summaryrefslogtreecommitdiff
path: root/src/passes/Unsubtyping.cpp
diff options
context:
space:
mode:
authorThomas Lively <tlively@google.com>2023-10-10 15:50:44 -0700
committerGitHub <noreply@github.com>2023-10-10 15:50:44 -0700
commit9d0740c8d84f822567bb4d08784238dd5a89b43f (patch)
treee915ad3675aec2e6cceb0c9b0e6573f5ebc3f6e4 /src/passes/Unsubtyping.cpp
parent1cd81268627c71f36f45d6ef875dee84a79630f4 (diff)
downloadbinaryen-9d0740c8d84f822567bb4d08784238dd5a89b43f.tar.gz
binaryen-9d0740c8d84f822567bb4d08784238dd5a89b43f.tar.bz2
binaryen-9d0740c8d84f822567bb4d08784238dd5a89b43f.zip
Add an "unsubtyping" optimization (#5982)
Add a new pass that analyzes the module to find the minimal subtyping relation that is necessary to maintain the validity and semantics of the program and rewrites the types to use this minimal relation. Besides eliminating references to otherwise-unused intermediate types, this optimization should unlock significant additional optimizing power in other type optimizations that are constrained by having to maintain supertype validity, since after this new optimization there are fewer and more general supertypes. The analysis works by visiting each expression and module element to collect the subtypings that are required to maintain its validity, then, using that as a starting point, iteratively adding new subtypings required by type definitions and casts until reaching a fixed point.
Diffstat (limited to 'src/passes/Unsubtyping.cpp')
-rw-r--r--src/passes/Unsubtyping.cpp579
1 files changed, 579 insertions, 0 deletions
diff --git a/src/passes/Unsubtyping.cpp b/src/passes/Unsubtyping.cpp
new file mode 100644
index 000000000..3e88a7f91
--- /dev/null
+++ b/src/passes/Unsubtyping.cpp
@@ -0,0 +1,579 @@
+/*
+ * Copyright 2023 WebAssembly Community Group participants
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <unordered_map>
+
+#include "ir/branch-utils.h"
+#include "ir/subtypes.h"
+#include "ir/type-updating.h"
+#include "ir/utils.h"
+#include "pass.h"
+#include "support/unique_deferring_queue.h"
+#include "wasm-traversal.h"
+#include "wasm-type.h"
+#include "wasm.h"
+
+// Compute and use the minimal subtype relation required to maintain module
+// validity and behavior. This minimal relation will be a subset of the original
+// subtype relation. Start by walking the IR and collecting pairs of types that
+// need to be in the subtype relation for each expression to validate. For
+// example, a local.set requires that the type of its operand be a subtype of
+// the local's type. Casts do not generate subtypings at this point because it
+// is not necessary for the cast target to be a subtype of the cast source for
+// the cast to validate.
+//
+// From that initial subtype relation, we then start finding new subtypings that
+// are required by the subtypings we have found already. These transitively
+// required subtypings come from two sources.
+//
+// The first source is type definitions. Consider these type definitions:
+//
+// (type $A (sub (struct (ref $X))))
+// (type $B (sub $A (struct (ref $Y))))
+//
+// If we have determined that $B must remain a subtype of $A, then we know that
+// $Y must remain a subtype of $X as well, since the type definitions would not
+// be valid otherwise. Similarly, knowing that $X must remain a subtype of $Y
+// may transitively require other subtypings as well based on their type
+// definitions.
+//
+// The second source of transitive subtyping requirements is casts. Although
+// casting from one type to another does not necessarily require that those
+// types are related, we do need to make sure that we do not change the
+// behavior of casts by removing subtype relationships they might observe. For
+// example, consider this module:
+//
+// (module
+// ;; original subtyping: $bot <: $mid <: $top
+// (type $top (sub (struct)))
+// (type $mid (sub $top (struct)))
+// (type $bot (sub $mid (struct)))
+//
+// (func $f
+// (local $top (ref $top))
+// (local $mid (ref $mid))
+//
+// ;; Requires $bot <: $top
+// (local.set $top (struct.new $bot))
+//
+// ;; Cast $top to $mid
+// (local.set $mid (ref.cast (ref $mid) (local.get $top)))
+// )
+// )
+//
+// The only subtype relation directly required by the IR for this module is $bot
+// <: $top. However, if we optimized the module so that $bot <: $top was the
+// only subtype relation, we would change the behavior of the cast. In the
+// original module, a value of type (ref $bot) is cast to (ref $mid). The cast
+// succeeds because in the original module, $bot <: $mid. If we optimize so that
+// we have $bot <: $top and no other subtypings, though, the cast will fail
+// because the value of type (ref $bot) no longer inhabits (ref $mid). To
+// prevent the cast's behavior from changing, we need to ensure that $bot <:
+// $mid.
