summaryrefslogtreecommitdiff
path: root/src/passes/ConstantFieldPropagation.cpp
diff options
context:
space:
mode:
authorAlon Zakai <azakai@google.com>2024-06-27 15:34:07 -0700
committerGitHub <noreply@github.com>2024-06-27 15:34:07 -0700
commitcdf8139a441c27c16eff02ccee65c463500fc00f (patch)
tree478313c6b1b1d41df76421fd7f52cfe3d76f04f7 /src/passes/ConstantFieldPropagation.cpp
parent53712b6d6e93449a6faf18a55e0fb29022f158df (diff)
downloadbinaryen-cdf8139a441c27c16eff02ccee65c463500fc00f.tar.gz
binaryen-cdf8139a441c27c16eff02ccee65c463500fc00f.tar.bz2
binaryen-cdf8139a441c27c16eff02ccee65c463500fc00f.zip
ConstantFieldPropagation: Add a variation that picks between 2 values using RefTest (#6692)
CFP focuses on finding when a field always contains a constant, and then replaces a struct.get with that constant. If we find there are two constant values, then in some cases we can still optimize, if we have a way to pick between them. All we have is the struct.get and its reference, so we must use a ref.test: (struct.get $T x (..ref..)) => (select (..constant1..) (..constant2..) (ref.test $U (..ref..)) ) This is valid if, of all the subtypes of $T, those that pass the test have constant1 in that field, and those that fail the test have constant2. For example, a simple case is where $T has two subtypes, $T is never created itself, and each of the two subtypes has a different constant value. This is a somewhat risky operation, as ref.test is not necessarily cheap. To mitigate that, this is a new pass, --cfp-reftest that is not run by default, and also we only optimize when we can use a ref.test on what we think will be a final type (because ref.test on a final type can be faster in VMs).
Diffstat (limited to 'src/passes/ConstantFieldPropagation.cpp')
-rw-r--r--src/passes/ConstantFieldPropagation.cpp267
1 files changed, 251 insertions, 16 deletions
diff --git a/src/passes/ConstantFieldPropagation.cpp b/src/passes/ConstantFieldPropagation.cpp
index e94da0ade..26cc8316b 100644
--- a/src/passes/ConstantFieldPropagation.cpp
+++ b/src/passes/ConstantFieldPropagation.cpp
@@ -23,6 +23,30 @@
// write to that field of a different value (even using a subtype of T), then
// anywhere we see a get of that field we can place a ref.func of F.
//
+// A variation of this pass also uses ref.test to optimize. This is riskier, as
+// adding a ref.test means we are adding a non-trivial amount of work, and
+// whether it helps overall depends on subsequent optimizations, so we do not do
+// it by default. In this variation, if we inferred a field has exactly two
+// possible values, and we can differentiate between them using a ref.test, then
+// we do
+//
+// (struct.get $T x (..ref..))
+// =>
+// (select
+// (..constant1..)
+// (..constant2..)
+// (ref.test $U (..ref..))
+// )
+//
+// This is valid if, of all the subtypes of $T, those that pass the test have
+// constant1 in that field, and those that fail the test have constant2. For
+// example, a simple case is where $T has two subtypes, $T is never created
+// itself, and each of the two subtypes has a different constant value. (Note
+// that we do similar things in e.g. GlobalStructInference, where we turn a
+// struct.get into a select, but the risk there is much lower since the
+// condition for the select is something like a ref.eq - very cheap - while here
+// we emit a ref.test which in general is as expensive as a cast.)
+//
// FIXME: This pass assumes a closed world. When we start to allow multi-module
// wasm GC programs we need to check for type escaping.
