diff options
author | John Wiegley <johnw@newartisans.com> | 2007-04-15 12:55:22 +0000 |
---|---|---|
committer | John Wiegley <johnw@newartisans.com> | 2008-04-13 03:35:33 -0400 |
commit | b27b34a76fa16fcb96632a5bf245f3876183c479 (patch) | |
tree | fe386b51289569218b776e0d7453b161f071db70 /gdtoa/gdtoa.c | |
parent | b307f741c493652d64a6dde1df424c07eb698cb4 (diff) | |
download | fork-ledger-b27b34a76fa16fcb96632a5bf245f3876183c479.tar.gz fork-ledger-b27b34a76fa16fcb96632a5bf245f3876183c479.tar.bz2 fork-ledger-b27b34a76fa16fcb96632a5bf245f3876183c479.zip |
Added a reference to gdtoa, for doing expected conversion of double to amount.
Diffstat (limited to 'gdtoa/gdtoa.c')
-rw-r--r-- | gdtoa/gdtoa.c | 758 |
1 files changed, 758 insertions, 0 deletions
diff --git a/gdtoa/gdtoa.c b/gdtoa/gdtoa.c new file mode 100644 index 00000000..8ff8cc58 --- /dev/null +++ b/gdtoa/gdtoa.c @@ -0,0 +1,758 @@ +/**************************************************************** + +The author of this software is David M. Gay. + +Copyright (C) 1998, 1999 by Lucent Technologies +All Rights Reserved + +Permission to use, copy, modify, and distribute this software and +its documentation for any purpose and without fee is hereby +granted, provided that the above copyright notice appear in all +copies and that both that the copyright notice and this +permission notice and warranty disclaimer appear in supporting +documentation, and that the name of Lucent or any of its entities +not be used in advertising or publicity pertaining to +distribution of the software without specific, written prior +permission. + +LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, +INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. +IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY +SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER +IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, +ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. + +****************************************************************/ + +/* Please send bug reports to David M. Gay (dmg at acm dot org, + * with " at " changed at "@" and " dot " changed to "."). */ + +#include "gdtoaimp.h" + + static Bigint * +#ifdef KR_headers +bitstob(bits, nbits, bbits) ULong *bits; int nbits; int *bbits; +#else +bitstob(ULong *bits, int nbits, int *bbits) +#endif +{ + int i, k; + Bigint *b; + ULong *be, *x, *x0; + + i = ULbits; + k = 0; + while(i < nbits) { + i <<= 1; + k++; + } +#ifndef Pack_32 + if (!k) + k = 1; +#endif + b = Balloc(k); + be = bits + ((nbits - 1) >> kshift); + x = x0 = b->x; + do { + *x++ = *bits & ALL_ON; +#ifdef Pack_16 + *x++ = (*bits >> 16) & ALL_ON; +#endif + } while(++bits <= be); + i = x - x0; + while(!x0[--i]) + if (!i) { + b->wds = 0; + *bbits = 0; + goto ret; + } + b->wds = i + 1; + *bbits = i*ULbits + 32 - hi0bits(b->x[i]); + ret: + return b; + } + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the Long + * calculation. + */ + + char * +gdtoa +#ifdef KR_headers + (fpi, be, bits, kindp, mode, ndigits, decpt, rve) + FPI *fpi; int be; ULong *bits; + int *kindp, mode, ndigits, *decpt; char **rve; +#else + (FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve) +#endif +{ + /* Arguments ndigits and decpt are similar to the second and third + arguments of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4-9 should give the same return values as 2-3, i.e., + 4 <= mode <= 9 ==> same return as mode + 2 + (mode & 1). These modes are mainly for + debugging; often they run slower but sometimes + faster than modes 2-3. + 4,5,8,9 ==> left-to-right digit generation. + 6-9 ==> don't try fast floating-point estimate + (if applicable). + + Values of mode other than 0-9 are treated as mode 0. + + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ + + int bbits, b2, b5, be0, dig, i, ieps, ilim, ilim0, ilim1, inex; + int j, j1, k, k0, k_check, kind, leftright, m2, m5, nbits; + int rdir, s2, s5, spec_case, try_quick; + Long L; + Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S; + double d, d2, ds, eps; + char *s, *s0; + +#ifndef MULTIPLE_THREADS + if (dtoa_result) { + freedtoa(dtoa_result); + dtoa_result = 0; + } +#endif + inex = 0; + kind = *kindp &= ~STRTOG_Inexact; + switch(kind & STRTOG_Retmask) { + case STRTOG_Zero: + goto ret_zero; + case STRTOG_Normal: + case STRTOG_Denormal: + break; + case STRTOG_Infinite: + *decpt = -32768; + return nrv_alloc("Infinity", rve, 8); + case STRTOG_NaN: + *decpt = -32768; + return nrv_alloc("NaN", rve, 3); + default: + return 0; + } + b = bitstob(bits, nbits = fpi->nbits, &bbits); + be0 = be; + if ( (i = trailz(b)) !=0) { + rshift(b, i); + be += i; + bbits -= i; + } + if (!b->wds) { + Bfree(b); + ret_zero: + *decpt = 1; + return nrv_alloc("0", rve, 1); + } + + dval(d) = b2d(b, &i); + i = be + bbits - 1; + word0(d) &= Frac_mask1; + word0(d) |= Exp_11; +#ifdef IBM + if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0) + dval(d) /= 1 << j; +#endif + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ +#ifdef IBM + i <<= 2; + i += j; +#endif + ds = (dval(d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; + + /* correct assumption about exponent range */ + if ((j = i) < 0) + j = -j; + if ((j -= 1077) > 0) + ds += j * 7e-17; + + k = (int)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; +#ifdef IBM + j = be + bbits - 1; + if ( (j1 = j & 3) !=0) + dval(d) *= 1 << j1; + word0(d) += j << Exp_shift - 2 & Exp_mask; +#else + word0(d) += (be + bbits - 1) << Exp_shift; +#endif + if (k >= 0 && k <= Ten_pmax) { + if (dval(d) < tens[k]) + k--; + k_check = 0; + } + j = bbits - i - 1; + if (j >= 0) { + b2 = 0; + s2 = j; + } + else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } + else { + b2 -= k; + b5 = -k; + s5 = 0; + } + if (mode < 0 || mode > 9) + mode = 0; + try_quick = 1; + if (mode > 5) { + mode -= 4; + try_quick = 0; + } + leftright = 1; + switch(mode) { + case 0: + case 1: + ilim = ilim1 = -1; + i = (int)(nbits * .30103) + 3; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + s = s0 = rv_alloc(i); + + if ( (rdir = fpi->rounding - 1) !=0) { + if (rdir < 0) + rdir = 2; + if (kind & STRTOG_Neg) + rdir = 3 - rdir; + } + + /* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */ + + if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir +#ifndef IMPRECISE_INEXACT + && k == 0 +#endif + ) { + + /* Try to get by with floating-point arithmetic. */ + + i = 0; + d2 = dval(d); +#ifdef IBM + if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0) + dval(d) /= 1 << j; +#endif + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + dval(d) /= bigtens[n_bigtens-1]; + ieps++; + } + for(; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + } + else { + ds = 1.; + if ( (j1 = -k) !=0) { + dval(d) *= tens[j1 & 0xf]; + for(j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + dval(d) *= bigtens[i]; + } + } + } + if (k_check && dval(d) < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + dval(d) *= 10.; + ieps++; + } + dval(eps) = ieps*dval(d) + 7.; + word0(eps) -= (P-1)*Exp_msk1; + if (ilim == 0) { + S = mhi = 0; + dval(d) -= 5.; + if (dval(d) > dval(eps)) + goto one_digit; + if (dval(d) < -dval(eps)) + goto no_digits; + goto fast_failed; + } +#ifndef No_leftright + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + dval(eps) = ds*0.5/tens[ilim-1] - dval(eps); + for(i = 0;;) { + L = (Long)(dval(d)/ds); + dval(d) -= L*ds; + *s++ = '0' + (int)L; + if (dval(d) < dval(eps)) { + if (dval(d)) + inex = STRTOG_Inexlo; + goto ret1; + } + if (ds - dval(d) < dval(eps)) + goto bump_up; + if (++i >= ilim) + break; + dval(eps) *= 10.; + dval(d) *= 10.; + } + } + else { +#endif + /* Generate ilim digits, then fix them up. */ + dval(eps) *= tens[ilim-1]; + for(i = 1;; i++, dval(d) *= 10.) { + if ( (L = (Long)(dval(d)/ds)) !=0) + dval(d) -= L*ds; + *s++ = '0' + (int)L; + if (i == ilim) { + ds *= 0.5; + if (dval(d) > ds + dval(eps)) + goto bump_up; + else if (dval(d) < ds - dval(eps)) { + while(*--s == '0'){} + s++; + if (dval(d)) + inex = STRTOG_Inexlo; + goto ret1; + } + break; + } + } +#ifndef No_leftright + } +#endif + fast_failed: + s = s0; + dval(d) = d2; + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S = mhi = 0; + if (ilim < 0 || dval(d) <= 5*ds) + goto no_digits; + goto one_digit; + } + for(i = 1;; i++, dval(d) *= 10.) { + L = dval(d) / ds; + dval(d) -= L*ds; +#ifdef Check_FLT_ROUNDS + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (dval(d) < 0) { + L--; + dval(d) += ds; + } +#endif + *s++ = '0' + (int)L; + if (dval(d) == 0.) + break; + if (i == ilim) { + if (rdir) { + if (rdir == 1) + goto bump_up; + inex = STRTOG_Inexlo; + goto ret1; + } + dval(d) += dval(d); + if (dval(d) > ds || dval(d) == ds && L & 1) { + bump_up: + inex = STRTOG_Inexhi; + while(*--s == '9') + if (s == s0) { + k++; + *s = '0'; + break; + } + ++*s++; + } + else + inex = STRTOG_Inexlo; + break; + } + } + goto ret1; + } + + m2 = b2; + m5 = b5; + mhi = mlo = 0; + if (leftright) { + if (mode < 2) { + i = nbits - bbits; + if (be - i++ < fpi->emin) + /* denormal */ + i = be - fpi->emin + 1; + } + else { + j = ilim - 1; + if (m5 >= j) + m5 -= j; + else { + s5 += j -= m5; + b5 += j; + m5 = 0; + } + if ((i = ilim) < 0) { + m2 -= i; + i = 0; + } + } + b2 += i; + s2 += i; + mhi = i2b(1); + } + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + mhi = pow5mult(mhi, m5); + b1 = mult(mhi, b); + Bfree(b); + b = b1; + } + if ( (j = b5 - m5) !=0) + b = pow5mult(b, j); + } + else + b = pow5mult(b, b5); + } + S = i2b(1); + if (s5 > 0) + S = pow5mult(S, s5); + + /* Check for special case that d is a normalized power of 2. */ + + spec_case = 0; + if (mode < 2) { + if (bbits == 1 && be0 > fpi->emin + 1) { + /* The special case */ + b2++; + s2++; + spec_case = 1; + } + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ +#ifdef Pack_32 + if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) !=0) + i = 32 - i; +#else + if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) !=0) + i = 16 - i; +#endif + if (i > 4) { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } + else if (i < 4) { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + if (b2 > 0) + b = lshift(b, b2); + if (s2 > 0) + S = lshift(S, s2); + if (k_check) { + if (cmp(b,S) < 0) { + k--; + b = multadd(b, 10, 0); /* we botched the k estimate */ + if (leftright) + mhi = multadd(mhi, 10, 0); + ilim = ilim1; + } + } + if (ilim <= 0 && mode > 2) { + if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { + /* no digits, fcvt style */ + no_digits: + k = -1 - ndigits; + inex = STRTOG_Inexlo; + goto ret; + } + one_digit: + inex = STRTOG_Inexhi; + *s++ = '1'; + k++; + goto ret; + } + if (leftright) { + if (m2 > 0) + mhi = lshift(mhi, m2); + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) { + mhi = Balloc(mhi->k); + Bcopy(mhi, mlo); + mhi = lshift(mhi, 1); + } + + for(i = 1;;i++) { + dig = quorem(b,S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + delta = diff(S, mhi); + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); +#ifndef ROUND_BIASED + if (j1 == 0 && !mode && !(bits[0] & 1) && !rdir) { + if (dig == '9') + goto round_9_up; + if (j <= 0) { + if (b->wds > 1 || b->x[0]) + inex = STRTOG_Inexlo; + } + else { + dig++; + inex = STRTOG_Inexhi; + } + *s++ = dig; + goto ret; + } +#endif + if (j < 0 || j == 0 && !mode +#ifndef ROUND_BIASED + && !(bits[0] & 1) +#endif + ) { + if (rdir && (b->wds > 1 || b->x[0])) { + if (rdir == 2) { + inex = STRTOG_Inexlo; + goto accept; + } + while (cmp(S,mhi) > 0) { + *s++ = dig; + mhi1 = multadd(mhi, 10, 0); + if (mlo == mhi) + mlo = mhi1; + mhi = mhi1; + b = multadd(b, 10, 0); + dig = quorem(b,S) + '0'; + } + if (dig++ == '9') + goto round_9_up; + inex = STRTOG_Inexhi; + goto accept; + } + if (j1 > 0) { + b = lshift(b, 1); + j1 = cmp(b, S); + if ((j1 > 0 || j1 == 0 && dig & 1) + && dig++ == '9') + goto round_9_up; + inex = STRTOG_Inexhi; + } + if (b->wds > 1 || b->x[0]) + inex = STRTOG_Inexlo; + accept: + *s++ = dig; + goto ret; + } + if (j1 > 0 && rdir != 2) { + if (dig == '9') { /* possible if i == 1 */ + round_9_up: + *s++ = '9'; + inex = STRTOG_Inexhi; + goto roundoff; + } + inex = STRTOG_Inexhi; + *s++ = dig + 1; + goto ret; + } + *s++ = dig; + if (i == ilim) + break; + b = multadd(b, 10, 0); + if (mlo == mhi) + mlo = mhi = multadd(mhi, 10, 0); + else { + mlo = multadd(mlo, 10, 0); + mhi = multadd(mhi, 10, 0); + } + } + } + else + for(i = 1;; i++) { + *s++ = dig = quorem(b,S) + '0'; + if (i >= ilim) + break; + b = multadd(b, 10, 0); + } + + /* Round off last digit */ + + if (rdir) { + if (rdir == 2 || b->wds <= 1 && !b->x[0]) + goto chopzeros; + goto roundoff; + } + b = lshift(b, 1); + j = cmp(b, S); + if (j > 0 || j == 0 && dig & 1) { + roundoff: + inex = STRTOG_Inexhi; + while(*--s == '9') + if (s == s0) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } + else { + chopzeros: + if (b->wds > 1 || b->x[0]) + inex = STRTOG_Inexlo; + while(*--s == '0'){} + s++; + } + ret: + Bfree(S); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + ret1: + Bfree(b); + *s = 0; + *decpt = k + 1; + if (rve) + *rve = s; + *kindp |= inex; + return s0; + } |