+//
+// The set of subtyping requirements generated by a cast from $src to $dest is
+// that for every known remaining subtype $v of $src, if $v <: $dest in the
+// original module, then $v <: $dest in the optimized module. In other words,
+// for every type $v of values we know can flow into the cast, if the cast would
+// have succeeded for values of type $v before, then we know the cast must
+// continue to succeed for values of type $v. These requirements arising from
+// casts can also generate transitive requirements because we learn about new
+// types of values that can flow into casts as we learn about new subtypes of
+// cast sources.
+//
+// Starting with the initial subtype relation determined by walking the IR,
+// repeatedly search for new subtypings by analyzing type definitions and casts
+// in lock step until we reach a fixed point. This is the minimal subtype
+// relation that preserves module validity and behavior that can be found
+// without a more precise analysis of types that might flow into each cast.
+
+namespace wasm {
+
+namespace {
+
+struct Unsubtyping
+ : WalkerPass<ControlFlowWalker<Unsubtyping, OverriddenVisitor<Unsubtyping>>> {
+ // The new set of supertype relations.
+ std::unordered_map<HeapType, HeapType> supertypes;
+
+ // Map from cast source types to their destinations.
+ std::unordered_map<HeapType, std::unordered_set<HeapType>> castTypes;
+
+ // The set of subtypes that need to have their type definitions analyzed to
+ // transitively find other subtype relations they depend on. We add to it
+ // every time we find a new subtype relationship we need to keep.
+ UniqueDeferredQueue<HeapType> work;
+
+ void run(Module* wasm) override {
+ if (!wasm->features.hasGC()) {
+ return;
+ }
+ analyzePublicTypes(*wasm);
+ walkModule(wasm);
+ analyzeTransitiveDependencies();
+ optimizeTypes(*wasm);
+ // Cast types may be refinable if their source and target types are no
+ // longer related. TODO: Experiment with running this only after checking
+ // whether it is necessary.
+ ReFinalize().run(getPassRunner(), wasm);
+ }
+
+ // Note that sub must remain a subtype of super.
+ void noteSubtype(HeapType sub, HeapType super) {
+ if (sub == super || sub.isBottom() || super.isBottom()) {
+ return;
+ }
+
+ auto [it, inserted] = supertypes.insert({sub, super});
+ if (inserted) {
+ work.push(sub);
+ // TODO: Incrementally check all subtypes (inclusive) of sub against super
+ // and all its supertypes if we have already analyzed casts.
+ return;
+ }
+ // We already had a recorded supertype. The new supertype might be deeper,
+ // shallower, or identical to the old supertype.
+ auto oldSuper = it->second;
+ if (super == oldSuper) {
+ return;
+ }
+ // There are two different supertypes, but each type can only have a single
+ // direct subtype so the supertype chain cannot fork and one of the
+ // supertypes must be a supertype of the other. Recursively record that
+ // relationship as well.
+ if (HeapType::isSubType(super, oldSuper)) {
+ // sub <: super <: oldSuper
+ it->second = super;
+ work.push(sub);
+ // TODO: Incrementally check all subtypes (inclusive) of sub against super
+ // if we have already analyzed casts.