//
@@ -34,6 +58,7 @@
#include "ir/struct-utils.h"
#include "ir/utils.h"
#include "pass.h"
+#include "support/small_vector.h"
#include "wasm-builder.h"
#include "wasm-traversal.h"
#include "wasm.h"
@@ -73,17 +98,30 @@ struct FunctionOptimizer : public WalkerPass<PostWalker<FunctionOptimizer>> {
// Only modifies struct.get operations.
bool requiresNonNullableLocalFixups() override { return false; }
+ // We receive the propagated infos, that is, info about field types in a form
+ // that takes into account subtypes for quick computation, and also the raw
+ // subtyping and new infos (information about struct.news).
std::unique_ptr<Pass> create() override {
- return std::make_unique<FunctionOptimizer>(infos);
+ return std::make_unique<FunctionOptimizer>(
+ propagatedInfos, subTypes, rawNewInfos, refTest);
}
- FunctionOptimizer(PCVStructValuesMap& infos) : infos(infos) {}
+ FunctionOptimizer(const PCVStructValuesMap& propagatedInfos,
+ const SubTypes& subTypes,
+ const PCVStructValuesMap& rawNewInfos,
+ bool refTest)
+ : propagatedInfos(propagatedInfos), subTypes(subTypes),
+ rawNewInfos(rawNewInfos), refTest(refTest) {}
void visitStructGet(StructGet* curr) {
auto type = curr->ref->type;
if (type == Type::unreachable) {
return;
}
+ auto heapType = type.getHeapType();
+ if (!heapType.isStruct()) {
+ return;
+ }
Builder builder(*getModule());
@@ -92,8 +130,8 @@ struct FunctionOptimizer : public WalkerPass<PostWalker<FunctionOptimizer>> {
// as if nothing was ever noted for that field.
PossibleConstantValues info;
assert(!info.hasNoted());
- auto iter = infos.find(type.getHeapType());
- if (iter != infos.end()) {
+ auto iter = propagatedInfos.find(heapType);
+ if (iter != propagatedInfos.end()) {
// There is information on this type, fetch it.
info = iter->second[curr->index];
}
@@ -113,8 +151,13 @@ struct FunctionOptimizer : public WalkerPass<PostWalker<FunctionOptimizer>> {
return;
}
- // If the value is not a constant, then it is unknown and we must give up.
+ // If the value is not a constant, then it is unknown and we must give up
+ // on simply applying a constant. However, we can try to use a ref.test, if
+ // that is allowed.
if (!info.isConstant()) {
+ if (refTest) {
+ optimizeUsingRefTest(curr);
+ }
return;
}
@@ -122,16 +165,190 @@ struct FunctionOptimizer : public WalkerPass<PostWalker<FunctionOptimizer>> {
// ref.as_non_null (we need to trap as the get would have done so), plus the
// constant value. (Leave it to further optimizations to get rid of the
// ref.)
- Expression* value = info.makeExpression(*getModule());
- auto field = GCTypeUtils::getField(type, curr->index);
- assert(field);
- value =
- Bits::makePackedFieldGet(value, *field, curr->signed_, *getModule());
+ auto* value = makeExpression(info, heapType, curr);
replaceCurrent(builder.makeSequence(
builder.makeDrop(builder.makeRefAs(RefAsNonNull, curr->ref)), value));
changed = true;
}
+ // Given information about a constant value, and the struct type and StructGet
+ // that reads it, create an expression for that value.
+ Expression* makeExpression(const PossibleConstantValues& info,
+ HeapType type,
+ StructGet* curr) {
+ auto* value = info.makeExpression(*getModule());
+ auto field = GCTypeUtils::getField(type, curr->index);
+ assert(field);
+ return Bits::makePackedFieldGet(value, *field, curr->signed_, *getModule());
+ }
+
+ void optimizeUsingRefTest(StructGet* curr) {
+ auto refType = curr->ref->type;
+ auto refHeapType = refType.getHeapType();
+
+ // We only handle immutable fields in this function, as we will be looking
+ // at |rawNewInfos|. That is, we are trying to see when a type and its
+ // subtypes have different values (so that we can differentiate between them
+ // using a ref.test), and those differences are lost in |propagatedInfos|,
+ // which has propagated to relevant types so that we can do a single check
+ // to see what value could be there. So we need to use something more
+ // precise, |rawNewInfos|, which tracks the values written to struct.news,
+ // where we know the type exactly (unlike with a struct.set). But for that
+ // reason the field must be immutable, so that it is valid to only look at
+ // the struct.news. (A more complex flow analysis could do better here, but
+ // would be far beyond the scope of this pass.)
