diff options
author | Ashley Nelson <nashley@google.com> | 2023-07-17 19:48:29 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-18 02:48:29 +0000 |
commit | 159750d0fccd7ee453ac2f8569128e0ea94ba8a5 (patch) | |
tree | d2958b6099ef67bb755141a1d870b380ce5fa6a9 /src/support/suffix_tree.cpp | |
parent | f96fcb0e0c15299045b828447e65754727eeab57 (diff) | |
download | binaryen-159750d0fccd7ee453ac2f8569128e0ea94ba8a5.tar.gz binaryen-159750d0fccd7ee453ac2f8569128e0ea94ba8a5.tar.bz2 binaryen-159750d0fccd7ee453ac2f8569128e0ea94ba8a5.zip |
[Outlining] LLVM Suffix Tree (#5821)
This PR adds LLVM's suffix tree data structure to Binaryen. This suffix tree is implemented using Ukkonen's algorithm for linear-time suffix tree construction, and is intended for fast substring queries.
Note: All of the .h and .cpp files included are from LLVM. These files were copied directly instead of imported into our existing LLVM integration (in third_party/) to avoid bumping the commit hash and avoid the potential for complications with upstream changes.
Diffstat (limited to 'src/support/suffix_tree.cpp')
-rw-r--r-- | src/support/suffix_tree.cpp | 305 |
1 files changed, 305 insertions, 0 deletions
diff --git a/src/support/suffix_tree.cpp b/src/support/suffix_tree.cpp new file mode 100644 index 000000000..a66bcde38 --- /dev/null +++ b/src/support/suffix_tree.cpp @@ -0,0 +1,305 @@ +// This file began as an import from LLVM, and so it has the same license as +// LLVM, copied below together with the code. + +//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Suffix Tree class. +// +//===----------------------------------------------------------------------===// + +#include "support/suffix_tree.h" +#include "support/suffix_tree_node.h" +#include "llvm/Support/Casting.h" + +using namespace llvm; + +namespace wasm { + +/// \returns the number of elements in the substring associated with \p N. +static size_t numElementsInSubstring(const SuffixTreeNode* N) { + assert(N && "Got a null node?"); + if (auto* Internal = dyn_cast<SuffixTreeInternalNode>(N)) { + if (Internal->isRoot()) { + return 0; + } + } + return N->getEndIdx() - N->getStartIdx() + 1; +} + +SuffixTree::SuffixTree(const std::vector<unsigned>& Str) : Str(Str) { + Root = insertRoot(); + Active.Node = Root; + + // Keep track of the number of suffixes we have to add of the current + // prefix. + unsigned SuffixesToAdd = 0; + + // Construct the suffix tree iteratively on each prefix of the string. + // PfxEndIdx is the end index of the current prefix. + // End is one past the last element in the string. + for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { + SuffixesToAdd++; + LeafEndIdx = PfxEndIdx; // Extend each of the leaves. + SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); + } + + // Set the suffix indices of each leaf. + assert(Root && "Root node can't be nullptr!"); + setSuffixIndices(); +} + +SuffixTreeNode* SuffixTree::insertLeaf(SuffixTreeInternalNode& Parent, + unsigned StartIdx, + unsigned Edge) { + assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); + auto* N = new (LeafNodeAllocator.Allocate()) + SuffixTreeLeafNode(StartIdx, &LeafEndIdx); + Parent.Children[Edge] = N; + return N; +} + +SuffixTreeInternalNode* +SuffixTree::insertInternalNode(SuffixTreeInternalNode* Parent, + unsigned StartIdx, + unsigned EndIdx, + unsigned Edge) { + assert(StartIdx <= EndIdx && "String can't start after it ends!"); + assert(!(!Parent && StartIdx != SuffixTreeNode::EmptyIdx) && + "Non-root internal nodes must have parents!"); + auto* N = new (InternalNodeAllocator.Allocate()) + SuffixTreeInternalNode(StartIdx, EndIdx, Root); + if (Parent) { + Parent->Children[Edge] = N; + } + return N; +} + +SuffixTreeInternalNode* SuffixTree::insertRoot() { + return insertInternalNode(/*Parent = */ nullptr, + SuffixTreeNode::EmptyIdx, + SuffixTreeNode::EmptyIdx, + /*Edge = */ 0); +} + +void SuffixTree::setSuffixIndices() { + // List of nodes we need to visit along with the current length of the + // string. + std::vector<std::pair<SuffixTreeNode*, unsigned>> ToVisit; + + // Current node being visited. + SuffixTreeNode* CurrNode = Root; + + // Sum of the lengths of the nodes down the path to the current one. + unsigned CurrNodeLen = 0; + ToVisit.push_back({CurrNode, CurrNodeLen}); + while (!ToVisit.empty()) { + std::tie(CurrNode, CurrNodeLen) = ToVisit.back(); + ToVisit.pop_back(); + // Length of the current node from the root down to here. + CurrNode->setConcatLen(CurrNodeLen); + if (auto* InternalNode = dyn_cast<SuffixTreeInternalNode>(CurrNode)) { + for (auto& ChildPair : InternalNode->Children) { + assert(ChildPair.second && "Node had a null child!"); + ToVisit.push_back( + {ChildPair.second, + CurrNodeLen + numElementsInSubstring(ChildPair.second)}); + } + } + // No children, so we are at the end of the string. + if (auto* LeafNode = dyn_cast<SuffixTreeLeafNode>(CurrNode)) { + LeafNode->setSuffixIdx(Str.size() - CurrNodeLen); + } + } +} + +unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) { + SuffixTreeInternalNode* NeedsLink = nullptr; + + while (SuffixesToAdd > 0) { + + // Are we waiting to add anything other than just the last character? + if (Active.Len == 0) { + // If not, then say the active index is the end index. + Active.Idx = EndIdx; + } + + assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); + + // The first character in the current substring we're looking