summaryrefslogtreecommitdiff
path: root/src/support/suffix_tree.cpp
diff options
context:
space:
mode:
authorAshley Nelson <nashley@google.com>2023-07-17 19:48:29 -0700
committerGitHub <noreply@github.com>2023-07-18 02:48:29 +0000
commit159750d0fccd7ee453ac2f8569128e0ea94ba8a5 (patch)
treed2958b6099ef67bb755141a1d870b380ce5fa6a9 /src/support/suffix_tree.cpp
parentf96fcb0e0c15299045b828447e65754727eeab57 (diff)
downloadbinaryen-159750d0fccd7ee453ac2f8569128e0ea94ba8a5.tar.gz
binaryen-159750d0fccd7ee453ac2f8569128e0ea94ba8a5.tar.bz2
binaryen-159750d0fccd7ee453ac2f8569128e0ea94ba8a5.zip
[Outlining] LLVM Suffix Tree (#5821)
This PR adds LLVM's suffix tree data structure to Binaryen. This suffix tree is implemented using Ukkonen's algorithm for linear-time suffix tree construction, and is intended for fast substring queries. Note: All of the .h and .cpp files included are from LLVM. These files were copied directly instead of imported into our existing LLVM integration (in third_party/) to avoid bumping the commit hash and avoid the potential for complications with upstream changes.
Diffstat (limited to 'src/support/suffix_tree.cpp')
-rw-r--r--src/support/suffix_tree.cpp305
1 files changed, 305 insertions, 0 deletions
diff --git a/src/support/suffix_tree.cpp b/src/support/suffix_tree.cpp
new file mode 100644
index 000000000..a66bcde38
--- /dev/null
+++ b/src/support/suffix_tree.cpp
@@ -0,0 +1,305 @@
+// This file began as an import from LLVM, and so it has the same license as
+// LLVM, copied below together with the code.
+
+//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Suffix Tree class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "support/suffix_tree.h"
+#include "support/suffix_tree_node.h"
+#include "llvm/Support/Casting.h"
+
+using namespace llvm;
+
+namespace wasm {
+
+/// \returns the number of elements in the substring associated with \p N.
+static size_t numElementsInSubstring(const SuffixTreeNode* N) {
+ assert(N && "Got a null node?");
+ if (auto* Internal = dyn_cast<SuffixTreeInternalNode>(N)) {
+ if (Internal->isRoot()) {
+ return 0;
+ }
+ }
+ return N->getEndIdx() - N->getStartIdx() + 1;
+}
+
+SuffixTree::SuffixTree(const std::vector<unsigned>& Str) : Str(Str) {
+ Root = insertRoot();
+ Active.Node = Root;
+
+ // Keep track of the number of suffixes we have to add of the current
+ // prefix.
+ unsigned SuffixesToAdd = 0;
+
+ // Construct the suffix tree iteratively on each prefix of the string.
+ // PfxEndIdx is the end index of the current prefix.
+ // End is one past the last element in the string.
+ for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
+ SuffixesToAdd++;
+ LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
+ SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
+ }
+
+ // Set the suffix indices of each leaf.
+ assert(Root && "Root node can't be nullptr!");
+ setSuffixIndices();
+}
+
+SuffixTreeNode* SuffixTree::insertLeaf(SuffixTreeInternalNode& Parent,
+ unsigned StartIdx,
+ unsigned Edge) {
+ assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
+ auto* N = new (LeafNodeAllocator.Allocate())
+ SuffixTreeLeafNode(StartIdx, &LeafEndIdx);
+ Parent.Children[Edge] = N;
+ return N;
+}
+
+SuffixTreeInternalNode*
+SuffixTree::insertInternalNode(SuffixTreeInternalNode* Parent,
+ unsigned StartIdx,
+ unsigned EndIdx,
+ unsigned Edge) {
+ assert(StartIdx <= EndIdx && "String can't start after it ends!");
+ assert(!(!Parent && StartIdx != SuffixTreeNode::EmptyIdx) &&
+ "Non-root internal nodes must have parents!");
+ auto* N = new (InternalNodeAllocator.Allocate())
+ SuffixTreeInternalNode(StartIdx, EndIdx, Root);
+ if (Parent) {
+ Parent->Children[Edge] = N;
+ }
+ return N;
+}
+
+SuffixTreeInternalNode* SuffixTree::insertRoot() {
+ return insertInternalNode(/*Parent = */ nullptr,
+ SuffixTreeNode::EmptyIdx,
+ SuffixTreeNode::EmptyIdx,
+ /*Edge = */ 0);
+}
+
+void SuffixTree::setSuffixIndices() {
+ // List of nodes we need to visit along with the current length of the
+ // string.
+ std::vector<std::pair<SuffixTreeNode*, unsigned>> ToVisit;
+
+ // Current node being visited.
+ SuffixTreeNode* CurrNode = Root;
+
+ // Sum of the lengths of the nodes down the path to the current one.
+ unsigned CurrNodeLen = 0;
+ ToVisit.push_back({CurrNode, CurrNodeLen});
+ while (!ToVisit.empty()) {
+ std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
+ ToVisit.pop_back();
+ // Length of the current node from the root down to here.
+ CurrNode->setConcatLen(CurrNodeLen);
+ if (auto* InternalNode = dyn_cast<SuffixTreeInternalNode>(CurrNode)) {
+ for (auto& ChildPair : InternalNode->Children) {
+ assert(ChildPair.second && "Node had a null child!");
+ ToVisit.push_back(
+ {ChildPair.second,
+ CurrNodeLen + numElementsInSubstring(ChildPair.second)});
+ }
+ }
+ // No children, so we are at the end of the string.
+ if (auto* LeafNode = dyn_cast<SuffixTreeLeafNode>(CurrNode)) {
+ LeafNode->setSuffixIdx(Str.size() - CurrNodeLen);
+ }
+ }
+}
+
+unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) {
+ SuffixTreeInternalNode* NeedsLink = nullptr;
+
+ while (SuffixesToAdd > 0) {
+
+ // Are we waiting to add anything other than just the last character?
+ if (Active.Len == 0) {
+ // If not, then say the active index is the end index.
+ Active.Idx = EndIdx;
+ }
+
+ assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
+
+ // The first character in the current substring we're looking at.
+ unsigned FirstChar = Str[Active.Idx];
+
+ // Have we inserted anything starting with FirstChar at the current node?
+ if (Active.Node->Children.count(FirstChar) == 0) {
+ // If not, then we can just insert a leaf and move to the next step.
+ insertLeaf(*Active.Node, EndIdx, FirstChar);
+
+ // The active node is an internal node, and we visited it, so it must
+ // need a link if it doesn't have one.
+ if (NeedsLink) {
+ NeedsLink->setLink(Active.Node);
+ NeedsLink = nullptr;
+ }
+ } else {
+ // There's a match with FirstChar, so look for the point in the tree to
+ // insert a new node.
+ SuffixTreeNode* NextNode = