/********************************************************************************************** * * rmem - raylib memory pool and objects pool * * A quick, efficient, and minimal free list and stack-based allocator * * PURPOSE: * - A quicker, efficient memory allocator alternative to 'malloc' and friends. * - Reduce the possibilities of memory leaks for beginner developers using Raylib. * - Being able to flexibly range check memory if necessary. * * CONFIGURATION: * * #define RMEM_IMPLEMENTATION * Generates the implementation of the library into the included file. * If not defined, the library is in header only mode and can be included in other headers * or source files without problems. But only ONE file should hold the implementation. * * * LICENSE: zlib/libpng * * Copyright (c) 2019 Kevin 'Assyrianic' Yonan (@assyrianic) and reviewed by Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #ifndef RMEM_H #define RMEM_H #include #include //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED) #define RMEMAPI __declspec(dllexport) // We are building library as a Win32 shared library (.dll) #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED) #define RMEMAPI __declspec(dllimport) // We are using library as a Win32 shared library (.dll) #else #define RMEMAPI // We are building or using library as a static library (or Linux shared library) #endif //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // Memory Pool typedef struct MemNode MemNode; struct MemNode { size_t size; MemNode *next, *prev; }; typedef struct AllocList { MemNode *head, *tail; size_t len, maxNodes; bool autoDefrag : 1; } AllocList; typedef struct Stack { uint8_t *mem, *base; size_t size; } Stack; #define MEMPOOL_BUCKET_SIZE 8 #define MEMPOOL_BUCKET_BITS 3 typedef struct MemPool { AllocList freeList; Stack stack; MemNode *buckets[MEMPOOL_BUCKET_SIZE]; } MemPool; // Object Pool typedef struct ObjPool { Stack stack; size_t objSize, freeBlocks; } ObjPool; // Double-Ended Stack aka Deque typedef struct BiStack { uint8_t *mem, *front, *back; size_t size; } BiStack; #if defined(__cplusplus) extern "C" { // Prevents name mangling of functions #endif //------------------------------------------------------------------------------------ // Functions Declaration - Memory Pool //------------------------------------------------------------------------------------ RMEMAPI MemPool CreateMemPool(size_t bytes); RMEMAPI MemPool CreateMemPoolFromBuffer(void *buf, size_t bytes); RMEMAPI void DestroyMemPool(MemPool *mempool); RMEMAPI void *MemPoolAlloc(MemPool *mempool, size_t bytes); RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes); RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr); RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref); RMEMAPI void MemPoolReset(MemPool *mempool); RMEMAPI bool MemPoolDefrag(MemPool *mempool); RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool); RMEMAPI void ToggleMemPoolAutoDefrag(MemPool *mempool); //------------------------------------------------------------------------------------ // Functions Declaration - Object Pool //------------------------------------------------------------------------------------ RMEMAPI ObjPool CreateObjPool(size_t objsize, size_t len); RMEMAPI ObjPool CreateObjPoolFromBuffer(void *buf, size_t objsize, size_t len); RMEMAPI void DestroyObjPool(ObjPool *objpool); RMEMAPI void *ObjPoolAlloc(ObjPool *objpool); RMEMAPI void ObjPoolFree(ObjPool *objpool, void *ptr); RMEMAPI void ObjPoolCleanUp(ObjPool *objpool, void **ptrref); //------------------------------------------------------------------------------------ // Functions Declaration - Double-Ended Stack //------------------------------------------------------------------------------------ RMEMAPI BiStack CreateBiStack(size_t len); RMEMAPI BiStack CreateBiStackFromBuffer(void *buf, size_t len); RMEMAPI void DestroyBiStack(BiStack *destack); RMEMAPI void *BiStackAllocFront(BiStack *destack, size_t len); RMEMAPI void *BiStackAllocBack(BiStack *destack, size_t len); RMEMAPI void BiStackResetFront(BiStack *destack); RMEMAPI void BiStackResetBack(BiStack *destack); RMEMAPI void BiStackResetAll(BiStack *destack); RMEMAPI intptr_t BiStackMargins(BiStack destack); #ifdef __cplusplus } #endif #endif // RMEM_H /*********************************************************************************** * * RMEM IMPLEMENTATION * ************************************************************************************/ #if defined(RMEM_IMPLEMENTATION) #include // Required for: malloc(), calloc(), free() //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- // Make sure restrict type qualifier for pointers is defined // NOTE: Not supported by C++, it is a C only keyword #if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER) #ifndef restrict #define restrict __restrict #endif #endif //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- static inline size_t __AlignSize(const size_t size, const size_t align) { return (size + (align - 1)) & -align; } //---------------------------------------------------------------------------------- // Module Functions Definition - Memory Pool //---------------------------------------------------------------------------------- MemPool CreateMemPool(const size_t size) { MemPool mempool = { 0 }; if (size == 0UL) return mempool; else { // Align the mempool size to at least the size of an alloc node. mempool.stack.size = size; mempool.stack.mem = malloc(mempool.stack.size*sizeof *mempool.stack.mem); if (mempool.stack.mem == NULL) { mempool.stack.size = 0UL; return mempool; } else { mempool.stack.base = mempool.stack.mem + mempool.stack.size; return mempool; } } } MemPool CreateMemPoolFromBuffer(void *buf, const size_t size) { MemPool mempool = { 0 }; if ((size == 0UL) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool; else { mempool.stack.size = size; mempool.stack.mem = buf; mempool.stack.base = mempool.stack.mem + mempool.stack.size; return mempool; } } void DestroyMemPool(MemPool *const mempool) { if ((mempool == NULL) || (mempool->stack.mem == NULL)) return; else { free(mempool->stack.mem); *mempool = (MemPool){ 0 }; } } void *MemPoolAlloc(MemPool *const mempool, const size_t size) { if ((mempool == NULL) || (size == 0UL) || (size > mempool->stack.size)) return NULL; else { MemNode *new_mem = NULL; const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t)); const size_t BUCKET_INDEX = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1; // If the size is small enough, let's check if our buckets has a fitting memory block. if ((BUCKET_INDEX < MEMPOOL_BUCKET_SIZE) && (mempool->buckets[BUCKET_INDEX] != NULL) && (mempool->buckets[BUCKET_INDEX]->size >= ALLOC_SIZE)) { new_mem = mempool->buckets[BUCKET_INDEX]; mempool->buckets[BUCKET_INDEX] = mempool->buckets[BUCKET_INDEX]->next; if( mempool->buckets[BUCKET_INDEX] != NULL ) mempool->buckets[BUCKET_INDEX]->prev = NULL; } else if (mempool->freeList.head != NULL) { const size_t MEM_SPLIT_THRESHOLD = 16; // If the freelist is valid, let's allocate FROM the freelist then! for (MemNode *inode = mempool->freeList.head; inode != NULL; inode = inode->next) { if (inode->size < ALLOC_SIZE) continue; else if (inode->size <= (ALLOC_SIZE + MEM_SPLIT_THRESHOLD)) { // Close in size - reduce fragmentation by not splitting. new_mem = inode; (inode->prev != NULL)? (inode->prev->next = inode->next) : (mempool->freeList.head = inode->next); (inode->next != NULL)? (inode->next->prev = inode->prev) : (mempool->freeList.tail = inode->prev); if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL; else mempool->freeList.tail = NULL; if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL; mempool->freeList.len--; break; } else { // Split the memory chunk. new_mem = (MemNode *)((uint8_t *)inode + (inode->size - ALLOC_SIZE)); inode->size -= ALLOC_SIZE; new_mem->size = ALLOC_SIZE; break; } } } if (new_mem == NULL) { // not enough memory to support the size! if ((mempool->stack.base - ALLOC_SIZE) < mempool->stack.mem) return NULL; else { // Couldn't allocate from a freelist, allocate from available mempool. // Subtract allocation size from the mempool. mempool->stack.base -= ALLOC_SIZE; // Use the available mempool space as the new node. new_mem = (MemNode *)mempool->stack.base; new_mem->size = ALLOC_SIZE; } } // Visual of the allocation block. // -------------- // | mem size | lowest addr of block // | next node | 12 byte (32-bit) header // | prev node | 24 byte (64-bit) header // -------------- // | alloc'd | // | memory | // | space | highest addr of block // -------------- new_mem->next = new_mem->prev = NULL; uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem; return memset(final_mem, 0, new_mem->size - sizeof *new_mem); } } void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t size) { if ((mempool == NULL) || (size > mempool->stack.size)) return NULL; // NULL ptr should make this work like regular Allocation. else if (ptr == NULL) return MemPoolAlloc(mempool, size); else if ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem) return NULL; else { MemNode *const node = (MemNode *)((uint8_t *)ptr - sizeof *node); const size_t NODE_SIZE = sizeof *node; uint8_t *const resized_block = MemPoolAlloc(mempool, size); if (resized_block == NULL) return NULL; else { MemNode *const resized = (MemNode *)(resized_block - sizeof *resized); memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE)); MemPoolFree(mempool, ptr); return resized_block; } } } void MemPoolFree(MemPool *const restrict mempool, void *ptr) { if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem)) return; else { // Behind the actual pointer data is the allocation info. MemNode *const mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node); const size_t BUCKET_INDEX = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1; // Make sure the pointer data is valid. if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) || (((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size) || (mem_node->size == 0UL) || (mem_node->size > mempool->stack.size)) return; // If the mem_node is right at the stack base ptr, then add it to the stack. else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base) { mempool->stack.base += mem_node->size; } // attempted stack merge failed, try to place it into the memnode buckets else if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE) { if (mempool->buckets[BUCKET_INDEX] == NULL) mempool->buckets[BUCKET_INDEX] = mem_node; else { for (MemNode *n = mempool->buckets[BUCKET_INDEX]; n != NULL; n = n->next) if( n==mem_node ) return; mempool->buckets[BUCKET_INDEX]->prev = mem_node; mem_node->next = mempool->buckets[BUCKET_INDEX]; mempool->buckets[BUCKET_INDEX] = mem_node; } } // Otherwise, we add it to the free list. // We also check if the freelist already has the pointer so we can prevent double frees. else /*if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))*/ { for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return; // This code insertion sorts where largest size is last. if (mempool->freeList.head == NULL) { mempool->freeList.head = mempool->freeList.tail = mem_node; mempool->freeList.len++; } else if (mempool->freeList.head->size >= mem_node->size) { mem_node->next = mempool->freeList.head; mem_node->next->prev = mem_node; mempool->freeList.head = mem_node; mempool->freeList.len++; } else //if (mempool->freeList.tail->size <= mem_node->size) { mem_node->prev = mempool->freeList.tail; mempool->freeList.tail->next = mem_node; mempool->freeList.tail = mem_node; mempool->freeList.len++; } if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool); } } } void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref) { if ((mempool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return; else { MemPoolFree(mempool, *ptrref); *ptrref = NULL; } } size_t GetMemPoolFreeMemory(const MemPool mempool) { size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem; for (MemNode *n = mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size; for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i]; n != NULL; n = n->next) total_remaining += n->size; return total_remaining; } void MemPoolReset(MemPool *const mempool) { if (mempool == NULL) return; mempool->freeList.head = mempool->freeList.tail = NULL; mempool->freeList.len = 0; for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++) mempool->buckets[i] = NULL; mempool->stack.base = mempool->stack.mem + mempool->stack.size; } bool MemPoolDefrag(MemPool *const mempool) { if (mempool == NULL) return false; else { // If the memory pool has been entirely released, fully defrag it. if (mempool->stack.size == GetMemPoolFreeMemory(*mempool)) { MemPoolReset(mempool); return true; } else { for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++) { while (mempool->buckets[i] != NULL) { if ((uintptr_t)mempool->buckets[i] == (uintptr_t)mempool->stack.base) { mempool->stack.base += mempool->buckets[i]->size; mempool->buckets[i]->size = 0; mempool->buckets[i] = mempool->buckets[i]->next; if (mempool->buckets[i] != NULL) mempool->buckets[i]->prev = NULL; } else break; } } const size_t PRE_DEFRAG_LEN = mempool->freeList.len; MemNode **node = &mempool->freeList.head; while (*node != NULL) { if ((uintptr_t)*node == (uintptr_t)mempool->stack.base) { // If node is right at the stack, merge it back into the stack. mempool->stack.base += (*node)->size; (*node)->size = 0UL; ((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (mempool->freeList.head = (*node)->next); ((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (mempool->freeList.tail = (*node)->prev); if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL; else mempool->freeList.tail = NULL; if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL; mempool->freeList.len--; node = &mempool->freeList.head; } else if (((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->next) { // Next node is at a higher address. (*node)->size += (*node)->next->size; (*node)->next->size = 0UL; // <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]-> // // |--------------------| // <-[P Curr N]-> <-[P Next N]-> [P NextNext N]-> if ((*node)->next->next != NULL) (*node)->next->next->prev = *node; // <-[P Curr N]-> <-[P NextNext N]-> (*node)->next = (*node)->next->next; mempool->freeList.len--; node = &mempool->freeList.head; } else if ((((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->prev) && ((*node)->prev->prev != NULL)) { // Prev node is at a higher address. (*node)->size += (*node)->prev->size; (*node)->prev->size = 0UL; // <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]-> // // |--------------------| // <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]-> (*node)->prev->prev->next = *node; // <-[P PrevPrev N]-> <-[P Curr N]-> (*node)->prev = (*node)->prev->prev; mempool->freeList.len--; node = &mempool->freeList.head; } else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next) { // Next node is at a lower address. (*node)->next->size += (*node)->size; (*node)->size = 0UL; (*node)->next->prev = (*node)->prev; (*node)->prev->next = (*node)->next; *node = (*node)->next; mempool->freeList.len--; node = &mempool->freeList.head; } else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev) { // Prev node is at a lower address. (*node)->prev->size += (*node)->size; (*node)->size = 0UL; (*node)->next->prev = (*node)->prev; (*node)->prev->next = (*node)->next; *node = (*node)->prev; mempool->freeList.len--; node = &mempool->freeList.head; } else { node = &(*node)->next; } } return PRE_DEFRAG_LEN > mempool->freeList.len; } } } void ToggleMemPoolAutoDefrag(MemPool *const mempool) { if (mempool == NULL) return; else mempool->freeList.autoDefrag ^= true; } //---------------------------------------------------------------------------------- // Module Functions Definition - Object Pool //---------------------------------------------------------------------------------- union ObjInfo { uint8_t *const byte; size_t *const index; }; ObjPool CreateObjPool(const size_t objsize, const size_t len) { ObjPool objpool = { 0 }; if ((len == 0UL) || (objsize == 0UL)) return objpool; else { objpool.objSize = __AlignSize(objsize, sizeof(size_t)); objpool.stack.size = objpool.freeBlocks = len; objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize); if (objpool.stack.mem == NULL) { objpool.stack.size = 0UL; return objpool; } else { for (int i = 0; i < objpool.freeBlocks; i++) { union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] }; *block.index = i + 1; } objpool.stack.base = objpool.stack.mem; return objpool; } } } ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const size_t len) { ObjPool