+ if (GCTypeUtils::getField(refType, curr->index)->mutable_ == Mutable) {
+ return;
+ }
+
+ // We seek two possible constant values. For each we track the constant and
+ // the types that have that constant. For example, if we have types A, B, C
+ // and A and B have 42 in their field, and C has 1337, then we'd have this:
+ //
+ // values = [ { 42, [A, B] }, { 1337, [C] } ];
+ struct Value {
+ PossibleConstantValues constant;
+ // Use a SmallVector as we'll only have 2 Values, and so the stack usage
+ // here is fixed.
+ SmallVector<HeapType, 10> types;
+
+ // Whether this slot is used. If so, |constant| has a value, and |types|
+ // is not empty.
+ bool used() const {
+ if (constant.hasNoted()) {
+ assert(!types.empty());
+ return true;
+ }
+ assert(types.empty());
+ return false;
+ }
+ } values[2];
+
+ // Handle one of the subtypes of the relevant type. We check what value it
+ // has for the field, and update |values|. If we hit a problem, we mark us
+ // as having failed.
+ auto fail = false;
+ auto handleType = [&](HeapType type, Index depth) {
+ if (fail) {
+ // TODO: Add a mechanism to halt |iterSubTypes| in the middle, as once
+ // we fail there is no point to further iterating.
+ return;
+ }
+
+ auto iter = rawNewInfos.find(type);
+ if (iter == rawNewInfos.end()) {
+ // This type has no struct.news, so we can ignore it: it is abstract.
+ return;
+ }
+
+ auto value = iter->second[curr->index];
+ if (!value.isConstant()) {
+ // The value here is not constant, so give up entirely.
+ fail = true;
+ return;
+ }
+
+ // Consider the constant value compared to previous ones.
+ for (Index i = 0; i < 2; i++) {
+ if (!values[i].used()) {
+ // There is nothing in this slot: place this value there.
+ values[i].constant = value;
+ values[i].types.push_back(type);
+ break;
+ }
+
+ // There is something in this slot. If we have the same value, append.
+ if (values[i].constant == value) {
+ values[i].types.push_back(type);
+ break;
+ }
+
+ // Otherwise, this value is different than values[i], which is fine:
+ // we can add it as the second value in the next loop iteration - at
+ // least, we can do that if there is another iteration: If it's already
+ // the last, we've failed to find only two values.
+ if (i == 1) {
+ fail = true;
+ return;
+ }
+ }
+ };
+ subTypes.iterSubTypes(refHeapType, handleType);
+
+ if (fail) {
+ return;
+ }
+
+ // We either filled slot 0, or we did not, and if we did not then cannot
+ // have filled slot 1 after it.
+ assert(values[0].used() || !values[1].used());
+
+ if (!values[1].used()) {
+ // We did not see two constant values (we might have seen just one, or
+ // even no constant values at all).
+ return;
+ }
+
+ // We have exactly two values to pick between. We can pick between those
+ // values using a single ref.test if the two sets of types are actually
+ // disjoint. In general we could compute the LUB of each set and see if it
+ // overlaps with the other, but for efficiency we only want to do this
+ // optimization if the type we test on is closed/final, since ref.test on a
+ // final type can be fairly fast (perhaps constant time). We therefore look
+ // if one of the sets of types contains a single type and it is final, and
+ // if so then we'll test on it. (However, see a few lines below on how we
+ // test for finality.)
+ // TODO: Consider adding a variation on this pass that uses non-final types.
+ auto isProperTestType = [&](const Value& value) -> std::optional<HeapType> {
+ auto& types = value.types;
+ if (types.size() != 1) {
+ // Too many types.