+ noteSubtype(super, oldSuper);
+ } else {
+ // sub <: oldSuper <: super
+ noteSubtype(oldSuper, super);
+ }
+ }
+
+ void noteSubtype(Type sub, Type super) {
+ if (sub.isTuple()) {
+ assert(super.isTuple() && sub.size() == super.size());
+ for (size_t i = 0, size = sub.size(); i < size; ++i) {
+ noteSubtype(sub[i], super[i]);
+ }
+ return;
+ }
+ if (!sub.isRef() || !super.isRef()) {
+ return;
+ }
+ noteSubtype(sub.getHeapType(), super.getHeapType());
+ }
+
+ void noteCast(HeapType src, HeapType dest) {
+ if (src == dest || dest.isBottom()) {
+ return;
+ }
+ assert(HeapType::isSubType(dest, src));
+ castTypes[src].insert(dest);
+ }
+
+ void noteCast(Type src, Type dest) {
+ assert(!src.isTuple() && !dest.isTuple());
+ if (src == Type::unreachable) {
+ return;
+ }
+ assert(src.isRef() && dest.isRef());
+ noteCast(src.getHeapType(), dest.getHeapType());
+ }
+
+ void analyzePublicTypes(Module& wasm) {
+ // We cannot change supertypes for anything public.
+ for (auto type : ModuleUtils::getPublicHeapTypes(wasm)) {
+ if (auto super = type.getSuperType()) {
+ noteSubtype(type, *super);
+ }
+ }
+ }
+
+ void analyzeTransitiveDependencies() {
+ // While we have found new subtypings and have not reached a fixed point...
+ while (!work.empty()) {
+ // Subtype relationships that we are keeping might depend on other subtype
+ // relationships that we are not yet planning to keep. Transitively find
+ // all the relationships we need to keep all our type definitions valid.
+ while (!work.empty()) {
+ auto type = work.pop();
+ auto super = supertypes.at(type);
+ if (super.isBasic()) {
+ continue;
+ }
+ if (type.isStruct()) {
+ const auto& fields = type.getStruct().fields;
+ const auto& superFields = super.getStruct().fields;
+ for (size_t i = 0, size = superFields.size(); i < size; ++i) {
+ noteSubtype(fields[i].type, superFields[i].type);
+ }
+ } else if (type.isArray()) {
+ auto elem = type.getArray().element;
+ noteSubtype(elem.type, super.getArray().element.type);
+ } else {
+ assert(type.isSignature());
+ auto sig = type.getSignature();
+ auto superSig = super.getSignature();
+ noteSubtype(superSig.params, sig.params);
+ noteSubtype(sig.results, superSig.results);
+ }
+ }
+
+ // Analyze all casts at once.
+ // TODO: This is expensive. Analyze casts incrementally after we
+ // initially analyze them.
+ analyzeCasts();
+ }
+ }
+
+ void analyzeCasts() {
+ // For each cast (src, dest) pair, any type that remains a subtype of src
+ // (meaning its values can inhabit locations typed src) and that was
+ // originally a subtype of dest (meaning its values would have passed the
+ // cast) should remain a subtype of dest so that its values continue to pass
+ // the cast.
+ //
+ // For every type, walk up its new supertype chain to find cast sources and
+ // compare against their associated cast destinations.
+ for (auto it = supertypes.begin(); it != supertypes.end(); ++it) {
+ auto type = it->first;
+ for (auto srcIt = it; srcIt != supertypes.end();
+ srcIt = supertypes.find(srcIt->second)) {
+ auto src = srcIt->second;
+ auto destsIt = castTypes.find(src);
+ if (destsIt == castTypes.end()) {
+ continue;
+ }
+ for (auto dest : destsIt->second) {
+ if (HeapType::isSubType(type, dest)) {
+ noteSubtype(type, dest);
+ }
+ }
+ }
+ }
+ }
+
+ void optimizeTypes(Module& wasm) {
+ struct Rewriter : GlobalTypeRewriter {
+ Unsubtyping& parent;
+ Rewriter(Unsubtyping& parent, Module& wasm)
+ : GlobalTypeRewriter(wasm), parent(parent) {}
+ std::optional<HeapType> getSuperType(HeapType type) override {
+ if (auto it = parent.supertypes.find(type);
+ it != parent.supertypes.end() && !it->second.isBasic()) {
+ return it->second;
+ }
+ return std::nullopt;
+ }
+ };
+ Rewriter(*this, wasm).update();
+ }
+
+ void doWalkModule(Module* wasm) {
+ // Visit the functions in parallel, filling in `supertypes` and `castTypes`
+ // on separate instances which will later be merged.
