; // DDS texture compression support (GL_EXT_texture_compression_s3tc, GL_WEBGL_compressed_texture_s3tc, GL_WEBKIT_WEBGL_compressed_texture_s3tc) bool texCompETC1; // ETC1 texture compression support (GL_OES_compressed_ETC1_RGB8_texture, GL_WEBGL_compressed_texture_etc1) bool texCompETC2; // ETC2/EAC texture compression support (GL_ARB_ES3_compatibility) bool texCompPVRT; // PVR texture compression support (GL_IMG_texture_compression_pvrtc) bool texCompASTC; // ASTC texture compression support (GL_KHR_texture_compression_astc_hdr, GL_KHR_texture_compression_astc_ldr) bool texMirrorClamp; // Clamp mirror wrap mode supported (GL_EXT_texture_mirror_clamp) bool texAnisoFilter; // Anisotropic texture filtering support (GL_EXT_texture_filter_anisotropic) float maxAnisotropyLevel; // Maximum anisotropy level supported (minimum is 2.0f) int maxDepthBits; // Maximum bits for depth component } ExtSupported; // Extensions supported flags } rlglData; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static rlglData RLGL = { 0 }; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: VAO functionality is exposed through extensions (OES) static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays = NULL; static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray = NULL; static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays = NULL; // NOTE: Instancing functionality could also be available through extension static PFNGLDRAWARRAYSINSTANCEDEXTPROC glDrawArraysInstanced = NULL; static PFNGLDRAWELEMENTSINSTANCEDEXTPROC glDrawElementsInstanced = NULL; static PFNGLVERTEXATTRIBDIVISOREXTPROC glVertexAttribDivisor = NULL; #endif //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static void rlLoadShaderDefault(void); // Load default shader (RLGL.State.defaultShader) static void rlUnloadShaderDefault(void); // Unload default shader (RLGL.State.defaultShader) #if defined(SUPPORT_GL_DETAILS_INFO) static char *rlGetCompressedFormatName(int format); // Get compressed format official GL identifier name #endif // SUPPORT_GL_DETAILS_INFO #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 #if defined(GRAPHICS_API_OPENGL_11) static int rlGenerateMipmapsData(unsigned char *data, int baseWidth, int baseHeight); // Generate mipmaps data on CPU side static Color *rlGenNextMipmapData(Color *srcData, int srcWidth, int srcHeight); // Generate next mipmap level on CPU side #endif static int rlGetPixelDataSize(int width, int height, int format); // Get pixel data size in bytes (image or texture) //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlMatrixMode(int mode) { switch (mode) { case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break; case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break; case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break; default: break; } } void rlFrustum(double left, double right, double bottom, double top, double znear, double zfar) { glFrustum(left, right, bottom, top, znear, zfar); } void rlOrtho(double left, double right, double bottom, double top, double znear, double zfar) { glOrtho(left, right, bottom, top, znear, zfar); } void rlPushMatrix(void) { glPushMatrix(); } void rlPopMatrix(void) { glPopMatrix(); } void rlLoadIdentity(void) { glLoadIdentity(); } void rlTranslatef(float x, float y, float z) { glTranslatef(x, y, z); } void rlRotatef(float angleDeg, float x, float y, float z) { glRotatef(angleDeg, x, y, z); } void rlScalef(float x, float y, float z) { glScalef(x, y, z); } void rlMultMatrixf(float *matf) { glMultMatrixf(matf); } #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Choose the current matrix to be transformed void rlMatrixMode(int mode) { if (mode == RL_PROJECTION) RLGL.State.currentMatrix = &RLGL.State.projection; else if (mode == RL_MODELVIEW) RLGL.State.currentMatrix = &RLGL.State.modelview; //else if (mode == RL_TEXTURE) // Not supported RLGL.State.currentMatrixMode = mode; } // Push the current matrix into RLGL.State.stack void rlPushMatrix(void) { if (RLGL.State.stackCounter >= MAX_MATRIX_STACK_SIZE) TRACELOG(LOG_ERROR, "RLGL: Matrix stack overflow (MAX_MATRIX_STACK_SIZE)"); if (RLGL.State.currentMatrixMode == RL_MODELVIEW) { RLGL.State.transformRequired = true; RLGL.State.currentMatrix = &RLGL.State.transform; } RLGL.State.stack[RLGL.State.stackCounter] = *RLGL.State.currentMatrix; RLGL.State.stackCounter++; } // Pop lattest inserted matrix from RLGL.State.stack void rlPopMatrix(void) { if (RLGL.State.stackCounter > 0) { Matrix mat = RLGL.State.stack[RLGL.State.stackCounter - 1]; *RLGL.State.currentMatrix = mat; RLGL.State.stackCounter--; } if ((RLGL.State.stackCounter == 0) && (RLGL.State.currentMatrixMode == RL_MODELVIEW)) { RLGL.State.currentMatrix = &RLGL.State.modelview; RLGL.State.transformRequired = false; } } // Reset current matrix to identity matrix void rlLoadIdentity(void) { *RLGL.State.currentMatrix = MatrixIdentity(); } // Multiply the current matrix by a translation matrix void rlTranslatef(float x, float y, float z) { Matrix matTranslation = MatrixTranslate(x, y, z); // NOTE: We transpose matrix with multiplication order *RLGL.State.currentMatrix = MatrixMultiply(matTranslation, *RLGL.State.currentMatrix); } // Multiply the current matrix by a rotation matrix void rlRotatef(float angleDeg, float x, float y, float z) { Matrix matRotation = MatrixIdentity(); Vector3 axis = (Vector3){ x, y, z }; matRotation = MatrixRotate(Vector3Normalize(axis), angleDeg*DEG2RAD); // NOTE: We transpose matrix with multiplication order *RLGL.State.currentMatrix = MatrixMultiply(matRotation, *RLGL.State.currentMatrix); } // Multiply the current matrix by a scaling matrix void rlScalef(float x, float y, float z) { Matrix matScale = MatrixScale(x, y, z); // NOTE: We transpose matrix with multiplication order *RLGL.State.currentMatrix = MatrixMultiply(matScale, *RLGL.State.currentMatrix); } // Multiply the current matrix by another matrix void rlMultMatrixf(float *matf) { // Matrix creation from array Matrix mat = { matf[0], matf[4], matf[8], matf[12], matf[1], matf[5], matf[9], matf[13], matf[2], matf[6], matf[10], matf[14], matf[3], matf[7], matf[11], matf[15] }; *RLGL.State.currentMatrix = MatrixMultiply(*RLGL.State.currentMatrix, mat); } // Multiply the current matrix by a perspective matrix generated by parameters void rlFrustum(double left, double right, double bottom, double top, double znear, double zfar) { Matrix matPerps = MatrixFrustum(left, right, bottom, top, znear, zfar); *RLGL.State.currentMatrix = MatrixMultiply(*RLGL.State.currentMatrix, matPerps); } // Multiply the current matrix by an orthographic matrix generated by parameters void rlOrtho(double left, double right, double bottom, double top, double znear, double zfar) { // NOTE: If left-right and top-botton values are equal it could create // a division by zero on MatrixOrtho(), response to it is platform/compiler dependant Matrix matOrtho = MatrixOrtho(left, right, bottom, top, znear, zfar); *RLGL.State.currentMatrix = MatrixMultiply(*RLGL.State.currentMatrix, matOrtho); } #endif // Set the viewport area (transformation from normalized device coordinates to window coordinates) void rlViewport(int x, int y, int width, int height) { glViewport(x, y, width, height); } //---------------------------------------------------------------------------------- // Module Functions Definition - Vertex level operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlBegin(int mode) { switch (mode) { case RL_LINES: glBegin(GL_LINES); break; case RL_TRIANGLES: glBegin(GL_TRIANGLES); break; case RL_QUADS: glBegin(GL_QUADS); break; default: break; } } void rlEnd() { glEnd(); } void rlVertex2i(int x, int y) { glVertex2i(x, y); } void rlVertex2f(float x, float y) { glVertex2f(x, y); } void rlVertex3f(float x, float y, float z) { glVertex3f(x, y, z); } void rlTexCoord2f(float x, float y) { glTexCoord2f(x, y); } void rlNormal3f(float x, float y, float z) { glNormal3f(x, y, z); } void rlColor4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { glColor4ub(r, g, b, a); } void rlColor3f(float x, float y, float z) { glColor3f(x, y, z); } void rlColor4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); } #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize drawing mode (how to organize vertex) void rlBegin(int mode) { // Draw mode can be RL_LINES, RL_TRIANGLES and RL_QUADS // NOTE: In all three cases, vertex are accumulated over default internal vertex buffer if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].mode != mode) { if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount > 0) { // Make sure current RLGL.currentBatch->draws[i].vertexCount is aligned a multiple of 4, // that way, following QUADS drawing will keep aligned with index processing // It implies adding some extra alignment vertex at the end of the draw, // those vertex are not processed but they are considered as an additional offset // for the next set of vertex to be drawn if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].mode == RL_LINES) RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment = ((RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount < 4)? RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount : RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount%4); else if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].mode == RL_TRIANGLES) RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment = ((RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount < 4)? 1 : (4 - (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount%4))); else RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment = 0; if (!rlCheckRenderBatchLimit(RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment)) { RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter += RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter += RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter += RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment; RLGL.currentBatch->drawsCounter++; } } if (RLGL.currentBatch->drawsCounter >= DEFAULT_BATCH_DRAWCALLS) rlDrawRenderBatch(RLGL.currentBatch); RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].mode = mode; RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount = 0; RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].textureId = RLGL.State.defaultTextureId; } } // Finish vertex providing void rlEnd(void) { // Make sure vertexCount is the same for vertices, texcoords, colors and normals // NOTE: In OpenGL 1.1, one glColor call can be made for all the subsequent glVertex calls // Make sure colors count match vertex count if (RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter != RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter) { int addColors = RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter - RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter; for (int i = 0; i < addColors; i++) { RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter] = RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter - 4]; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter + 1] = RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter - 3]; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter + 2] = RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter - 2]; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter + 3] = RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter - 1]; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter++; } } // Make sure texcoords count match vertex count if (RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter != RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter) { int addTexCoords = RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter - RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter; for (int i = 0; i < addTexCoords; i++) { RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].texcoords[2*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter] = 0.0f; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].texcoords[2*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter + 1] = 0.0f; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter++; } } // TODO: Make sure normals count match vertex count... if normals support is added in a future... :P // NOTE: Depth increment is dependant on rlOrtho(): z-near and z-far values, // as well as depth buffer bit-depth (16bit or 24bit or 32bit) // Correct increment formula would be: depthInc = (zfar - znear)/pow(2, bits) RLGL.currentBatch->currentDepth += (1.0f/20000.0f); // Verify internal buffers limits // NOTE: This check is combined with usage of rlCheckRenderBatchLimit() if ((RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter) >= (RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].elementsCount*4 - 4)) { // WARNING: If we are between rlPushMatrix() and rlPopMatrix() and we need to force a rlDrawRenderBatch(), // we need to call rlPopMatrix() before to recover *RLGL.State.currentMatrix (RLGL.State.modelview) for the next forced draw call! // If we have multiple matrix pushed, it will require "RLGL.State.stackCounter" pops before launching the draw for (int i = RLGL.State.stackCounter; i >= 0; i--) rlPopMatrix(); rlDrawRenderBatch(RLGL.currentBatch); } } // Define one vertex (position) // NOTE: Vertex position data is the basic information required for drawing void rlVertex3f(float x, float y, float z) { Vector3 vec = { x, y, z }; // Transform provided vector if required if (RLGL.State.transformRequired) vec = Vector3Transform(vec, RLGL.State.transform); // Verify that current vertex buffer elements limit has not been reached if (RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter < (RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].elementsCount*4)) { RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vertices[3*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter] = vec.x; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vertices[3*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter + 1] = vec.y; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vertices[3*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter + 2] = vec.z; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter++; RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount++; } else TRACELOG(LOG_ERROR, "RLGL: Batch elements overflow"); } // Define one vertex (position) void rlVertex2f(float x, float y) { rlVertex3f(x, y, RLGL.currentBatch->currentDepth); } // Define one vertex (position) void rlVertex2i(int x, int y) { rlVertex3f((float)x, (float)y, RLGL.currentBatch->currentDepth); } // Define one vertex (texture coordinate) // NOTE: Texture coordinates are limited to QUADS only void rlTexCoord2f(float x, float y) { RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].texcoords[2*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter] = x; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].texcoords[2*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter + 1] = y; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter++; } // Define one vertex (normal) // NOTE: Normals limited to TRIANGLES only? void rlNormal3f(float x, float y, float z) { // TODO: Normals usage... } // Define one vertex (color) void rlColor4ub(unsigned char x, unsigned char y, unsigned char z, unsigned char w) { RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter] = x; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter + 1] = y; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter + 2] = z; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].colors[4*RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter + 3] = w; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter++; } // Define one vertex (color) void rlColor4f(float r, float g, float b, float a) { rlColor4ub((unsigned char)(r*255), (unsigned char)(g*255), (unsigned char)(b*255), (unsigned char)(a*255)); } // Define one vertex (color) void rlColor3f(float x, float y, float z) { rlColor4ub((unsigned char)(x*255), (unsigned char)(y*255), (unsigned char)(z*255), 255); } #endif //-------------------------------------------------------------------------------------- // Module Functions Definition - OpenGL style functions (common to 1.1, 3.3+, ES2) //-------------------------------------------------------------------------------------- // Set current texture to use void rlSetTexture(unsigned int id) { if (id == 0) { #if defined(GRAPHICS_API_OPENGL_11) rlDisableTexture(); #else // NOTE: If quads batch limit is reached, we force a draw call and next batch starts if (RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter >= RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].elementsCount*4) { rlDrawRenderBatch(RLGL.currentBatch); } #endif } else { #if defined(GRAPHICS_API_OPENGL_11) rlEnableTexture(id); #else if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].textureId != id) { if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount > 0) { // Make sure current RLGL.currentBatch->draws[i].vertexCount is aligned a multiple of 4, // that way, following QUADS drawing will keep aligned with index processing // It implies adding some extra alignment vertex at the end of the draw, // those vertex are not processed but they are considered as an additional offset // for the next set of vertex to be drawn if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].mode == RL_LINES) RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment = ((RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount < 4)? RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount : RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount%4); else if (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].mode == RL_TRIANGLES) RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment = ((RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount < 4)? 1 : (4 - (RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount%4))); else RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment = 0; if (!rlCheckRenderBatchLimit(RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment)) { RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter += RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].cCounter += RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment; RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].tcCounter += RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexAlignment; RLGL.currentBatch->drawsCounter++; } } if (RLGL.currentBatch->drawsCounter >= DEFAULT_BATCH_DRAWCALLS) rlDrawRenderBatch(RLGL.currentBatch); RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].textureId = id; RLGL.currentBatch->draws[RLGL.currentBatch->drawsCounter - 1].vertexCount = 0; } #endif } } // Select and active a texture slot void rlActiveTextureSlot(int slot) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glActiveTexture(GL_TEXTURE0 + slot); #endif } // Enable texture void rlEnableTexture(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); #endif glBindTexture(GL_TEXTURE_2D, id); } // Disable texture void rlDisableTexture(void) { #if defined(GRAPHICS_API_OPENGL_11) glDisable(GL_TEXTURE_2D); #endif glBindTexture(GL_TEXTURE_2D, 0); } // Enable texture cubemap void rlEnableTextureCubemap(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glEnable(GL_TEXTURE_CUBE_MAP); // Core in OpenGL 1.4 glBindTexture(GL_TEXTURE_CUBE_MAP, id); #endif } // Disable texture cubemap void rlDisableTextureCubemap(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDisable(GL_TEXTURE_CUBE_MAP); glBindTexture(GL_TEXTURE_CUBE_MAP, 0); #endif } // Set texture parameters (wrap mode/filter mode) void rlTextureParameters(unsigned int id, int param, int value) { glBindTexture(GL_TEXTURE_2D, id); switch (param) { case RL_TEXTURE_WRAP_S: case RL_TEXTURE_WRAP_T: { if (value == RL_TEXTURE_WRAP_MIRROR_CLAMP) { #if !defined(GRAPHICS_API_OPENGL_11) if (RLGL.ExtSupported.texMirrorClamp) glTexParameteri(GL_TEXTURE_2D, param, value); else TRACELOG(LOG_WARNING, "GL: Clamp mirror wrap mode not supported (GL_MIRROR_CLAMP_EXT)"); #endif } else glTexParameteri(GL_TEXTURE_2D, param, value); } break; case RL_TEXTURE_MAG_FILTER: case RL_TEXTURE_MIN_FILTER: glTexParameteri(GL_TEXTURE_2D, param, value); break; case RL_TEXTURE_FILTER_ANISOTROPIC: { #if !defined(GRAPHICS_API_OPENGL_11) if (value <= RLGL.ExtSupported.maxAnisotropyLevel) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); else if (RLGL.ExtSupported.maxAnisotropyLevel > 0.0f) { TRACELOG(LOG_WARNING, "GL: Maximum anisotropic filter level supported is %iX", id, RLGL.ExtSupported.maxAnisotropyLevel); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); } else TRACELOG(LOG_WARNING, "GL: Anisotropic filtering not supported"); #endif } break; default: break; } glBindTexture(GL_TEXTURE_2D, 0); } // Enable shader program void rlEnableShader(unsigned int id) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) glUseProgram(id); #endif } // Disable shader program void rlDisableShader(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) glUseProgram(0); #endif } // Enable rendering to texture (fbo) void rlEnableFramebuffer(unsigned int id) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(SUPPORT_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, id); #endif } // Disable rendering to texture void rlDisableFramebuffer(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(SUPPORT_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, 0); #endif } // Enable depth test void rlEnableDepthTest(void) { glEnable(GL_DEPTH_TEST); } // Disable depth test void rlDisableDepthTest(void) { glDisable(GL_DEPTH_TEST); } // Enable depth write void rlEnableDepthMask(void) { glDepthMask(GL_TRUE); } // Disable depth write void rlDisableDepthMask(void) { glDepthMask(GL_FALSE); } // Enable backface culling void rlEnableBackfaceCulling(void) { glEnable(GL_CULL_FACE); } // Disable backface culling void rlDisableBackfaceCulling(void) { glDisable(GL_CULL_FACE); } // Enable scissor test void rlEnableScissorTest(void) { glEnable(GL_SCISSOR_TEST); } // Disable scissor test void rlDisableScissorTest(void) { glDisable(GL_SCISSOR_TEST); } // Scissor test void rlScissor(int x, int y, int width, int height) { glScissor(x, y, width, height); } // Enable wire mode void rlEnableWireMode(void) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif } // Disable wire mode void rlDisableWireMode(void) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } // Set the line drawing width void rlSetLineWidth(float width) { glLineWidth(width); } // Get the line drawing width float rlGetLineWidth(void) { float width = 0; glGetFloatv(GL_LINE_WIDTH, &width); return width; } // Enable line aliasing void rlEnableSmoothLines(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_11) glEnable(GL_LINE_SMOOTH); #endif } // Disable line aliasing void rlDisableSmoothLines(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_11) glDisable(GL_LINE_SMOOTH); #endif } // Enable stereo rendering void rlEnableStereoRender(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) RLGL.State.stereoRender = true; #endif } // Disable stereo rendering void rlDisableStereoRender(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) RLGL.State.stereoRender = false; #endif } // Check if stereo render is enabled bool rlIsStereoRenderEnabled(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) return RLGL.State.stereoRender; #else return false; #endif } // Clear color buffer with color void rlClearColor(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { // Color values clamp to 0.0f(0) and 1.0f(255) float cr = (float)r/255; float cg = (float)g/255; float cb = (float)b/255; float ca = (float)a/255; glClearColor(cr, cg, cb, ca); } // Clear used screen buffers (color and depth) void rlClearScreenBuffers(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D) //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used... } // Check and log OpenGL error codes void rlCheckErrors() { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) int check = 1; while (check) { const GLenum err = glGetError(); switch (err) { case GL_NO_ERROR: check = 0; break; case 0x0500: TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_ENUM"); break; case 0x0501: TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_VALUE"); break; case 0x0502: TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_OPERATION"); break; case 0x0503: TRACELOG(LOG_WARNING, "GL: Error detected: GL_STACK_OVERFLOW"); break; case 0x0504: TRACELOG(LOG_WARNING, "GL: Error detected: GL_STACK_UNDERFLOW"); break; case 0x0505: TRACELOG(LOG_WARNING, "GL: Error detected: GL_OUT_OF_MEMORY"); break; case 0x0506: TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_FRAMEBUFFER_OPERATION"); break; default: TRACELOG(LOG_WARNING, "GL: Error detected: Unknown error code: %x", err); break; } } #endif } // Set blend mode void rlSetBlendMode(int mode) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.State.currentBlendMode != mode) { rlDrawRenderBatch(RLGL.currentBatch); switch (mode) { case BLEND_ALPHA: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break; case BLEND_ADDITIVE: glBlendFunc(GL_SRC_ALPHA, GL_ONE); glBlendEquation(GL_FUNC_ADD); break; case BLEND_MULTIPLIED: glBlendFunc(GL_DST_COLOR, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break; case BLEND_ADD_COLORS: glBlendFunc(GL_ONE, GL_ONE); glBlendEquation(GL_FUNC_ADD); break; case BLEND_SUBTRACT_COLORS: glBlendFunc(GL_ONE, GL_ONE); glBlendEquation(GL_FUNC_SUBTRACT); break; case BLEND_CUSTOM: glBlendFunc(RLGL.State.glBlendSrcFactor, RLGL.State.glBlendDstFactor); glBlendEquation(RLGL.State.glBlendEquation); break; default: break; } RLGL.State.currentBlendMode = mode; } #endif } // Set blending mode factor and equation void rlSetBlendFactors(int glSrcFactor, int glDstFactor, int glEquation) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.glBlendSrcFactor = glSrcFactor; RLGL.State.glBlendDstFactor = glDstFactor; RLGL.State.glBlendEquation = glEquation; #endif } //---------------------------------------------------------------------------------- // Module Functions Definition - rlgl functionality //---------------------------------------------------------------------------------- // Initialize rlgl: OpenGL extensions, default buffers/shaders/textures, OpenGL states void rlglInit(int width, int height) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Init default white texture unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes) RLGL.State.defaultTextureId = rlLoadTexture(pixels, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, 1); if (RLGL.State.defaultTextureId != 0) TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Default texture loaded successfully", RLGL.State.defaultTextureId); else TRACELOG(LOG_WARNING, "TEXTURE: Failed to load default texture"); // Init default Shader (customized for GL 3.3 and ES2) rlLoadShaderDefault(); // RLGL.State.defaultShader RLGL.State.currentShader = RLGL.State.defaultShader; // Init default vertex arrays buffers RLGL.defaultBatch = rlLoadRenderBatch(DEFAULT_BATCH_BUFFERS, DEFAULT_BATCH_BUFFER_ELEMENTS); RLGL.currentBatch = &RLGL.defaultBatch; // Init stack matrices (emulating OpenGL 1.1) for (int i = 0; i < MAX_MATRIX_STACK_SIZE; i++) RLGL.State.stack[i] = MatrixIdentity(); // Init internal matrices RLGL.State.transform = MatrixIdentity(); RLGL.State.projection = MatrixIdentity(); RLGL.State.modelview = MatrixIdentity(); RLGL.State.currentMatrix = &RLGL.State.modelview; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 // Initialize OpenGL default states //---------------------------------------------------------- // Init state: Depth test glDepthFunc(GL_LEQUAL); // Type of depth testing to apply glDisable(GL_DEPTH_TEST); // Disable depth testing for 2D (only used for 3D) // Init state: Blending mode glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed) glEnable(GL_BLEND); // Enable color blending (required to work with transparencies) // Init state: Culling // NOTE: All shapes/models triangles are drawn CCW glCullFace(GL_BACK); // Cull the back face (default) glFrontFace(GL_CCW); // Front face are defined counter clockwise (default) glEnable(GL_CULL_FACE); // Enable backface culling // Init state: Cubemap seamless #if defined(GRAPHICS_API_OPENGL_33) glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); // Seamless cubemaps (not supported on OpenGL ES 2.0) #endif #if defined(GRAPHICS_API_OPENGL_11) // Init state: Color hints (deprecated in OpenGL 3.0+) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation) #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Store screen size into global variables RLGL.State.framebufferWidth = width; RLGL.State.framebufferHeight = height; TRACELOG(LOG_INFO, "RLGL: Default OpenGL state initialized successfully"); //---------------------------------------------------------- #endif // Init state: Color/Depth buffers clear glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set clear color (black) glClearDepth(1.0f); // Set clear depth value (default) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear color and depth buffers (depth buffer required for 3D) } // Vertex Buffer Object deinitialization (memory free) void rlglClose(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) rlUnloadRenderBatch(RLGL.defaultBatch); rlUnloadShaderDefault(); // Unload default shader glDeleteTextures(1, &RLGL.State.defaultTextureId); // Unload default texture TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Default texture unloaded successfully", RLGL.State.defaultTextureId); #endif } // Load OpenGL extensions // NOTE: External loader function could be passed as a pointer void rlLoadExtensions(void *loader) { #if defined(GRAPHICS_API_OPENGL_33) // Also defined for GRAPHICS_API_OPENGL_21 // NOTE: glad is generated and contains only required OpenGL 3.3 Core extensions (and lower versions) #if !defined(__APPLE__) if (!gladLoadGLLoader((GLADloadproc)loader)) TRACELOG(LOG_WARNING, "GLAD: Cannot load OpenGL extensions"); else TRACELOG(LOG_INFO, "GLAD: OpenGL extensions loaded successfully"); #endif // Get number of supported extensions GLint numExt = 0; glGetIntegerv(GL_NUM_EXTENSIONS, &numExt); TRACELOG(LOG_INFO, "GL: Supported extensions count: %i", numExt); #if defined(SUPPORT_GL_DETAILS_INFO) // Get supported extensions list // WARNING: glGetStringi() not available on OpenGL 2.1 char **extList = RL_MALLOC(sizeof(char *)*numExt); TRACELOG(LOG_INFO, "GL: OpenGL extensions:"); for (int i = 0; i < numExt; i++) { extList[i] = (char *)glGetStringi(GL_EXTENSIONS, i); TRACELOG(LOG_INFO, " %s", extList[i]); } RL_FREE(extList); // Free extensions pointers #endif // Register supported extensions flags // OpenGL 3.3 extensions supported by default (core) RLGL.ExtSupported.vao = true; RLGL.ExtSupported.instancing = true; RLGL.ExtSupported.texNPOT = true; RLGL.ExtSupported.texFloat32 = true; RLGL.ExtSupported.texDepth = true; RLGL.ExtSupported.maxDepthBits = 32; RLGL.ExtSupported.texAnisoFilter = true; RLGL.ExtSupported.texMirrorClamp = true; #if !defined(__APPLE__) // NOTE: With GLAD, we can check if an extension is supported using the GLAD_GL_xxx booleans if (GLAD_GL_EXT_texture_compression_s3tc) RLGL.ExtSupported.texCompDXT = true; // Texture compression: DXT if (GLAD_GL_ARB_ES3_compatibility) RLGL.ExtSupported.texCompETC2 = true; // Texture compression: ETC2/EAC #endif #endif // GRAPHICS_API_OPENGL_33 #if defined(GRAPHICS_API_OPENGL_ES2) // Get supported extensions list GLint numExt = 0; const char **extList = RL_MALLOC(512*sizeof(const char *)); // Allocate 512 strings pointers (2 KB) const char *extensions = (const char *)glGetString(GL_EXTENSIONS); // One big const string // NOTE: We have to duplicate string because glGetString() returns a const string int len = strlen(extensions) + 1; char *extensionsDup = (char *)RL_CALLOC(len, sizeof(char)); strcpy(extensionsDup, extensions); extList[numExt] = extensionsDup; for (int i = 0; i < len; i++) { if (extensionsDup[i] == ' ') { extensionsDup[i] = '\0'; numExt++; extList[numExt] = &extensionsDup[i + 1]; } } TRACELOG(LOG_INFO, "GL: Supported extensions count: %i", numExt); #if defined(SUPPORT_GL_DETAILS_INFO) TRACELOG(LOG_INFO, "GL: OpenGL extensions:"); for (int i = 0; i < numExt; i++) TRACELOG(LOG_INFO, " %s", extList[i]); #endif // Check required extensions for (int i = 0; i < numExt; i++) { // Check VAO support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has VAO support as core feature if (strcmp(extList[i], (const char *)"GL_OES_vertex_array_object") == 0) { // The extension is supported by our hardware and driver, try to get related functions pointers // NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance... glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)eglGetProcAddress("glGenVertexArraysOES"); glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)eglGetProcAddress("glBindVertexArrayOES"); glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)eglGetProcAddress("glDeleteVertexArraysOES"); //glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)eglGetProcAddress("glIsVertexArrayOES"); // NOTE: Fails in WebGL, omitted if ((glGenVertexArrays != NULL) && (glBindVertexArray != NULL) && (glDeleteVertexArrays != NULL)) RLGL.ExtSupported.vao = true; } // Check instanced rendering support if (strcmp(extList[i], (const char *)"GL_ANGLE_instanced_arrays") == 0) // Web ANGLE { glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDEXTPROC)eglGetProcAddress("glDrawArraysInstancedANGLE"); glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDEXTPROC)eglGetProcAddress("glDrawElementsInstancedANGLE"); glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISOREXTPROC)eglGetProcAddress("glVertexAttribDivisorANGLE"); if ((glDrawArraysInstanced != NULL) && (glDrawElementsInstanced != NULL) && (glVertexAttribDivisor != NULL)) RLGL.ExtSupported.instancing = true; } else { if ((strcmp(extList[i], (const char *)"GL_EXT_draw_instanced") == 0) && // Standard EXT (strcmp(extList[i], (const char *)"GL_EXT_instanced_arrays") == 0)) { glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDEXTPROC)eglGetProcAddress("glDrawArraysInstancedEXT"); glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDEXTPROC)eglGetProcAddress("glDrawElementsInstancedEXT"); glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISOREXTPROC)eglGetProcAddress("glVertexAttribDivisorEXT"); if ((glDrawArraysInstanced != NULL) && (glDrawElementsInstanced != NULL) && (glVertexAttribDivisor != NULL)) RLGL.ExtSupported.instancing = true; } } // Check NPOT textures support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has NPOT textures full support as core feature if (strcmp(extList[i], (const char *)"GL_OES_texture_npot") == 0) RLGL.ExtSupported.texNPOT = true; // Check texture float support if (strcmp(extList[i], (const char *)"GL_OES_texture_float") == 0) RLGL.ExtSupported.texFloat32 = true; // Check depth texture support if ((strcmp(extList[i], (const char *)"GL_OES_depth_texture") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_depth_texture") == 0)) RLGL.ExtSupported.texDepth = true; if (strcmp(extList[i], (const char *)"GL_OES_depth24") == 0) RLGL.ExtSupported.maxDepthBits = 24; if (strcmp(extList[i], (const char *)"GL_OES_depth32") == 0) RLGL.ExtSupported.maxDepthBits = 32; // Check texture compression support: DXT if ((strcmp(extList[i], (const char *)"GL_EXT_texture_compression_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBKIT_WEBGL_compressed_texture_s3tc") == 0)) RLGL.ExtSupported.texCompDXT = true; // Check texture compression support: ETC1 if ((strcmp(extList[i], (const char *)"GL_OES_compressed_ETC1_RGB8_texture") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_etc1") == 0)) RLGL.ExtSupported.texCompETC1 = true; // Check texture compression support: ETC2/EAC if (strcmp(extList[i], (const char *)"GL_ARB_ES3_compatibility") == 0) RLGL.ExtSupported.texCompETC2 = true; // Check texture compression support: PVR if (strcmp(extList[i], (const char *)"GL_IMG_texture_compression_pvrtc") == 0) RLGL.ExtSupported.texCompPVRT = true; // Check texture compression support: ASTC if (strcmp(extList[i], (const char *)"GL_KHR_texture_compression_astc_hdr") == 0) RLGL.ExtSupported.texCompASTC = true; // Check anisotropic texture filter support if (strcmp(extList[i], (const char *)"GL_EXT_texture_filter_anisotropic") == 0) RLGL.ExtSupported.texAnisoFilter = true; // Check clamp mirror wrap mode support if (strcmp(extList[i], (const char *)"GL_EXT_texture_mirror_clamp") == 0) RLGL.ExtSupported.texMirrorClamp = true; } // Free extensions pointers RL_FREE(extList); RL_FREE(extensionsDup); // Duplicated string must be deallocated #endif // GRAPHICS_API_OPENGL_ES2 // Check OpenGL information and capabilities //------------------------------------------------------------------------------ // Show current OpenGL and GLSL version TRACELOG(LOG_INFO, "GL: OpenGL device information:"); TRACELOG(LOG_INFO, " > Vendor: %s", glGetString(GL_VENDOR)); TRACELOG(LOG_INFO, " > Renderer: %s", glGetString(GL_RENDERER)); TRACELOG(LOG_INFO, " > Version: %s", glGetString(GL_VERSION)); TRACELOG(LOG_INFO, " > GLSL: %s", glGetString(GL_SHADING_LANGUAGE_VERSION)); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: Anisotropy levels capability is an extension #ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT #define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF #endif glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &RLGL.ExtSupported.maxAnisotropyLevel); #if defined(SUPPORT_GL_DETAILS_INFO) // Show some OpenGL GPU capabilities TRACELOG(LOG_INFO, "GL: OpenGL capabilities:"); GLint capability = 0; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &capability); TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_SIZE: %i", capability); glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, &capability); TRACELOG(LOG_INFO, " GL_MAX_CUBE_MAP_TEXTURE_SIZE: %i", capability); glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &capability); TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_IMAGE_UNITS: %i", capability); glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &capability); TRACELOG(LOG_INFO, " GL_MAX_VERTEX_ATTRIBS: %i", capability); #if !defined(GRAPHICS_API_OPENGL_ES2) glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &capability); TRACELOG(LOG_INFO, " GL_MAX_UNIFORM_BLOCK_SIZE: %i", capability); glGetIntegerv(GL_MAX_DRAW_BUFFERS, &capability); TRACELOG(LOG_INFO, " GL_MAX_DRAW_BUFFERS: %i", capability); if (RLGL.ExtSupported.texAnisoFilter) TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_MAX_ANISOTROPY: %.0f", RLGL.ExtSupported.maxAnisotropyLevel); #endif glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &capability); TRACELOG(LOG_INFO, " GL_NUM_COMPRESSED_TEXTURE_FORMATS: %i", capability); GLint format[32] = { 0 }; glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, format); for (int i = 0; i < capability; i++) TRACELOG(LOG_INFO, " %s", rlGetCompressedFormatName(format[i])); /* // Following capabilities are only supported by OpenGL 4.3 or greater glGetIntegerv(GL_MAX_VERTEX_ATTRIB_BINDINGS, &capability); TRACELOG(LOG_INFO, " GL_MAX_VERTEX_ATTRIB_BINDINGS: %i", capability); glGetIntegerv(GL_MAX_UNIFORM_LOCATIONS, &capability); TRACELOG(LOG_INFO, " GL_MAX_UNIFORM_LOCATIONS: %i", capability); */ #else // SUPPORT_GL_DETAILS_INFO // Show some basic info about GL supported features #if defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.vao) TRACELOG(LOG_INFO, "GL: VAO extension detected, VAO functions loaded successfully"); else TRACELOG(LOG_WARNING, "GL: VAO extension not found, VAO not supported"); if (RLGL.ExtSupported.texNPOT) TRACELOG(LOG_INFO, "GL: NPOT textures extension detected, full NPOT textures supported"); else TRACELOG(LOG_WARNING, "GL: NPOT textures extension not found, limited NPOT support (no-mipmaps, no-repeat)"); #endif if (RLGL.ExtSupported.texCompDXT) TRACELOG(LOG_INFO, "GL: DXT compressed textures supported"); if (RLGL.ExtSupported.texCompETC1) TRACELOG(LOG_INFO, "GL: ETC1 compressed textures supported"); if (RLGL.ExtSupported.texCompETC2) TRACELOG(LOG_INFO, "GL: ETC2/EAC compressed textures supported"); if (RLGL.ExtSupported.texCompPVRT) TRACELOG(LOG_INFO, "GL: PVRT compressed textures supported"); if (RLGL.ExtSupported.texCompASTC) TRACELOG(LOG_INFO, "GL: ASTC compressed textures supported"); #endif // SUPPORT_GL_DETAILS_INFO #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 } // Returns current OpenGL version int rlGetVersion(void) { #if defined(GRAPHICS_API_OPENGL_11) return OPENGL_11; #endif #if defined(GRAPHICS_API_OPENGL_21) #if defined(__APPLE__) return OPENGL_33; // NOTE: Force OpenGL 3.3 on OSX #else return OPENGL_21; #endif #elif defined(GRAPHICS_API_OPENGL_33) return OPENGL_33; #endif #if defined(GRAPHICS_API_OPENGL_ES2) return OPENGL_ES_20; #endif } // Get default framebuffer width int rlGetFramebufferWidth(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) return RLGL.State.framebufferWidth; #else return 0; #endif } // Get default framebuffer height int rlGetFramebufferHeight(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) return RLGL.State.framebufferHeight; #else return 0; #endif } // Get default internal shader (simple texture + tint color) Shader rlGetShaderDefault(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) return RLGL.State.defaultShader; #else Shader shader = { 0 }; return shader; #endif } // Get default internal texture (white texture) Texture2D rlGetTextureDefault(void) { Texture2D texture = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) texture.id = RLGL.State.defaultTextureId; texture.width = 1; texture.height = 1; texture.mipmaps = 1; texture.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8; #endif return texture; } // Render batch management //------------------------------------------------------------------------------------------------ // Load render batch RenderBatch rlLoadRenderBatch(int numBuffers, int bufferElements) { RenderBatch batch = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize CPU (RAM) vertex buffers (position, texcoord, color data and indexes) //-------------------------------------------------------------------------------------------- batch.vertexBuffer = (VertexBuffer *)RL_MALLOC(sizeof(VertexBuffer)*numBuffers); for (int i = 0; i < numBuffers; i++) { batch.vertexBuffer[i].elementsCount = bufferElements; batch.vertexBuffer[i].vertices = (float *)RL_MALLOC(bufferElements*3*4*sizeof(float)); // 3 float by vertex, 4 vertex by quad batch.vertexBuffer[i].texcoords = (float *)RL_MALLOC(bufferElements*2*4*sizeof(float)); // 2 float by texcoord, 4 texcoord by quad batch.vertexBuffer[i].colors = (unsigned char *)RL_MALLOC(bufferElements*4*4*sizeof(unsigned char)); // 4 float by color, 4 colors by quad #if defined(GRAPHICS_API_OPENGL_33) batch.vertexBuffer[i].indices = (unsigned int *)RL_MALLOC(bufferElements*6*sizeof(unsigned int)); // 6 int by quad (indices) #endif #if defined(GRAPHICS_API_OPENGL_ES2) batch.vertexBuffer[i].indices = (unsigned short *)RL_MALLOC(bufferElements*6*sizeof(unsigned short)); // 6 int by quad (indices) #endif for (int j = 0; j < (3*4*bufferElements); j++) batch.vertexBuffer[i].vertices[j] = 0.0f; for (int j = 0; j < (2*4*bufferElements); j++) batch.vertexBuffer[i].texcoords[j] = 0.0f; for (int j = 0; j < (4*4*bufferElements); j++) batch.vertexBuffer[i].colors[j] = 0; int k = 0; // Indices can be initialized right now for (int j = 0; j < (6*bufferElements); j += 6) { batch.vertexBuffer[i].indices[j] = 4*k; batch.vertexBuffer[i].indices[j + 1] = 4*k + 1; batch.vertexBuffer[i].indices[j + 2] = 4*k + 2; batch.vertexBuffer[i].indices[j + 3] = 4*k; batch.vertexBuffer[i].indices[j + 4] = 4*k + 2; batch.vertexBuffer[i].indices[j + 5] = 4*k + 3; k++; } batch.vertexBuffer[i].vCounter = 0; batch.vertexBuffer[i].tcCounter = 0; batch.vertexBuffer[i].cCounter = 0; } TRACELOG(LOG_INFO, "RLGL: Render batch vertex buffers loaded successfully in RAM (CPU)"); //-------------------------------------------------------------------------------------------- // Upload to GPU (VRAM) vertex data and initialize VAOs/VBOs //-------------------------------------------------------------------------------------------- for (int i = 0; i < numBuffers; i++) { if (RLGL.ExtSupported.vao) { // Initialize Quads VAO glGenVertexArrays(1, &batch.vertexBuffer[i].vaoId); glBindVertexArray(batch.vertexBuffer[i].vaoId); } // Quads - Vertex buffers binding and attributes enable // Vertex position buffer (shader-location = 0) glGenBuffers(1, &batch.vertexBuffer[i].vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[0]); glBufferData(GL_ARRAY_BUFFER, bufferElements*3*4*sizeof(float), batch.vertexBuffer[i].vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_POSITION]); glVertexAttribPointer(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0); // Vertex texcoord buffer (shader-location = 1) glGenBuffers(1, &batch.vertexBuffer[i].vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[1]); glBufferData(GL_ARRAY_BUFFER, bufferElements*2*4*sizeof(float), batch.vertexBuffer[i].texcoords, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_TEXCOORD01]); glVertexAttribPointer(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0); // Vertex color buffer (shader-location = 3) glGenBuffers(1, &batch.vertexBuffer[i].vboId[2]); glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[2]); glBufferData(GL_ARRAY_BUFFER, bufferElements*4*4*sizeof(unsigned char), batch.vertexBuffer[i].colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_COLOR]); glVertexAttribPointer(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); // Fill index buffer glGenBuffers(1, &batch.vertexBuffer[i].vboId[3]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[3]); #if defined(GRAPHICS_API_OPENGL_33) glBufferData(GL_ELEMENT_ARRAY_BUFFER, bufferElements*6*sizeof(int), batch.vertexBuffer[i].indices, GL_STATIC_DRAW); #endif #if defined(GRAPHICS_API_OPENGL_ES2) glBufferData(GL_ELEMENT_ARRAY_BUFFER, bufferElements*6*sizeof(short), batch.vertexBuffer[i].indices, GL_STATIC_DRAW); #endif } TRACELOG(LOG_INFO, "RLGL: Render batch vertex buffers loaded successfully in VRAM (GPU)"); // Unbind the current VAO if (RLGL.ExtSupported.vao) glBindVertexArray(0); //-------------------------------------------------------------------------------------------- // Init draw calls tracking system //-------------------------------------------------------------------------------------------- batch.draws = (DrawCall *)RL_MALLOC(DEFAULT_BATCH_DRAWCALLS*sizeof(DrawCall)); for (int i = 0; i < DEFAULT_BATCH_DRAWCALLS; i++) { batch.draws[i].mode = RL_QUADS; batch.draws[i].vertexCount = 0; batch.draws[i].vertexAlignment = 0; //batch.draws[i].vaoId = 0; //batch.draws[i].shaderId = 0; batch.draws[i].textureId = RLGL.State.defaultTextureId; //batch.draws[i].RLGL.State.projection = MatrixIdentity(); //batch.draws[i].RLGL.State.modelview = MatrixIdentity(); } batch.buffersCount = numBuffers; // Record buffer count batch.drawsCounter = 1; // Reset draws counter batch.currentDepth = -1.0f; // Reset depth value //-------------------------------------------------------------------------------------------- #endif return batch; } // Unload default internal buffers vertex data from CPU and GPU void rlUnloadRenderBatch(RenderBatch batch) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Unbind everything if (RLGL.ExtSupported.vao) glBindVertexArray(0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glDisableVertexAttribArray(2); glDisableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // Unload all vertex buffers data for (int i = 0; i < batch.buffersCount; i++) { // Delete VBOs from GPU (VRAM) glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[0]); glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[1]); glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[2]); glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[3]); // Delete VAOs from GPU (VRAM) if (RLGL.ExtSupported.vao) glDeleteVertexArrays(1, &batch.vertexBuffer[i].vaoId); // Free vertex arrays memory from CPU (RAM) RL_FREE(batch.vertexBuffer[i].vertices); RL_FREE(batch.vertexBuffer[i].texcoords); RL_FREE(batch.vertexBuffer[i].colors); RL_FREE(batch.vertexBuffer[i].indices); } // Unload arrays RL_FREE(batch.vertexBuffer); RL_FREE(batch.draws); #endif } // Draw render batch // NOTE: We require a pointer to reset batch and increase current buffer (multi-buffer) void rlDrawRenderBatch(RenderBatch *batch) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Update batch vertex buffers //------------------------------------------------------------------------------------------------------------ // NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0) // TODO: If no data changed on the CPU arrays --> No need to re-update GPU arrays (change flag required) if (batch->vertexBuffer[batch->currentBuffer].vCounter > 0) { // Activate elements VAO if (RLGL.ExtSupported.vao) glBindVertexArray(batch->vertexBuffer[batch->currentBuffer].vaoId); // Vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[0]); glBufferSubData(GL_ARRAY_BUFFER, 0, batch->vertexBuffer[batch->currentBuffer].vCounter*3*sizeof(float), batch->vertexBuffer[batch->currentBuffer].vertices); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*batch->vertexBuffer[batch->currentBuffer].elementsCount, batch->vertexBuffer[batch->currentBuffer].vertices, GL_DYNAMIC_DRAW); // Update all buffer // Texture coordinates buffer glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[1]); glBufferSubData(GL_ARRAY_BUFFER, 0, batch->vertexBuffer[batch->currentBuffer].vCounter*2*sizeof(float), batch->vertexBuffer[batch->currentBuffer].texcoords); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*batch->vertexBuffer[batch->currentBuffer].elementsCount, batch->vertexBuffer[batch->currentBuffer].texcoords, GL_DYNAMIC_DRAW); // Update all buffer // Colors buffer glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[2]); glBufferSubData(GL_ARRAY_BUFFER, 0, batch->vertexBuffer[batch->currentBuffer].vCounter*4*sizeof(unsigned char), batch->vertexBuffer[batch->currentBuffer].colors); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*batch->vertexBuffer[batch->currentBuffer].elementsCount, batch->vertexBuffer[batch->currentBuffer].colors, GL_DYNAMIC_DRAW); // Update all buffer // NOTE: glMapBuffer() causes sync issue. // If GPU is working with this buffer, glMapBuffer() will wait(stall) until GPU to finish its job. // To avoid waiting (idle), you can call first glBufferData() with NULL pointer before glMapBuffer(). // If you do that, the previous data in PBO will be discarded and glMapBuffer() returns a new // allocated pointer immediately even if GPU is still working with the previous data. // Another option: map the buffer object into client's memory // Probably this code could be moved somewhere else... // batch->vertexBuffer[batch->currentBuffer].vertices = (float *)glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); // if (batch->vertexBuffer[batch->currentBuffer].vertices) // { // Update vertex data // } // glUnmapBuffer(GL_ARRAY_BUFFER); // Unbind the current VAO if (RLGL.ExtSupported.vao) glBindVertexArray(0); } //------------------------------------------------------------------------------------------------------------ // Draw batch vertex buffers (considering VR stereo if required) //------------------------------------------------------------------------------------------------------------ Matrix matProjection = RLGL.State.projection; Matrix matModelView = RLGL.State.modelview; int eyesCount = 1; if (RLGL.State.stereoRender) eyesCount = 2; for (int eye = 0; eye < eyesCount; eye++) { if (eyesCount == 2) { // Setup current eye viewport (half screen width) rlViewport(eye*RLGL.State.framebufferWidth/2, 0, RLGL.State.framebufferWidth/2, RLGL.State.framebufferHeight); // Set current eye view offset to modelview matrix rlSetMatrixModelview(MatrixMultiply(matModelView, RLGL.State.viewOffsetStereo[eye])); // Set current eye projection matrix rlSetMatrixProjection(RLGL.State.projectionStereo[eye]); } // Draw buffers if (batch->vertexBuffer[batch->currentBuffer].vCounter > 0) { // Set current shader and upload current MVP matrix glUseProgram(RLGL.State.currentShader.id); // Create modelview-projection matrix and upload to shader Matrix matMVP = MatrixMultiply(RLGL.State.modelview, RLGL.State.projection); glUniformMatrix4fv(RLGL.State.currentShader.locs[SHADER_LOC_MATRIX_MVP], 1, false, MatrixToFloat(matMVP)); if (RLGL.ExtSupported.vao) glBindVertexArray(batch->vertexBuffer[batch->currentBuffer].vaoId); else { // Bind vertex attrib: position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[0]); glVertexAttribPointer(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_POSITION]); // Bind vertex attrib: texcoord (shader-location = 1) glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[1]); glVertexAttribPointer(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_TEXCOORD01]); // Bind vertex attrib: color (shader-location = 3) glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[2]); glVertexAttribPointer(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(RLGL.State.currentShader.locs[SHADER_LOC_VERTEX_COLOR]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[3]); } // Setup some default shader values glUniform4f(RLGL.State.currentShader.locs[SHADER_LOC_COLOR_DIFFUSE], 1.0f, 1.0f, 1.0f, 1.0f); glUniform1i(RLGL.State.currentShader.locs[SHADER_LOC_MAP_DIFFUSE], 0); // Active default sampler2D: texture0 // Activate additional sampler textures // Those additional textures will be common for all draw calls of the batch for (int i = 0; i < MAX_BATCH_ACTIVE_TEXTURES; i++) { if (RLGL.State.activeTextureId[i] > 0) { glActiveTexture(GL_TEXTURE0 + 1 + i); glBindTexture(GL_TEXTURE_2D, RLGL.State.activeTextureId[i]); } } // Activate default sampler2D texture0 (one texture is always active for default batch shader) // NOTE: Batch system accumulates calls by texture0 changes, additional textures are enabled for all the draw calls glActiveTexture(GL_TEXTURE0); for (int i = 0, vertexOffset = 0; i < batch->drawsCounter; i++) { // Bind current draw call texture, activated as GL_TEXTURE0 and binded to sampler2D texture0 by default glBindTexture(GL_TEXTURE_2D, batch->draws[i].textureId); if ((batch->draws[i].mode == RL_LINES) || (batch->draws[i].mode == RL_TRIANGLES)) glDrawArrays(batch->draws[i].mode, vertexOffset, batch->draws[i].vertexCount); else { #if defined(GRAPHICS_API_OPENGL_33) // We need to define the number of indices to be processed: quadsCount*6 // NOTE: The final parameter tells the GPU the offset in bytes from the // start of the index buffer to the location of the first index to process glDrawElements(GL_TRIANGLES, batch->draws[i].vertexCount/4*6, GL_UNSIGNED_INT, (GLvoid *)(vertexOffset/4*6*sizeof(GLuint))); #endif #if defined(GRAPHICS_API_OPENGL_ES2) glDrawElements(GL_TRIANGLES, batch->draws[i].vertexCount/4*6, GL_UNSIGNED_SHORT, (GLvoid *)(vertexOffset/4*6*sizeof(GLushort))); #endif } vertexOffset += (batch->draws[i].vertexCount + batch->draws[i].vertexAlignment); } if (!RLGL.ExtSupported.vao) { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures } if (RLGL.ExtSupported.vao) glBindVertexArray(0); // Unbind VAO glUseProgram(0); // Unbind shader program } //------------------------------------------------------------------------------------------------------------ // Reset batch buffers //------------------------------------------------------------------------------------------------------------ // Reset vertex counters for next frame batch->vertexBuffer[batch->currentBuffer].vCounter = 0; batch->vertexBuffer[batch->currentBuffer].tcCounter = 0; batch->vertexBuffer[batch->currentBuffer].cCounter = 0; // Reset depth for next draw batch->currentDepth = -1.0f; // Restore projection/modelview matrices RLGL.State.projection = matProjection; RLGL.State.modelview = matModelView; // Reset RLGL.currentBatch->draws array for (int i = 0; i < DEFAULT_BATCH_DRAWCALLS; i++) { batch->draws[i].mode = RL_QUADS; batch->draws[i].vertexCount = 0; batch->draws[i].textureId = RLGL.State.defaultTextureId; } // Reset active texture units for next batch for (int i = 0; i < MAX_BATCH_ACTIVE_TEXTURES; i++) RLGL.State.activeTextureId[i] = 0; // Reset draws counter to one draw for the batch batch->drawsCounter = 1; //------------------------------------------------------------------------------------------------------------ // Change to next buffer in the list (in case of multi-buffering) batch->currentBuffer++; if (batch->currentBuffer >= batch->buffersCount) batch->currentBuffer = 0; #endif } // Set the active render batch for rlgl void rlSetRenderBatchActive(RenderBatch *batch) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) rlDrawRenderBatch(RLGL.currentBatch); if (batch != NULL) RLGL.currentBatch = batch; else RLGL.currentBatch = &RLGL.defaultBatch; #endif } // Update and draw internal render batch void rlDrawRenderBatchActive(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) rlDrawRenderBatch(RLGL.currentBatch); // NOTE: Stereo rendering is checked inside #endif } // Check internal buffer overflow for a given number of vertex // and force a RenderBatch draw call if required bool rlCheckRenderBatchLimit(int vCount) { bool overflow = false; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].vCounter + vCount) >= (RLGL.currentBatch->vertexBuffer[RLGL.currentBatch->currentBuffer].elementsCount*4)) { overflow = true; rlDrawRenderBatch(RLGL.currentBatch); // NOTE: Stereo rendering is checked inside } #endif return overflow; } // Textures data management //----------------------------------------------------------------------------------------- // Convert image data to OpenGL texture (returns OpenGL valid Id) unsigned int rlLoadTexture(void *data, int width, int height, int format, int mipmapCount) { glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding unsigned int id = 0; // Check texture format support by OpenGL 1.1 (compressed textures not supported) #if defined(GRAPHICS_API_OPENGL_11) if (format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) { TRACELOG(LOG_WARNING, "GL: OpenGL 1.1 does not support GPU compressed texture formats"); return id; } #else if ((!RLGL.ExtSupported.texCompDXT) && ((format == PIXELFORMAT_COMPRESSED_DXT1_RGB) || (format == PIXELFORMAT_COMPRESSED_DXT1_RGBA) || (format == PIXELFORMAT_COMPRESSED_DXT3_RGBA) || (format == PIXELFORMAT_COMPRESSED_DXT5_RGBA))) { TRACELOG(LOG_WARNING, "GL: DXT compressed texture format not supported"); return id; } #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((!RLGL.ExtSupported.texCompETC1) && (format == PIXELFORMAT_COMPRESSED_ETC1_RGB)) { TRACELOG(LOG_WARNING, "GL: ETC1 compressed texture format not supported"); return id; } if ((!RLGL.ExtSupported.texCompETC2) && ((format == PIXELFORMAT_COMPRESSED_ETC2_RGB) || (format == PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA))) { TRACELOG(LOG_WARNING, "GL: ETC2 compressed texture format not supported"); return id; } if ((!RLGL.ExtSupported.texCompPVRT) && ((format == PIXELFORMAT_COMPRESSED_PVRT_RGB) || (format == PIXELFORMAT_COMPRESSED_PVRT_RGBA))) { TRACELOG(LOG_WARNING, "GL: PVRT compressed texture format not supported"); return id; } if ((!RLGL.ExtSupported.texCompASTC) && ((format == PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA) || (format == PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA))) { TRACELOG(LOG_WARNING, "GL: ASTC compressed texture format not supported"); return id; } #endif #endif // GRAPHICS_API_OPENGL_11 glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glGenTextures(1, &id); // Generate texture id glBindTexture(GL_TEXTURE_2D, id); int mipWidth = width; int mipHeight = height; int mipOffset = 0; // Mipmap data offset // Load the different mipmap levels for (int i = 0; i < mipmapCount; i++) { unsigned int mipSize = rlGetPixelDataSize(mipWidth, mipHeight, format); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(format, &glInternalFormat, &glFormat, &glType); TRACELOGD("TEXTURE: Load mipmap level %i (%i x %i), size: %i, offset: %i", i, mipWidth, mipHeight, mipSize, mipOffset); if (glInternalFormat != -1) { if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, glFormat, glType, (unsigned char *)data + mipOffset); #if !defined(GRAPHICS_API_OPENGL_11) else glCompressedTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, mipSize, (unsigned char *)data + mipOffset); #endif #if defined(GRAPHICS_API_OPENGL_33) if (format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) { GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE }; glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } else if (format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) { #if defined(GRAPHICS_API_OPENGL_21) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA }; #elif defined(GRAPHICS_API_OPENGL_33) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN }; #endif glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } #endif } mipWidth /= 2; mipHeight /= 2; mipOffset += mipSize; // Security check for NPOT textures if (mipWidth < 1) mipWidth = 1; if (mipHeight < 1) mipHeight = 1; } // Texture parameters configuration // NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used if (RLGL.ExtSupported.texNPOT) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis } else { // NOTE: If using negative texture coordinates (LoadOBJ()), it does not work! glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis } #else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis #endif // Magnification and minification filters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Alternative: GL_LINEAR glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Alternative: GL_LINEAR #if defined(GRAPHICS_API_OPENGL_33) if (mipmapCount > 1) { // Activate Trilinear filtering if mipmaps are available glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); } #endif // At this point we have the texture loaded in GPU and texture parameters configured // NOTE: If mipmaps were not in data, they are not generated automatically // Unbind current texture glBindTexture(GL_TEXTURE_2D, 0); if (id > 0) TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Texture loaded successfully (%ix%i - %i mipmaps)", id, width, height, mipmapCount); else TRACELOG(LOG_WARNING, "TEXTURE: Failed to load texture"); return id; } // Load depth texture/renderbuffer (to be attached to fbo) // WARNING: OpenGL ES 2.0 requires GL_OES_depth_texture/WEBGL_depth_texture extensions unsigned int rlLoadTextureDepth(int width, int height, bool useRenderBuffer) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // In case depth textures not supported, we force renderbuffer usage if (!RLGL.ExtSupported.texDepth) useRenderBuffer = true; // NOTE: We let the implementation to choose the best bit-depth // Possible formats: GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32 and GL_DEPTH_COMPONENT32F unsigned int glInternalFormat = GL_DEPTH_COMPONENT; #if defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.maxDepthBits == 32) glInternalFormat = GL_DEPTH_COMPONENT32_OES; else if (RLGL.ExtSupported.maxDepthBits == 24) glInternalFormat = GL_DEPTH_COMPONENT24_OES; else glInternalFormat = GL_DEPTH_COMPONENT16; #endif if (!useRenderBuffer && RLGL.ExtSupported.texDepth) { glGenTextures(1, &id); glBindTexture(GL_TEXTURE_2D, id); glTexImage2D(GL_TEXTURE_2D, 0, glInternalFormat, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, 0); TRACELOG(LOG_INFO, "TEXTURE: Depth texture loaded successfully"); } else { // Create the renderbuffer that will serve as the depth attachment for the framebuffer // NOTE: A renderbuffer is simpler than a texture and could offer better performance on embedded devices glGenRenderbuffers(1, &id); glBindRenderbuffer(GL_RENDERBUFFER, id); glRenderbufferStorage(GL_RENDERBUFFER, glInternalFormat, width, height); glBindRenderbuffer(GL_RENDERBUFFER, 0); TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Depth renderbuffer loaded successfully (%i bits)", id, (RLGL.ExtSupported.maxDepthBits >= 24)? RLGL.ExtSupported.maxDepthBits : 16); } #endif return id; } // Load texture cubemap // NOTE: Cubemap data is expected to be 6 images in a single data array (one after the other), // expected the following convention: +X, -X, +Y, -Y, +Z, -Z unsigned int rlLoadTextureCubemap(void *data, int size, int format) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int dataSize = rlGetPixelDataSize(size, size, format); glGenTextures(1, &id); glBindTexture(GL_TEXTURE_CUBE_MAP, id); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(format, &glInternalFormat, &glFormat, &glType); if (glInternalFormat != -1) { // Load cubemap faces for (unsigned int i = 0; i < 6; i++) { if (data == NULL) { if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) { if (format == PIXELFORMAT_UNCOMPRESSED_R32G32B32) { // Instead of using a sized internal texture format (GL_RGB16F, GL_RGB32F), we let the driver to choose the better format for us (GL_RGB) if (RLGL.ExtSupported.texFloat32) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, size, size, 0, GL_RGB, GL_FLOAT, NULL); else TRACELOG(LOG_WARNING, "TEXTURES: Cubemap requested format not supported"); } else if ((format == PIXELFORMAT_UNCOMPRESSED_R32) || (format == PIXELFORMAT_UNCOMPRESSED_R32G32B32A32)) TRACELOG(LOG_WARNING, "TEXTURES: Cubemap requested format not supported"); else glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, glFormat, glType, NULL); } else TRACELOG(LOG_WARNING, "TEXTURES: Empty cubemap creation does not support compressed format"); } else { if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, glFormat, glType, (unsigned char *)data + i*dataSize); else glCompressedTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, dataSize, (unsigned char *)data + i*dataSize); } #if defined(GRAPHICS_API_OPENGL_33) if (format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) { GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE }; glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } else if (format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) { #if defined(GRAPHICS_API_OPENGL_21) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA }; #elif defined(GRAPHICS_API_OPENGL_33) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN }; #endif glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } #endif } } // Set cubemap texture sampling parameters glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); #if defined(GRAPHICS_API_OPENGL_33) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); // Flag not supported on OpenGL ES 2.0 #endif glBindTexture(GL_TEXTURE_CUBE_MAP, 0); #endif if (id > 0) TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Cubemap texture loaded successfully (%ix%i)", id, size, size); else TRACELOG(LOG_WARNING, "TEXTURE: Failed to load cubemap texture"); return id; } // Update already loaded texture in GPU with new data // NOTE: We don't know safely if internal texture format is the expected one... void rlUpdateTexture(unsigned int id, int offsetX, int offsetY, int width, int height, int format, const void *data) { glBindTexture(GL_TEXTURE_2D, id); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(format, &glInternalFormat, &glFormat, &glType); if ((glInternalFormat != -1) && (format < PIXELFORMAT_COMPRESSED_DXT1_RGB)) { glTexSubImage2D(GL_TEXTURE_2D, 0, offsetX, offsetY, width, height, glFormat, glType, (unsigned char *)data); } else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to update for current texture format (%i)", id, format); } // Get OpenGL internal formats and data type from raylib PixelFormat void rlGetGlTextureFormats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType) { *glInternalFormat = -1; *glFormat = -1; *glType = -1; switch (format) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_21) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_LUMINANCE_ALPHA; *glFormat = GL_LUMINANCE_ALPHA; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break; case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break; #if !defined(GRAPHICS_API_OPENGL_11) case PIXELFORMAT_UNCOMPRESSED_R32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float #endif #elif defined(GRAPHICS_API_OPENGL_33) case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_R8; *glFormat = GL_RED; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_RG8; *glFormat = GL_RG; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB565; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB8; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGB5_A1; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break; case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA4; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA8; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_R32F; *glFormat = GL_RED; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGB32F; *glFormat = GL_RGB; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (RLGL.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA32F; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; #endif #if !defined(GRAPHICS_API_OPENGL_11) case PIXELFORMAT_COMPRESSED_DXT1_RGB: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; break; case PIXELFORMAT_COMPRESSED_DXT1_RGBA: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break; case PIXELFORMAT_COMPRESSED_DXT3_RGBA: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case PIXELFORMAT_COMPRESSED_DXT5_RGBA: if (RLGL.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; case PIXELFORMAT_COMPRESSED_ETC1_RGB: if (RLGL.ExtSupported.texCompETC1) *glInternalFormat = GL_ETC1_RGB8_OES; break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_ETC2_RGB: if (RLGL.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGB8_ETC2; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA: if (RLGL.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGBA8_ETC2_EAC; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_PVRT_RGB: if (RLGL.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU case PIXELFORMAT_COMPRESSED_PVRT_RGBA: if (RLGL.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: if (RLGL.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_4x4_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: if (RLGL.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_8x8_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 #endif default: TRACELOG(LOG_WARNING, "TEXTURE: Current format not supported (%i)", format); break; } } // Unload texture from GPU memory void rlUnloadTexture(unsigned int id) { glDeleteTextures(1, &id); } // Generate mipmap data for selected texture void rlGenerateMipmaps(Texture2D *texture) { glBindTexture(GL_TEXTURE_2D, texture->id); // Check if texture is power-of-two (POT) bool texIsPOT = false; if (((texture->width > 0) && ((texture->width & (texture->width - 1)) == 0)) && ((texture->height > 0) && ((texture->height & (texture->height - 1)) == 0))) texIsPOT = true; #if defined(GRAPHICS_API_OPENGL_11) if (texIsPOT) { // WARNING: Manual mipmap generation only works for RGBA 32bit textures! if (texture->format == PIXELFORMAT_UNCOMPRESSED_R8G8B8A8) { // Retrieve texture data from VRAM void *texData = rlReadTexturePixels(*texture); // NOTE: Texture data size is reallocated to fit mipmaps data // NOTE: CPU mipmap generation only supports RGBA 32bit data int mipmapCount = rlGenerateMipmapsData(texData, texture->width, texture->height); int size = texture->width*texture->height*4; int offset = size; int mipWidth = texture->width/2; int mipHeight = texture->height/2; // Load the mipmaps for (int level = 1; level < mipmapCount; level++) { glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, mipWidth, mipHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)texData + offset); size = mipWidth*mipHeight*4; offset += size; mipWidth /= 2; mipHeight /= 2; } texture->mipmaps = mipmapCount + 1; RL_FREE(texData); // Once mipmaps have been generated and data has been uploaded to GPU VRAM, we can discard RAM data TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Mipmaps generated manually on CPU side, total: %i", texture->id, texture->mipmaps); } else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to generate mipmaps for provided texture format", texture->id); } #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((texIsPOT) || (RLGL.ExtSupported.texNPOT)) { //glHint(GL_GENERATE_MIPMAP_HINT, GL_DONT_CARE); // Hint for mipmaps generation algorythm: GL_FASTEST, GL_NICEST, GL_DONT_CARE glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate Trilinear filtering for mipmaps #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) texture->mipmaps = 1 + (int)floor(log(MAX(texture->width, texture->height))/log(2)); TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Mipmaps generated automatically, total: %i", texture->id, texture->mipmaps); } #endif else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to generate mipmaps", texture->id); glBindTexture(GL_TEXTURE_2D, 0); } // Read texture pixel data void *rlReadTexturePixels(Texture2D texture) { void *pixels = NULL; #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) glBindTexture(GL_TEXTURE_2D, texture.id); // NOTE: Using texture.id, we can retrieve some texture info (but not on OpenGL ES 2.0) // Possible texture info: GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE //int width, height, format; //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width); //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height); //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format); // NOTE: Each row written to or read from by OpenGL pixel operations like glGetTexImage are aligned to a 4 byte boundary by default, which may add some padding. // Use glPixelStorei to modify padding with the GL_[UN]PACK_ALIGNMENT setting. // GL_PACK_ALIGNMENT affects operations that read from OpenGL memory (glReadPixels, glGetTexImage, etc.) // GL_UNPACK_ALIGNMENT affects operations that write to OpenGL memory (glTexImage, etc.) glPixelStorei(GL_PACK_ALIGNMENT, 1); unsigned int glInternalFormat, glFormat, glType; rlGetGlTextureFormats(texture.format, &glInternalFormat, &glFormat, &glType); unsigned int size = rlGetPixelDataSize(texture.width, texture.height, texture.format); if ((glInternalFormat != -1) && (texture.format < PIXELFORMAT_COMPRESSED_DXT1_RGB)) { pixels = RL_MALLOC(size); glGetTexImage(GL_TEXTURE_2D, 0, glFormat, glType, pixels); } else TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Data retrieval not suported for pixel format (%i)", texture.id, texture.format); glBindTexture(GL_TEXTURE_2D, 0); #endif #if defined(GRAPHICS_API_OPENGL_ES2) // glGetTexImage() is not available on OpenGL ES 2.0 // Texture width and height are required on OpenGL ES 2.0. There is no way to get it from texture id. // Two possible Options: // 1 - Bind texture to color fbo attachment and glReadPixels() // 2 - Create an fbo, activate it, render quad with texture, glReadPixels() // We are using Option 1, just need to care for texture format on retrieval // NOTE: This behaviour could be conditioned by graphic driver... unsigned int fboId = rlLoadFramebuffer(texture.width, texture.height); // TODO: Create depth texture/renderbuffer for fbo? glBindFramebuffer(GL_FRAMEBUFFER, fboId); glBindTexture(GL_TEXTURE_2D, 0); // Attach our texture to FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture.id, 0); // We read data as RGBA because FBO texture is configured as RGBA, despite binding another texture format pixels = (unsigned char *)RL_MALLOC(rlGetPixelDataSize(texture.width, texture.height, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8)); glReadPixels(0, 0, texture.width, texture.height, GL_RGBA, GL_UNSIGNED_BYTE, pixels); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Clean up temporal fbo rlUnloadFramebuffer(fboId); #endif return pixels; } // Read screen pixel data (color buffer) unsigned char *rlReadScreenPixels(int width, int height) { unsigned char *screenData = (unsigned char *)RL_CALLOC(width*height*4, sizeof(unsigned char)); // NOTE 1: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer // NOTE 2: We are getting alpha channel! Be careful, it can be transparent if not cleared properly! glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData); // Flip image vertically! unsigned char *imgData = (unsigned char *)RL_MALLOC(width*height*4*sizeof(unsigned char)); for (int y = height - 1; y >= 0; y--) { for (int x = 0; x < (width*4); x++) { imgData[((height - 1) - y)*width*4 + x] = screenData[(y*width*4) + x]; // Flip line // Set alpha component value to 255 (no trasparent image retrieval) // NOTE: Alpha value has already been applied to RGB in framebuffer, we don't need it! if (((x + 1)%4) == 0) imgData[((height - 1) - y)*width*4 + x] = 255; } } RL_FREE(screenData); return imgData; // NOTE: image data should be freed } // Framebuffer management (fbo) //----------------------------------------------------------------------------------------- // Load a framebuffer to be used for rendering // NOTE: No textures attached unsigned int rlLoadFramebuffer(int width, int height) { unsigned int fboId = 0; #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(SUPPORT_RENDER_TEXTURES_HINT) glGenFramebuffers(1, &fboId); // Create the framebuffer object glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unbind any framebuffer #endif return fboId; } // Attach color buffer texture to an fbo (unloads previous attachment) // NOTE: Attach type: 0-Color, 1-Depth renderbuffer, 2-Depth texture void rlFramebufferAttach(unsigned int fboId, unsigned int texId, int attachType, int texType, int mipLevel) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(SUPPORT_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, fboId); switch (attachType) { case RL_ATTACHMENT_COLOR_CHANNEL0: case RL_ATTACHMENT_COLOR_CHANNEL1: case RL_ATTACHMENT_COLOR_CHANNEL2: case RL_ATTACHMENT_COLOR_CHANNEL3: case RL_ATTACHMENT_COLOR_CHANNEL4: case RL_ATTACHMENT_COLOR_CHANNEL5: case RL_ATTACHMENT_COLOR_CHANNEL6: case RL_ATTACHMENT_COLOR_CHANNEL7: { if (texType == RL_ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_TEXTURE_2D, texId, mipLevel); else if (texType == RL_ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_RENDERBUFFER, texId); else if (texType >= RL_ATTACHMENT_CUBEMAP_POSITIVE_X) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_TEXTURE_CUBE_MAP_POSITIVE_X + texType, texId, mipLevel); } break; case RL_ATTACHMENT_DEPTH: { if (texType == RL_ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, texId, mipLevel); else if (texType == RL_ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, texId); } break; case RL_ATTACHMENT_STENCIL: { if (texType == RL_ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, texId, mipLevel); else if (texType == RL_ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, texId); } break; default: break; } glBindFramebuffer(GL_FRAMEBUFFER, 0); #endif } // Verify render texture is complete bool rlFramebufferComplete(unsigned int id) { bool result = false; #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(SUPPORT_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, id); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { switch (status) { case GL_FRAMEBUFFER_UNSUPPORTED: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer is unsupported", id); break; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete attachment", id); break; #if defined(GRAPHICS_API_OPENGL_ES2) case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete dimensions", id); break; #endif case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has a missing attachment", id); break; default: break; } } glBindFramebuffer(GL_FRAMEBUFFER, 0); result = (status == GL_FRAMEBUFFER_COMPLETE); #endif return result; } // Unload framebuffer from GPU memory // NOTE: All attached textures/cubemaps/renderbuffers are also deleted void rlUnloadFramebuffer(unsigned int id) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(SUPPORT_RENDER_TEXTURES_HINT) // Query depth attachment to automatically delete texture/renderbuffer int depthType = 0, depthId = 0; glBindFramebuffer(GL_FRAMEBUFFER, id); // Bind framebuffer to query depth texture type glGetFramebufferAttachmentParameteriv(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, &depthType); glGetFramebufferAttachmentParameteriv(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, &depthId); unsigned int depthIdU = (unsigned int)depthId; if (depthType == GL_RENDERBUFFER) glDeleteRenderbuffers(1, &depthIdU); else if (depthType == GL_RENDERBUFFER) glDeleteTextures(1, &depthIdU); // NOTE: If a texture object is deleted while its image is attached to the *currently bound* framebuffer, // the texture image is automatically detached from the currently bound framebuffer. glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &id); TRACELOG(LOG_INFO, "FBO: [ID %i] Unloaded framebuffer from VRAM (GPU)", id); #endif } // Vertex data management //----------------------------------------------------------------------------------------- // Load a new attributes buffer unsigned int rlLoadVertexBuffer(void *buffer, int size, bool dynamic) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glGenBuffers(1, &id); glBindBuffer(GL_ARRAY_BUFFER, id); glBufferData(GL_ARRAY_BUFFER, size, buffer, dynamic? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); #endif return id; } // Load a new attributes element buffer unsigned int rlLoadVertexBufferElement(void *buffer, int size, bool dynamic) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glGenBuffers(1, &id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, buffer, dynamic? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); #endif return id; } void rlEnableVertexBuffer(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ARRAY_BUFFER, id); #endif } void rlDisableVertexBuffer(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ARRAY_BUFFER, 0); #endif } void rlEnableVertexBufferElement(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id); #endif } void rlDisableVertexBufferElement(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #endif } // Update GPU buffer with new data // NOTE: dataSize and offset must be provided in bytes void rlUpdateVertexBuffer(int bufferId, void *data, int dataSize, int offset) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ARRAY_BUFFER, bufferId); glBufferSubData(GL_ARRAY_BUFFER, offset, dataSize, data); #endif } bool rlEnableVertexArray(unsigned int vaoId) { bool result = false; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.vao) { glBindVertexArray(vaoId); result = true; } #endif return result; } void rlDisableVertexArray(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.vao) glBindVertexArray(0); #endif } void rlEnableVertexAttribute(unsigned int index) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glEnableVertexAttribArray(index); #endif } void rlDisableVertexAttribute(unsigned int index) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDisableVertexAttribArray(index); #endif } void rlDrawVertexArray(int offset, int count) { glDrawArrays(GL_TRIANGLES, offset, count); } void rlDrawVertexArrayElements(int offset, int count, void *buffer) { glDrawElements(GL_TRIANGLES, count, GL_UNSIGNED_SHORT, (unsigned short*)buffer + offset); } void rlDrawVertexArrayInstanced(int offset, int count, int instances) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDrawArraysInstanced(GL_TRIANGLES, 0, count, instances); #endif } void rlDrawVertexArrayElementsInstanced(int offset, int count, void *buffer, int instances) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDrawElementsInstanced(GL_TRIANGLES, count, GL_UNSIGNED_SHORT, (unsigned short*)buffer + offset, instances); #endif } #if defined(GRAPHICS_API_OPENGL_11) void rlEnableStatePointer(int vertexAttribType, void *buffer) { if (buffer != NULL) glEnableClientState(vertexAttribType); switch (vertexAttribType) { case GL_VERTEX_ARRAY: glVertexPointer(3, GL_FLOAT, 0, buffer); break; case GL_TEXTURE_COORD_ARRAY: glTexCoordPointer(2, GL_FLOAT, 0, buffer); break; case GL_NORMAL_ARRAY: if (buffer != NULL) glNormalPointer(GL_FLOAT, 0, buffer); break; case GL_COLOR_ARRAY: if (buffer != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, buffer); break; //case GL_INDEX_ARRAY: if (buffer != NULL) glIndexPointer(GL_SHORT, 0, buffer); break; // Indexed colors default: break; } } void rlDisableStatePointer(int vertexAttribType) { glDisableClientState(vertexAttribType); } #endif unsigned int rlLoadVertexArray(void) { unsigned int vaoId = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glGenVertexArrays(1, &vaoId); #endif return vaoId; } void rlSetVertexAttribute(unsigned int index, int compSize, int type, bool normalized, int stride, void *pointer) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glVertexAttribPointer(index, compSize, type, normalized, stride, pointer); #endif } void rlSetVertexAttributeDivisor(unsigned int index, int divisor) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glVertexAttribDivisor(index, divisor); #endif } void rlUnloadVertexArray(unsigned int vaoId) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.ExtSupported.vao) { glBindVertexArray(0); glDeleteVertexArrays(1, &vaoId); TRACELOG(LOG_INFO, "VAO: [ID %i] Unloaded vertex array data from VRAM (GPU)", vaoId); } #endif } void rlUnloadVertexBuffer(unsigned int vboId) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDeleteBuffers(1, &vboId); //TRACELOG(LOG_INFO, "VBO: Unloaded vertex data from VRAM (GPU)"); #endif } // Shaders management //----------------------------------------------------------------------------------------------- // Load shader from code strings // NOTE: If shader string is NULL, using default vertex/fragment shaders unsigned int rlLoadShaderCode(const char *vsCode, const char *fsCode) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int vertexShaderId = RLGL.State.defaultVShaderId; unsigned int fragmentShaderId = RLGL.State.defaultFShaderId; if (vsCode != NULL) vertexShaderId = rlCompileShader(vsCode, GL_VERTEX_SHADER); if (fsCode != NULL) fragmentShaderId = rlCompileShader(fsCode, GL_FRAGMENT_SHADER); if ((vertexShaderId == RLGL.State.defaultVShaderId) && (fragmentShaderId == RLGL.State.defaultFShaderId)) id = RLGL.State.defaultShader.id; else { id = rlLoadShaderProgram(vertexShaderId, fragmentShaderId); if (vertexShaderId != RLGL.State.defaultVShaderId) { // Detach shader before deletion to make sure memory is freed glDetachShader(id, vertexShaderId); glDeleteShader(vertexShaderId); } if (fragmentShaderId != RLGL.State.defaultFShaderId) { // Detach shader before deletion to make sure memory is freed glDetachShader(id, fragmentShaderId); glDeleteShader(fragmentShaderId); } if (id == 0) { TRACELOG(LOG_WARNING, "SHADER: Failed to load custom shader code"); id = RLGL.State.defaultShader.id; } } // Get available shader uniforms // NOTE: This information is useful for debug... int uniformCount = -1; glGetProgramiv(id, GL_ACTIVE_UNIFORMS, &uniformCount); for (int i = 0; i < uniformCount; i++) { int namelen = -1; int num = -1; char name[256]; // Assume no variable names longer than 256 GLenum type = GL_ZERO; // Get the name of the uniforms glGetActiveUniform(id, i, sizeof(name) - 1, &namelen, &num, &type, name); name[namelen] = 0; TRACELOGD("SHADER: [ID %i] Active uniform (%s) set at location: %i", id, name, glGetUniformLocation(id, name)); } #endif return id; } // Compile custom shader and return shader id unsigned int rlCompileShader(const char *shaderCode, int type) { unsigned int shader = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) shader = glCreateShader(type); glShaderSource(shader, 1, &shaderCode, NULL); GLint success = 0; glCompileShader(shader); glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (success == GL_FALSE) { switch (type) { case GL_VERTEX_SHADER: TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile vertex shader code", shader); break; case GL_FRAGMENT_SHADER: TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile fragment shader code", shader); break; //case GL_GEOMETRY_SHADER: //case GL_COMPUTE_SHADER: default: break; } int maxLength = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength); if (maxLength > 0) { int length = 0; char *log = RL_CALLOC(maxLength, sizeof(char)); glGetShaderInfoLog(shader, maxLength, &length, log); TRACELOG(LOG_WARNING, "SHADER: [ID %i] Compile error: %s", shader, log); RL_FREE(log); } } else { switch (type) { case GL_VERTEX_SHADER: TRACELOG(LOG_INFO, "SHADER: [ID %i] Vertex shader compiled successfully", shader); break; case GL_FRAGMENT_SHADER: TRACELOG(LOG_INFO, "SHADER: [ID %i] Fragment shader compiled successfully", shader); break; //case GL_GEOMETRY_SHADER: //case GL_COMPUTE_SHADER: default: break; } } #endif return shader; } // Load custom shader strings and return program id unsigned int rlLoadShaderProgram(unsigned int vShaderId, unsigned int fShaderId) { unsigned int program = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLint success = 0; program = glCreateProgram(); glAttachShader(program, vShaderId); glAttachShader(program, fShaderId); // NOTE: Default attribute shader locations must be binded before linking glBindAttribLocation(program, 0, DEFAULT_SHADER_ATTRIB_NAME_POSITION); glBindAttribLocation(program, 1, DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD); glBindAttribLocation(program, 2, DEFAULT_SHADER_ATTRIB_NAME_NORMAL); glBindAttribLocation(program, 3, DEFAULT_SHADER_ATTRIB_NAME_COLOR); glBindAttribLocation(program, 4, DEFAULT_SHADER_ATTRIB_NAME_TANGENT); glBindAttribLocation(program, 5, DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2); // NOTE: If some attrib name is no found on the shader, it locations becomes -1 glLinkProgram(program); // NOTE: All uniform variables are intitialised to 0 when a program links glGetProgramiv(program, GL_LINK_STATUS, &success); if (success == GL_FALSE) { TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to link shader program", program); int maxLength = 0; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength); if (maxLength > 0) { int length = 0; char *log = RL_CALLOC(maxLength, sizeof(char)); glGetProgramInfoLog(program, maxLength, &length, log); TRACELOG(LOG_WARNING, "SHADER: [ID %i] Link error: %s", program, log); RL_FREE(log); } glDeleteProgram(program); program = 0; } else TRACELOG(LOG_INFO, "SHADER: [ID %i] Program shader loaded successfully", program); #endif return program; } // Unload shader program void rlUnloadShaderProgram(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDeleteProgram(id); TRACELOG(LOG_INFO, "SHADER: [ID %i] Unloaded shader program data from VRAM (GPU)", id); #endif } // Get shader location uniform int rlGetLocationUniform(unsigned int shaderId, const char *uniformName) { int location = -1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) location = glGetUniformLocation(shaderId, uniformName); if (location == -1) TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader uniform: %s", shaderId, uniformName); else TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader uniform (%s) set at location: %i", shaderId, uniformName, location); #endif return location; } // Get shader location attribute int rlGetLocationAttrib(unsigned int shaderId, const char *attribName) { int location = -1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) location = glGetAttribLocation(shaderId, attribName); if (location == -1) TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader attribute: %s", shaderId, attribName); else TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader attribute (%s) set at location: %i", shaderId, attribName, location); #endif return location; } // Set shader value uniform void rlSetUniform(int locIndex, const void *value, int uniformType, int count) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) switch (uniformType) { case SHADER_UNIFORM_FLOAT: glUniform1fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_VEC2: glUniform2fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_VEC3: glUniform3fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_VEC4: glUniform4fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_INT: glUniform1iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_IVEC2: glUniform2iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_IVEC3: glUniform3iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_IVEC4: glUniform4iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_SAMPLER2D: glUniform1iv(locIndex, count, (int *)value); break; default: TRACELOG(LOG_WARNING, "SHADER: Failed to set uniform value, data type not recognized"); } #endif } // Set shader value attribute void rlSetVertexAttributeDefault(int locIndex, const void *value, int attribType, int count) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) switch (attribType) { case SHADER_ATTRIB_FLOAT: if (count == 1) glVertexAttrib1fv(locIndex, (float *)value); break; case SHADER_ATTRIB_VEC2: if (count == 2) glVertexAttrib2fv(locIndex, (float *)value); break; case SHADER_ATTRIB_VEC3: if (count == 3) glVertexAttrib3fv(locIndex, (float *)value); break; case SHADER_ATTRIB_VEC4: if (count == 4) glVertexAttrib4fv(locIndex, (float *)value); break; default: TRACELOG(LOG_WARNING, "SHADER: Failed to set attrib default value, data type not recognized"); } #endif } // Set shader value uniform matrix void rlSetUniformMatrix(int locIndex, Matrix mat) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUniformMatrix4fv(locIndex, 1, false, MatrixToFloat(mat)); #endif } // Set shader value uniform sampler void rlSetUniformSampler(int locIndex, unsigned int textureId) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Check if texture is already active for (int i = 0; i < MAX_BATCH_ACTIVE_TEXTURES; i++) if (RLGL.State.activeTextureId[i] == textureId) return; // Register a new active texture for the internal batch system // NOTE: Default texture is always activated as GL_TEXTURE0 for (int i = 0; i < MAX_BATCH_ACTIVE_TEXTURES; i++) { if (RLGL.State.activeTextureId[i] == 0) { glUniform1i(locIndex, 1 + i); // Activate new texture unit RLGL.State.activeTextureId[i] = textureId; // Save texture id for binding on drawing break; } } #endif } // Set shader currently active void rlSetShader(Shader shader) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (RLGL.State.currentShader.id != shader.id) { rlDrawRenderBatch(RLGL.currentBatch); RLGL.State.currentShader = shader; } #endif } // Matrix state management //----------------------------------------------------------------------------------------- // Return internal modelview matrix Matrix rlGetMatrixModelview(void) { Matrix matrix = MatrixIdentity(); #if defined(GRAPHICS_API_OPENGL_11) float mat[16]; glGetFloatv(GL_MODELVIEW_MATRIX, mat); matrix.m0 = mat[0]; matrix.m1 = mat[1]; matrix.m2 = mat[2]; matrix.m3 = mat[3]; matrix.m4 = mat[4]; matrix.m5 = mat[5]; matrix.m6 = mat[6]; matrix.m7 = mat[7]; matrix.m8 = mat[8]; matrix.m9 = mat[9]; matrix.m10 = mat[10]; matrix.m11 = mat[11]; matrix.m12 = mat[12]; matrix.m13 = mat[13]; matrix.m14 = mat[14]; matrix.m15 = mat[15]; #else matrix = RLGL.State.modelview; #endif return matrix; } // Return internal projection matrix Matrix rlGetMatrixProjection(void) { #if defined(GRAPHICS_API_OPENGL_11) float mat[16]; glGetFloatv(GL_PROJECTION_MATRIX,mat); Matrix m; m.m0 = mat[0]; m.m1 = mat[1]; m.m2 = mat[2]; m.m3 = mat[3]; m.m4 = mat[4]; m.m5 = mat[5]; m.m6 = mat[6]; m.m7 = mat[7]; m.m8 = mat[8]; m.m9 = mat[9]; m.m10 = mat[10]; m.m11 = mat[11]; m.m12 = mat[12]; m.m13 = mat[13]; m.m14 = mat[14]; m.m15 = mat[15]; return m; #else return RLGL.State.projection; #endif } // Get internal accumulated transform matrix Matrix rlGetMatrixTransform(void) { Matrix mat = MatrixIdentity(); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // TODO: Consider possible transform matrices in the RLGL.State.stack // Is this the right order? or should we start with the first stored matrix instead of the last one? //Matrix matStackTransform = MatrixIdentity(); //for (int i = RLGL.State.stackCounter; i > 0; i--) matStackTransform = MatrixMultiply(RLGL.State.stack[i], matStackTransform); mat = RLGL.State.transform; #endif return mat; } // Get internal projection matrix for stereo render (selected eye) RLAPI Matrix rlGetMatrixProjectionStereo(int eye) { Matrix mat = MatrixIdentity(); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) mat = RLGL.State.projectionStereo[eye]; #endif return mat; } // Get internal view offset matrix for stereo render (selected eye) RLAPI Matrix rlGetMatrixViewOffsetStereo(int eye) { Matrix mat = MatrixIdentity(); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) mat = RLGL.State.viewOffsetStereo[eye]; #endif return mat; } // Set a custom modelview matrix (replaces internal modelview matrix) void rlSetMatrixModelview(Matrix view) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.modelview = view; #endif } // Set a custom projection matrix (replaces internal projection matrix) void rlSetMatrixProjection(Matrix projection) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.projection = projection; #endif } // Set eyes projection matrices for stereo rendering void rlSetMatrixProjectionStereo(Matrix right, Matrix left) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.projectionStereo[0] = right; RLGL.State.projectionStereo[1] = left; #endif } // Set eyes view offsets matrices for stereo rendering void rlSetMatrixViewOffsetStereo(Matrix right, Matrix left) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) RLGL.State.viewOffsetStereo[0] = right; RLGL.State.viewOffsetStereo[1] = left; #endif } // Load and draw a 1x1 XY quad in NDC void rlLoadDrawQuad(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int quadVAO = 0; unsigned int quadVBO = 0; float vertices[] = { // Positions Texcoords -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, }; // Gen VAO to contain VBO glGenVertexArrays(1, &quadVAO); glBindVertexArray(quadVAO); // Gen and fill vertex buffer (VBO) glGenBuffers(1, &quadVBO); glBindBuffer(GL_ARRAY_BUFFER, quadVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), &vertices, GL_STATIC_DRAW); // Bind vertex attributes (position, texcoords) glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)0); // Positions glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)(3*sizeof(float))); // Texcoords // Draw quad glBindVertexArray(quadVAO); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindVertexArray(0); // Delete buffers (VBO and VAO) glDeleteBuffers(1, &quadVBO); glDeleteVertexArrays(1, &quadVAO); #endif } // Load and draw a 1x1 3D cube in NDC void rlLoadDrawCube(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int cubeVAO = 0; unsigned int cubeVBO = 0; float vertices[] = { // Positions Normals Texcoords -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, -1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f }; // Gen VAO to contain VBO glGenVertexArrays(1, &cubeVAO); glBindVertexArray(cubeVAO); // Gen and fill vertex buffer (VBO) glGenBuffers(1, &cubeVBO); glBindBuffer(GL_ARRAY_BUFFER, cubeVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // Bind vertex attributes (position, normals, texcoords) glBindVertexArray(cubeVAO); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)0); // Positions glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(3*sizeof(float))); // Normals glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(6*sizeof(float))); // Texcoords glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); // Draw cube glBindVertexArray(cubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); glBindVertexArray(0); // Delete VBO and VAO glDeleteBuffers(1, &cubeVBO); glDeleteVertexArrays(1, &cubeVAO); #endif } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Load default shader (just vertex positioning and texture coloring) // NOTE: This shader program is used for internal buffers // NOTE: It