+ return {};
+ }
+
+ auto type = types[0];
+ // Do not test finality using isOpen(), as that may only be applied late
+ // in the optimization pipeline. We are in closed-world here, so just
+ // see if there are subtypes in practice (if not, this can be marked as
+ // final later, and we assume optimistically that it will).
+ if (!subTypes.getImmediateSubTypes(type).empty()) {
+ // There are subtypes.
+ return {};
+ }
+
+ // Success, we can test on this.
+ return type;
+ };
+
+ // Look for the index in |values| to test on.
+ Index testIndex;
+ if (auto test = isProperTestType(values[0])) {
+ testIndex = 0;
+ } else if (auto test = isProperTestType(values[1])) {
+ testIndex = 1;
+ } else {
+ // We failed to find a simple way to separate the types.
+ return;
+ }
+
+ // Success! We can replace the struct.get with a select over the two values
+ // (and a trap on null) with the proper ref.test.
+ Builder builder(*getModule());
+
+ auto& testIndexTypes = values[testIndex].types;
+ assert(testIndexTypes.size() == 1);
+ auto testType = testIndexTypes[0];
+
+ auto* nnRef = builder.makeRefAs(RefAsNonNull, curr->ref);
+
+ replaceCurrent(builder.makeSelect(
+ builder.makeRefTest(nnRef, Type(testType, NonNullable)),
+ makeExpression(values[testIndex].constant, refHeapType, curr),
+ makeExpression(values[1 - testIndex].constant, refHeapType, curr)));
+
+ changed = true;
+ }
+
void doWalkFunction(Function* func) {
WalkerPass<PostWalker<FunctionOptimizer>>::doWalkFunction(func);
@@ -143,7 +360,10 @@ struct FunctionOptimizer : public WalkerPass<PostWalker<FunctionOptimizer>> {
}
private:
- PCVStructValuesMap& infos;
+ const PCVStructValuesMap& propagatedInfos;
+ const SubTypes& subTypes;
+ const PCVStructValuesMap& rawNewInfos;
+ const bool refTest;
bool changed = false;
};
@@ -193,6 +413,11 @@ struct ConstantFieldPropagation : public Pass {
// Only modifies struct.get operations.
bool requiresNonNullableLocalFixups() override { return false; }
+ // Whether we are optimizing using ref.test, see above.
+ const bool refTest;
+
+ ConstantFieldPropagation(bool refTest) : refTest(refTest) {}
+
void run(Module* module) override {
if (!module->features.hasGC()) {
return;
@@ -214,8 +439,16 @@ struct ConstantFieldPropagation : public Pass {
BoolStructValuesMap combinedCopyInfos;
functionCopyInfos.combineInto(combinedCopyInfos);
+ // Prepare data we will need later.
SubTypes subTypes(*module);
+ PCVStructValuesMap rawNewInfos;
+ if (refTest) {
+ // The refTest optimizations require the raw new infos (see above), but we
+ // can skip copying here if we'll never read this.
+ rawNewInfos = combinedNewInfos;
+ }
+
// Handle subtyping. |combinedInfo| so far contains data that represents
// each struct.new and struct.set's operation on the struct type used in
// that instruction. That is, if we do a struct.set to type T, the value was
@@ -288,17 +521,19 @@ struct ConstantFieldPropagation : public Pass {
// Optimize.
// TODO: Skip this if we cannot optimize anything
- FunctionOptimizer(combinedInfos).run(runner, module);
-
- // TODO: Actually remove the field from the type, where possible? That might
- // be best in another pass.
+ FunctionOptimizer(combinedInfos, subTypes, rawNewInfos, refTest)
+ .run(runner, module);
}
};
} // anonymous namespace
Pass* createConstantFieldPropagationPass() {
- return new ConstantFieldPropagation();
+ return new ConstantFieldPropagation(false);
+}
+
+Pass* createConstantFieldPropagationRefTestPass() {
+ return new ConstantFieldPropagation(true);
}
} // namespace wasm