+ ModuleUtils::ParallelFunctionAnalysis<Unsubtyping> analysis(
+ *wasm, [&](Function* func, Unsubtyping& unsubtyping) {
+ if (!func->imported()) {
+ unsubtyping.walkFunctionInModule(func, wasm);
+ }
+ });
+ // Collect the results from the functions.
+ for (auto& [_, unsubtyping] : analysis.map) {
+ for (auto [sub, super] : unsubtyping.supertypes) {
+ noteSubtype(sub, super);
+ }
+ for (auto& [src, dests] : unsubtyping.castTypes) {
+ for (auto dest : dests) {
+ noteCast(src, dest);
+ }
+ }
+ }
+ // Collect constraints from top-level items.
+ for (auto& global : wasm->globals) {
+ visitGlobal(global.get());
+ }
+ for (auto& seg : wasm->elementSegments) {
+ visitElementSegment(seg.get());
+ }
+ // Visit the rest of the code that is not in functions.
+ walkModuleCode(wasm);
+ }
+
+ void visitFunction(Function* func) {
+ if (func->body) {
+ noteSubtype(func->body->type, func->getResults());
+ }
+ }
+ void visitGlobal(Global* global) {
+ if (global->init) {
+ noteSubtype(global->init->type, global->type);
+ }
+ }
+ void visitElementSegment(ElementSegment* seg) {
+ if (seg->offset) {
+ noteSubtype(seg->type, getModule()->getTable(seg->table)->type);
+ }
+ for (auto init : seg->data) {
+ noteSubtype(init->type, seg->type);
+ }
+ }
+ void visitNop(Nop* curr) {}
+ void visitBlock(Block* curr) {
+ if (!curr->list.empty()) {
+ noteSubtype(curr->list.back()->type, curr->type);
+ }
+ }
+ void visitIf(If* curr) {
+ if (curr->ifFalse) {
+ noteSubtype(curr->ifTrue->type, curr->type);
+ noteSubtype(curr->ifFalse->type, curr->type);
+ }
+ }
+ void visitLoop(Loop* curr) { noteSubtype(curr->body->type, curr->type); }
+ void visitBreak(Break* curr) {
+ if (curr->value) {
+ noteSubtype(curr->value->type, findBreakTarget(curr->name)->type);
+ }
+ }
+ void visitSwitch(Switch* curr) {
+ if (curr->value) {
+ for (auto name : BranchUtils::getUniqueTargets(curr)) {
+ noteSubtype(curr->value->type, findBreakTarget(name)->type);
+ }
+ }
+ }
+ template<typename T> void handleCall(T* curr, Signature sig) {
+ assert(curr->operands.size() == sig.params.size());
+ for (size_t i = 0, size = sig.params.size(); i < size; ++i) {
+ noteSubtype(curr->operands[i]->type, sig.params[i]);
+ }
+ if (curr->isReturn) {
+ noteSubtype(sig.results, getFunction()->getResults());
+ }
+ }
+ void visitCall(Call* curr) {
+ handleCall(curr, getModule()->getFunction(curr->target)->getSig());
+ }
+ void visitCallIndirect(CallIndirect* curr) {
+ handleCall(curr, curr->heapType.getSignature());
+ auto* table = getModule()->getTable(curr->table);
+ auto tableType = table->type.getHeapType();
+ if (HeapType::isSubType(tableType, curr->heapType)) {
+ // Unlike other casts, where cast targets are always subtypes of cast
+ // sources, call_indirect target types may be supertypes of their source
+ // table types. In this case, the cast will always succeed, but only if we
+ // keep the types related.
+ noteSubtype(tableType, curr->heapType);
+ } else if (HeapType::isSubType(curr->heapType, tableType)) {
+ noteCast(tableType, curr->heapType);
+ } else {
+ // The types are unrelated and the cast will fail. We can keep the types
+ // unrelated.