uses global variable: RLGL.State.defaultShader static void rlLoadShaderDefault(void) { RLGL.State.defaultShader.locs = (int *)RL_CALLOC(MAX_SHADER_LOCATIONS, sizeof(int)); // NOTE: All locations must be reseted to -1 (no location) for (int i = 0; i < MAX_SHADER_LOCATIONS; i++) RLGL.State.defaultShader.locs[i] = -1; // Vertex shader directly defined, no external file required const char *vShaderDefault = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec4 vertexColor; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec3 vertexPosition; \n" "in vec2 vertexTexCoord; \n" "in vec4 vertexColor; \n" "out vec2 fragTexCoord; \n" "out vec4 fragColor; \n" #endif #if defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec4 vertexColor; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #endif "uniform mat4 mvp; \n" "void main() \n" "{ \n" " fragTexCoord = vertexTexCoord; \n" " fragColor = vertexColor; \n" " gl_Position = mvp*vec4(vertexPosition, 1.0); \n" "} \n"; // Fragment shader directly defined, no external file required const char *fShaderDefault = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" " vec4 texelColor = texture2D(texture0, fragTexCoord); \n" " gl_FragColor = texelColor*colDiffuse*fragColor; \n" "} \n"; #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec2 fragTexCoord; \n" "in vec4 fragColor; \n" "out vec4 finalColor; \n" "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" " vec4 texelColor = texture(texture0, fragTexCoord); \n" " finalColor = texelColor*colDiffuse*fragColor; \n" "} \n"; #endif #if defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" "precision mediump float; \n" // Precision required for OpenGL ES2 (WebGL) "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" " vec4 texelColor = texture2D(texture0, fragTexCoord); \n" " gl_FragColor = texelColor*colDiffuse*fragColor; \n" "} \n"; #endif // NOTE: Compiled vertex/fragment shaders are kept for re-use RLGL.State.defaultVShaderId = rlCompileShader(vShaderDefault, GL_VERTEX_SHADER); // Compile default vertex shader RLGL.State.defaultFShaderId = rlCompileShader(fShaderDefault, GL_FRAGMENT_SHADER); // Compile default fragment shader RLGL.State.defaultShader.id = rlLoadShaderProgram(RLGL.State.defaultVShaderId, RLGL.State.defaultFShaderId); if (RLGL.State.defaultShader.id > 0) { TRACELOG(LOG_INFO, "SHADER: [ID %i] Default shader loaded successfully", RLGL.State.defaultShader.id); // Set default shader locations: attributes locations RLGL.State.defaultShader.locs[SHADER_LOC_VERTEX_POSITION] = glGetAttribLocation(RLGL.State.defaultShader.id, "vertexPosition"); RLGL.State.defaultShader.locs[SHADER_LOC_VERTEX_TEXCOORD01] = glGetAttribLocation(RLGL.State.defaultShader.id, "vertexTexCoord"); RLGL.State.defaultShader.locs[SHADER_LOC_VERTEX_COLOR] = glGetAttribLocation(RLGL.State.defaultShader.id, "vertexColor"); // Set default shader locations: uniform locations RLGL.State.defaultShader.locs[SHADER_LOC_MATRIX_MVP] = glGetUniformLocation(RLGL.State.defaultShader.id, "mvp"); RLGL.State.defaultShader.locs[SHADER_LOC_COLOR_DIFFUSE] = glGetUniformLocation(RLGL.State.defaultShader.id, "colDiffuse"); RLGL.State.defaultShader.locs[SHADER_LOC_MAP_DIFFUSE] = glGetUniformLocation(RLGL.State.defaultShader.id, "texture0"); } else TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to load default shader", RLGL.State.defaultShader.id); } // Unload default shader // NOTE: It uses global variable: RLGL.State.defaultShader static void rlUnloadShaderDefault(void) { glUseProgram(0); glDetachShader(RLGL.State.defaultShader.id, RLGL.State.defaultVShaderId); glDetachShader(RLGL.State.defaultShader.id, RLGL.State.defaultFShaderId); glDeleteShader(RLGL.State.defaultVShaderId); glDeleteShader(RLGL.State.defaultFShaderId); glDeleteProgram(RLGL.State.defaultShader.id); RL_FREE(RLGL.State.defaultShader.locs); TRACELOG(LOG_INFO, "SHADER: [ID %i] Default shader unloaded successfully", RLGL.State.defaultShader.id); } #if defined(SUPPORT_GL_DETAILS_INFO) // Get compressed format official GL identifier name static char *rlGetCompressedFormatName(int format) { static char compName[64] = { 0 }; memset(compName, 0, 64); switch (format) { // GL_EXT_texture_compression_s3tc case 0x83F0: strcpy(compName, "GL_COMPRESSED_RGB_S3TC_DXT1_EXT"); break; case 0x83F1: strcpy(compName, "GL_COMPRESSED_RGBA_S3TC_DXT1_EXT"); break; case 0x83F2: strcpy(compName, "GL_COMPRESSED_RGBA_S3TC_DXT3_EXT"); break; case 0x83F3: strcpy(compName, "GL_COMPRESSED_RGBA_S3TC_DXT5_EXT"); break; // GL_3DFX_texture_compression_FXT1 case 0x86B0: strcpy(compName, "GL_COMPRESSED_RGB_FXT1_3DFX"); break; case 0x86B1: strcpy(compName, "GL_COMPRESSED_RGBA_FXT1_3DFX"); break; // GL_IMG_texture_compression_pvrtc case 0x8C00: strcpy(compName, "GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG"); break; case 0x8C01: strcpy(compName, "GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG"); break; case 0x8C02: strcpy(compName, "GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG"); break; case 0x8C03: strcpy(compName, "GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG"); break; // GL_OES_compressed_ETC1_RGB8_texture case 0x8D64: strcpy(compName, "GL_ETC1_RGB8_OES"); break; // GL_ARB_texture_compression_rgtc case 0x8DBB: strcpy(compName, "GL_COMPRESSED_RED_RGTC1"); break; case 0x8DBC: strcpy(compName, "GL_COMPRESSED_SIGNED_RED_RGTC1"); break; case 0x8DBD: strcpy(compName, "GL_COMPRESSED_RG_RGTC2"); break; case 0x8DBE: strcpy(compName, "GL_COMPRESSED_SIGNED_RG_RGTC2"); break; // GL_ARB_texture_compression_bptc case 0x8E8C: strcpy(compName, "GL_COMPRESSED_RGBA_BPTC_UNORM_ARB"); break; case 0x8E8D: strcpy(compName, "GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB"); break; case 0x8E8E: strcpy(compName, "GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB"); break; case 0x8E8F: strcpy(compName, "GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB"); break; // GL_ARB_ES3_compatibility case 0x9274: strcpy(compName, "GL_COMPRESSED_RGB8_ETC2"); break; case 0x9275: strcpy(compName, "GL_COMPRESSED_SRGB8_ETC2"); break; case 0x9276: strcpy(compName, "GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2"); break; case 0x9277: strcpy(compName, "GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2"); break; case 0x9278: strcpy(compName, "GL_COMPRESSED_RGBA8_ETC2_EAC"); break; case 0x9279: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC"); break; case 0x9270: strcpy(compName, "GL_COMPRESSED_R11_EAC"); break; case 0x9271: strcpy(compName, "GL_COMPRESSED_SIGNED_R11_EAC"); break; case 0x9272: strcpy(compName, "GL_COMPRESSED_RG11_EAC"); break; case 0x9273: strcpy(compName, "GL_COMPRESSED_SIGNED_RG11_EAC"); break; // GL_KHR_texture_compression_astc_hdr case 0x93B0: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_4x4_KHR"); break; case 0x93B1: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_5x4_KHR"); break; case 0x93B2: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_5x5_KHR"); break; case 0x93B3: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_6x5_KHR"); break; case 0x93B4: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_6x6_KHR"); break; case 0x93B5: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_8x5_KHR"); break; case 0x93B6: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_8x6_KHR"); break; case 0x93B7: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_8x8_KHR"); break; case 0x93B8: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_10x5_KHR"); break; case 0x93B9: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_10x6_KHR"); break; case 0x93BA: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_10x8_KHR"); break; case 0x93BB: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_10x10_KHR"); break; case 0x93BC: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_12x10_KHR"); break; case 0x93BD: strcpy(compName, "GL_COMPRESSED_RGBA_ASTC_12x12_KHR"); break; case 0x93D0: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR"); break; case 0x93D1: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR"); break; case 0x93D2: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR"); break; case 0x93D3: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR"); break; case 0x93D4: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR"); break; case 0x93D5: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR"); break; case 0x93D6: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR"); break; case 0x93D7: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR"); break; case 0x93D8: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR"); break; case 0x93D9: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR"); break; case 0x93DA: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR"); break; case 0x93DB: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR"); break; case 0x93DC: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR"); break; case 0x93DD: strcpy(compName, "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR"); break; default: strcpy(compName, "GL_COMPRESSED_UNKNOWN"); break; } return compName; } #endif // SUPPORT_GL_DETAILS_INFO #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 #if defined(GRAPHICS_API_OPENGL_11) // Mipmaps data is generated after image data // NOTE: Only works with RGBA (4 bytes) data! static int rlGenerateMipmapsData(unsigned char *data, int baseWidth, int baseHeight) { int mipmapCount = 1; // Required mipmap levels count (including base level) int width = baseWidth; int height = baseHeight; int size = baseWidth*baseHeight*4; // Size in bytes (will include mipmaps...), RGBA only // Count mipmap levels required while ((width != 1) && (height != 1)) { width /= 2; height /= 2; TRACELOGD("TEXTURE: Next mipmap size: %i x %i", width, height); mipmapCount++; size += (width*height*4); // Add mipmap size (in bytes) } TRACELOGD("TEXTURE: Total mipmaps required: %i", mipmapCount); TRACELOGD("TEXTURE: Total size of data required: %i", size); unsigned char *temp = RL_REALLOC(data, size); if (temp != NULL) data = temp; else TRACELOG(LOG_WARNING, "TEXTURE: Failed to re-allocate required mipmaps memory"); width = baseWidth; height = baseHeight; size = (width*height*4); // Generate mipmaps // NOTE: Every mipmap data is stored after data Color *image = (Color *)RL_MALLOC(width*height*sizeof(Color)); Color *mipmap = NULL; int offset = 0; int j = 0; for (int i = 0; i < size; i += 4) { image[j].r = data[i]; image[j].g = data[i + 1]; image[j].b = data[i + 2]; image[j].a = data[i + 3]; j++; } TRACELOGD("TEXTURE: Mipmap base size (%ix%i)", width, height); for (int mip = 1; mip < mipmapCount; mip++) { mipmap = rlGenNextMipmapData(image, width, height); offset += (width*height*4); // Size of last mipmap j = 0; width /= 2; height /= 2; size = (width*height*4); // Mipmap size to store after offset // Add mipmap to data for (int i = 0; i < size; i += 4) { data[offset + i] = mipmap[j].r; data[offset + i + 1] = mipmap[j].g; data[offset + i + 2] = mipmap[j].b; data[offset + i + 3] = mipmap[j].a; j++; } RL_FREE(image); image = mipmap; mipmap = NULL; } RL_FREE(mipmap); // free mipmap data return mipmapCount; } // Manual mipmap generation (basic scaling algorithm) static Color *rlGenNextMipmapData(Color *srcData, int srcWidth, int srcHeight) { int x2, y2; Color prow, pcol; int width = srcWidth/2; int height = srcHeight/2; Color *mipmap = (Color *)RL_MALLOC(width*height*sizeof(Color)); // Scaling algorithm works perfectly (box-filter) for (int y = 0; y < height; y++) { y2 = 2*y; for (int x = 0; x < width; x++) { x2 = 2*x; prow.r = (srcData[y2*srcWidth + x2].r + srcData[y2*srcWidth + x2 + 1].r)/2; prow.g = (srcData[y2*srcWidth + x2].g + srcData[y2*srcWidth + x2 + 1].g)/2; prow.b = (srcData[y2*srcWidth + x2].b + srcData[y2*srcWidth + x2 + 1].b)/2; prow.a = (srcData[y2*srcWidth + x2].a + srcData[y2*srcWidth + x2 + 1].a)/2; pcol.r = (srcData[(y2+1)*srcWidth + x2].r + srcData[(y2+1)*srcWidth + x2 + 1].r)/2; pcol.g = (srcData[(y2+1)*srcWidth + x2].g + srcData[(y2+1)*srcWidth + x2 + 1].g)/2; pcol.b = (srcData[(y2+1)*srcWidth + x2].b + srcData[(y2+1)*srcWidth + x2 + 1].b)/2; pcol.a = (srcData[(y2+1)*srcWidth + x2].a + srcData[(y2+1)*srcWidth + x2 + 1].a)/2; mipmap[y*width + x].r = (prow.r + pcol.r)/2; mipmap[y*width + x].g = (prow.g + pcol.g)/2; mipmap[y*width + x].b = (prow.b + pcol.b)/2; mipmap[y*width + x].a = (prow.a + pcol.a)/2; } } TRACELOGD("TEXTURE: Mipmap generated successfully (%ix%i)", width, height); return mipmap; } #endif // GRAPHICS_API_OPENGL_11 // Get pixel data size in bytes (image or texture) // NOTE: Size depends on pixel format static int rlGetPixelDataSize(int width, int height, int format) { int dataSize = 0; // Size in bytes int bpp = 0; // Bits per pixel switch (format) { case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: bpp = 8; break; case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: case PIXELFORMAT_UNCOMPRESSED_R5G6B5: case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: bpp = 16; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: bpp = 32; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8: bpp = 24; break; case PIXELFORMAT_UNCOMPRESSED_R32: bpp = 32; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32: bpp = 32*3; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break; case PIXELFORMAT_COMPRESSED_DXT1_RGB: case PIXELFORMAT_COMPRESSED_DXT1_RGBA: case PIXELFORMAT_COMPRESSED_ETC1_RGB: case PIXELFORMAT_COMPRESSED_ETC2_RGB: case PIXELFORMAT_COMPRESSED_PVRT_RGB: case PIXELFORMAT_COMPRESSED_PVRT_RGBA: bpp = 4; break; case PIXELFORMAT_COMPRESSED_DXT3_RGBA: case PIXELFORMAT_COMPRESSED_DXT5_RGBA: case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA: case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break; case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break; default: break; } dataSize = width*height*bpp/8; // Total data size in bytes // Most compressed formats works on 4x4 blocks, // if texture is smaller, minimum dataSize is 8 or 16 if ((width < 4) && (height < 4)) { if ((format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) && (format < PIXELFORMAT_COMPRESSED_DXT3_RGBA)) dataSize = 8; else if ((format >= PIXELFORMAT_COMPRESSED_DXT3_RGBA) && (format < PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA)) dataSize = 16; } return dataSize; } #endif // RLGL_IMPLEMENTATION