objpool = { 0 }; // If the object size isn't large enough to align to a size_t, then we can't use it. if ((buf == NULL) || (len == 0UL) || (objsize < sizeof(size_t)) || (objsize*len != __AlignSize(objsize, sizeof(size_t))*len)) return objpool; else { objpool.objSize = __AlignSize(objsize, sizeof(size_t)); objpool.stack.size = objpool.freeBlocks = len; objpool.stack.mem = buf; for (int i = 0; i < objpool.freeBlocks; i++) { union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] }; *block.index = i + 1; } objpool.stack.base = objpool.stack.mem; return objpool; } } void DestroyObjPool(ObjPool *const objpool) { if ((objpool == NULL) || (objpool->stack.mem == NULL)) return; else { free(objpool->stack.mem); *objpool = (ObjPool){0}; } } void *ObjPoolAlloc(ObjPool *const objpool) { if (objpool == NULL) return NULL; else { if (objpool->freeBlocks > 0UL) { // For first allocation, head points to the very first index. // Head = &pool[0]; // ret = Head == ret = &pool[0]; union ObjInfo ret = { .byte = objpool->stack.base }; objpool->freeBlocks--; // after allocating, we set head to the address of the index that *Head holds. // Head = &pool[*Head * pool.objsize]; objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.index*objpool->objSize) : NULL; memset(ret.byte, 0, objpool->objSize); return ret.byte; } else return NULL; } } void ObjPoolFree(ObjPool *const restrict objpool, void *ptr) { union ObjInfo p = { .byte = ptr }; if ((objpool == NULL) || (ptr == NULL) || (p.byte < objpool->stack.mem) || (p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)) return; else { // When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head. // *p = index of Head in relation to the buffer; // Head = p; *p.index = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size; objpool->stack.base = p.byte; objpool->freeBlocks++; } } void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref) { if ((objpool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return; else { ObjPoolFree(objpool, *ptrref); *ptrref = NULL; } } //---------------------------------------------------------------------------------- // Module Functions Definition - Double-Ended Stack //---------------------------------------------------------------------------------- BiStack CreateBiStack(const size_t len) { BiStack destack = { 0 }; if (len == 0UL) return destack; destack.size = len; destack.mem = malloc(len*sizeof *destack.mem); if (destack.mem==NULL) destack.size = 0UL; else { destack.front = destack.mem; destack.back = destack.mem + len; } return destack; } BiStack CreateBiStackFromBuffer(void *const buf, const size_t len) { BiStack destack = { 0 }; if (len == 0UL || buf == NULL) return destack; destack.size = len; destack.mem = destack.front = buf; destack.back = destack.mem + len; return destack; } void DestroyBiStack(BiStack *const destack) { if ((destack == NULL) || (destack->mem == NULL)) return; free(destack->mem); *destack = (BiStack){0}; } void *BiStackAllocFront(BiStack *const destack, const size_t len) { if ((destack == NULL) || (destack->mem == NULL)) return NULL; const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t)); // front end stack is too high! if (destack->front + ALIGNED_LEN >= destack->back) return NULL; uint8_t *ptr = destack->front; destack->front += ALIGNED_LEN; return ptr; } void *BiStackAllocBack(BiStack *const destack, const size_t len) { if ((destack == NULL) || (destack->mem == NULL)) return NULL; const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t)); // back end stack is too low if (destack->back - ALIGNED_LEN <= destack->front) return NULL; destack->back -= ALIGNED_LEN; return destack->back; } void BiStackResetFront(BiStack *const destack) { if ((destack == NULL) || (destack->mem == NULL)) return; destack->front = destack->mem; } void BiStackResetBack(BiStack *const destack) { if ((destack == NULL) || (destack->mem == NULL)) return; destack->back = destack->mem + destack->size; } void BiStackResetAll(BiStack *const destack) { BiStackResetBack(destack); BiStackResetFront(destack); } intptr_t BiStackMargins(const BiStack destack) { return destack.back - destack.front; } #endif // RMEM_IMPLEMENTATION