+ }
+ }
+ void visitLocalGet(LocalGet* curr) {}
+ void visitLocalSet(LocalSet* curr) {
+ noteSubtype(curr->value->type, getFunction()->getLocalType(curr->index));
+ }
+ void visitGlobalGet(GlobalGet* curr) {}
+ void visitGlobalSet(GlobalSet* curr) {
+ noteSubtype(curr->value->type, getModule()->getGlobal(curr->name)->type);
+ }
+ void visitLoad(Load* curr) {}
+ void visitStore(Store* curr) {}
+ void visitAtomicRMW(AtomicRMW* curr) {}
+ void visitAtomicCmpxchg(AtomicCmpxchg* curr) {}
+ void visitAtomicWait(AtomicWait* curr) {}
+ void visitAtomicNotify(AtomicNotify* curr) {}
+ void visitAtomicFence(AtomicFence* curr) {}
+ void visitSIMDExtract(SIMDExtract* curr) {}
+ void visitSIMDReplace(SIMDReplace* curr) {}
+ void visitSIMDShuffle(SIMDShuffle* curr) {}
+ void visitSIMDTernary(SIMDTernary* curr) {}
+ void visitSIMDShift(SIMDShift* curr) {}
+ void visitSIMDLoad(SIMDLoad* curr) {}
+ void visitSIMDLoadStoreLane(SIMDLoadStoreLane* curr) {}
+ void visitMemoryInit(MemoryInit* curr) {}
+ void visitDataDrop(DataDrop* curr) {}
+ void visitMemoryCopy(MemoryCopy* curr) {}
+ void visitMemoryFill(MemoryFill* curr) {}
+ void visitConst(Const* curr) {}
+ void visitUnary(Unary* curr) {}
+ void visitBinary(Binary* curr) {}
+ void visitSelect(Select* curr) {
+ noteSubtype(curr->ifTrue->type, curr->type);
+ noteSubtype(curr->ifFalse->type, curr->type);
+ }
+ void visitDrop(Drop* curr) {}
+ void visitReturn(Return* curr) {
+ if (curr->value) {
+ noteSubtype(curr->value->type, getFunction()->getResults());
+ }
+ }
+ void visitMemorySize(MemorySize* curr) {}
+ void visitMemoryGrow(MemoryGrow* curr) {}
+ void visitUnreachable(Unreachable* curr) {}
+ void visitPop(Pop* curr) {}
+ void visitRefNull(RefNull* curr) {}
+ void visitRefIsNull(RefIsNull* curr) {}
+ void visitRefFunc(RefFunc* curr) {}
+ void visitRefEq(RefEq* curr) {}
+ void visitTableGet(TableGet* curr) {}
+ void visitTableSet(TableSet* curr) {
+ noteSubtype(curr->value->type, getModule()->getTable(curr->table)->type);
+ }
+ void visitTableSize(TableSize* curr) {}
+ void visitTableGrow(TableGrow* curr) {}
+ void visitTableFill(TableFill* curr) {
+ noteSubtype(curr->value->type, getModule()->getTable(curr->table)->type);
+ }
+ void visitTry(Try* curr) {
+ noteSubtype(curr->body->type, curr->type);
+ for (auto* body : curr->catchBodies) {
+ noteSubtype(body->type, curr->type);
+ }
+ }
+ void visitThrow(Throw* curr) {
+ Type params = getModule()->getTag(curr->tag)->sig.params;
+ assert(params.size() == curr->operands.size());
+ for (size_t i = 0, size = curr->operands.size(); i < size; ++i) {
+ noteSubtype(curr->operands[i]->type, params[i]);
+ }
+ }
+ void visitRethrow(Rethrow* curr) {}
+ void visitTupleMake(TupleMake* curr) {}
+ void visitTupleExtract(TupleExtract* curr) {}
+ void visitRefI31(RefI31* curr) {}
+ void visitI31Get(I31Get* curr) {}
+ void visitCallRef(CallRef* curr) {
+ if (!curr->target->type.isSignature()) {
+ return;
+ }
+ handleCall(curr, curr->target->type.getHeapType().getSignature());
+ }
+ void visitRefTest(RefTest* curr) {
+ noteCast(curr->ref->type, curr->castType);
+ }
+ void visitRefCast(RefCast* curr) { noteCast(curr->ref->type, curr->type); }
+ void visitBrOn(BrOn* curr) {
+ if (curr->op == BrOnCast || curr->op == BrOnCastFail) {
+ noteCast(curr->ref->type, curr->castType);
+ }