at. + unsigned FirstChar = Str[Active.Idx]; + + // Have we inserted anything starting with FirstChar at the current node? + if (Active.Node->Children.count(FirstChar) == 0) { + // If not, then we can just insert a leaf and move to the next step. + insertLeaf(*Active.Node, EndIdx, FirstChar); + + // The active node is an internal node, and we visited it, so it must + // need a link if it doesn't have one. + if (NeedsLink) { + NeedsLink->setLink(Active.Node); + NeedsLink = nullptr; + } + } else { + // There's a match with FirstChar, so look for the point in the tree to + // insert a new node. + SuffixTreeNode* NextNode = Active.Node->Children[FirstChar]; + + unsigned SubstringLen = numElementsInSubstring(NextNode); + + // Is the current suffix we're trying to insert longer than the size of + // the child we want to move to? + if (Active.Len >= SubstringLen) { + // If yes, then consume the characters we've seen and move to the next + // node. + // TODO: Enable the below assert + // assert(isa<SuffixTreeInternalNode>(NextNode) && + // "Expected an internal node?"); + Active.Idx += SubstringLen; + Active.Len -= SubstringLen; + Active.Node = cast<SuffixTreeInternalNode>(NextNode); + continue; + } + + // Otherwise, the suffix we're trying to insert must be contained in the + // next node we want to move to. + unsigned LastChar = Str[EndIdx]; + + // Is the string we're trying to insert a substring of the next node? + if (Str[NextNode->getStartIdx() + Active.Len] == LastChar) { + // If yes, then we're done for this step. Remember our insertion point + // and move to the next end index. At this point, we have an implicit + // suffix tree. + if (NeedsLink && !Active.Node->isRoot()) { + NeedsLink->setLink(Active.Node); + NeedsLink = nullptr; + } + + Active.Len++; + break; + } + + // The string we're trying to insert isn't a substring of the next node, + // but matches up to a point. Split the node. + // + // For example, say we ended our search at a node n and we're trying to + // insert ABD. Then we'll create a new node s for AB, reduce n to just + // representing C, and insert a new leaf node l to represent d. This + // allows us to ensure that if n was a leaf, it remains a leaf. + // + // | ABC ---split---> | AB + // n s + // C / \ D + // n l + + // The node s from the diagram + SuffixTreeInternalNode* SplitNode = + insertInternalNode(Active.Node, + NextNode->getStartIdx(), + NextNode->getStartIdx() + Active.Len - 1, + FirstChar); + + // Insert the new node representing the new substring into the tree as + // a child of the split node. This is the node l from the diagram. + insertLeaf(*SplitNode, EndIdx, LastChar); + + // Make the old node a child of the split node and update its start + // index. This is the node n from the diagram. + NextNode->incrementStartIdx(Active.Len); + SplitNode->Children[Str[NextNode->getStartIdx()]] = NextNode; + + // SplitNode is an internal node, update the suffix link. + if (NeedsLink) { + NeedsLink->setLink(SplitNode); + } + + NeedsLink = SplitNode; + } + + // We've added something new to the tree, so there's one less suffix to + // add. + SuffixesToAdd--; + + if (Active.Node->isRoot()) { + if (Active.Len > 0) { + Active.Len--; + Active.Idx = EndIdx - SuffixesToAdd + 1; + } + } else { + // Start the next phase at the next smallest suffix. + Active.Node = Active.Node->getLink(); + } + } + + return SuffixesToAdd; +} + +void SuffixTree::RepeatedSubstringIterator::advance() { + // Clear the current state. If we're at the end of the range, then this + // is the state we want to be in. + RS = RepeatedSubstring(); + N = nullptr; + + // Each leaf node represents a repeat of a string. + std::vector<unsigned> RepeatedSubstringStarts; + + // Continue visiting nodes until we find one which repeats more than once. + while (!InternalNodesToVisit.empty()) { + RepeatedSubstringStarts.clear(); + auto* Curr = InternalNodesToVisit.back(); + InternalNodesToVisit.pop_back(); + + // Keep track of the length of the string associated with the node. If + // it's too short, we'll quit. + unsigned Length = Curr->getConcatLen(); + + // Iterate over each child, saving internal nodes for visiting, and + // leaf nodes in LeafChildren. Internal nodes represent individual + // strings, which may repeat. + for (auto& ChildPair : Curr->Children) { + // Save all of this node's children for processing. + if (auto* InternalChild = + dyn_cast<SuffixTreeInternalNode>(ChildPair.second)) { + InternalNodesToVisit.push_back(InternalChild); + continue; + } + + if (Length < MinLength) { + continue; + } + + // Have an occurrence of a potentially repeated string. Save it. + auto* Leaf = cast<SuffixTreeLeafNode>(ChildPair.second); + RepeatedSubstringStarts.push_back(Leaf->getSuffixIdx()); + } + + // The root never represents a repeated substring. If we're looking at + // that, then skip it. + if (Curr->isRoot()) { + continue; + } + + // Do we have any repeated substrings? + if (RepeatedSubstringStarts.size() < 2) { + continue; + } + + // Yes. Update the state to reflect this, and then bail out. + N = Curr; + RS.Length = Length; + for (unsigned StartIdx : RepeatedSubstringStarts) { + RS.StartIndices.push_back(StartIdx); + } + break; + } + // At this point, either NewRS is an empty RepeatedSubstring, or it was + // set in the above loop. Similarly, N is either nullptr, or the node + // associated with NewRS. +} + +} // namespace wasm |