+ noteSubtype(curr->getSentType(), findBreakTarget(curr->name)->type);
+ }
+ void visitStructNew(StructNew* curr) {
+ if (!curr->type.isStruct() || curr->isWithDefault()) {
+ return;
+ }
+ const auto& fields = curr->type.getHeapType().getStruct().fields;
+ assert(fields.size() == curr->operands.size());
+ for (size_t i = 0, size = fields.size(); i < size; ++i) {
+ noteSubtype(curr->operands[i]->type, fields[i].type);
+ }
+ }
+ void visitStructGet(StructGet* curr) {}
+ void visitStructSet(StructSet* curr) {
+ if (!curr->ref->type.isStruct()) {
+ return;
+ }
+ const auto& fields = curr->ref->type.getHeapType().getStruct().fields;
+ noteSubtype(curr->value->type, fields[curr->index].type);
+ }
+ void visitArrayNew(ArrayNew* curr) {
+ if (!curr->type.isArray() || curr->isWithDefault()) {
+ return;
+ }
+ auto array = curr->type.getHeapType().getArray();
+ noteSubtype(curr->init->type, array.element.type);
+ }
+ void visitArrayNewData(ArrayNewData* curr) {}
+ void visitArrayNewElem(ArrayNewElem* curr) {
+ if (!curr->type.isArray()) {
+ return;
+ }
+ auto array = curr->type.getHeapType().getArray();
+ auto* seg = getModule()->getElementSegment(curr->segment);
+ noteSubtype(seg->type, array.element.type);
+ }
+ void visitArrayNewFixed(ArrayNewFixed* curr) {
+ if (!curr->type.isArray()) {
+ return;
+ }
+ auto array = curr->type.getHeapType().getArray();
+ for (auto* value : curr->values) {
+ noteSubtype(value->type, array.element.type);
+ }
+ }
+ void visitArrayGet(ArrayGet* curr) {}
+ void visitArraySet(ArraySet* curr) {
+ if (!curr->ref->type.isArray()) {
+ return;
+ }
+ auto array = curr->ref->type.getHeapType().getArray();
+ noteSubtype(curr->value->type, array.element.type);
+ }
+ void visitArrayLen(ArrayLen* curr) {}
+ void visitArrayCopy(ArrayCopy* curr) {
+ if (!curr->srcRef->type.isArray() || !curr->destRef->type.isArray()) {
+ return;
+ }
+ auto src = curr->srcRef->type.getHeapType().getArray();
+ auto dest = curr->destRef->type.getHeapType().getArray();
+ noteSubtype(src.element.type, dest.element.type);
+ }
+ void visitArrayFill(ArrayFill* curr) {
+ if (!curr->ref->type.isArray()) {
+ return;
+ }
+ auto array = curr->ref->type.getHeapType().getArray();
+ noteSubtype(curr->value->type, array.element.type);
+ }
+ void visitArrayInitData(ArrayInitData* curr) {}
+ void visitArrayInitElem(ArrayInitElem* curr) {
+ if (!curr->ref->type.isArray()) {
+ return;
+ }
+ auto array = curr->ref->type.getHeapType().getArray();
+ auto* seg = getModule()->getElementSegment(curr->segment);
+ noteSubtype(seg->type, array.element.type);
+ }
+ void visitRefAs(RefAs* curr) {}
+ void visitStringNew(StringNew* curr) {}
+ void visitStringConst(StringConst* curr) {}
+ void visitStringMeasure(StringMeasure* curr) {}
+ void visitStringEncode(StringEncode* curr) {}
+ void visitStringConcat(StringConcat* curr) {}
+ void visitStringEq(StringEq* curr) {}
+ void visitStringAs(StringAs* curr) {}
+ void visitStringWTF8Advance(StringWTF8Advance* curr) {}
+ void visitStringWTF16Get(StringWTF16Get* curr) {}
+ void visitStringIterNext(StringIterNext* curr) {}
+ void visitStringIterMove(StringIterMove* curr) {}
+ void visitStringSliceWTF(StringSliceWTF* curr) {}
+ void visitStringSliceIter(StringSliceIter* curr) {}
+};
+
+} // anonymous namespace
+
+Pass* createUnsubtypingPass() { return new Unsubtyping(); }
+
+} // namespace wasm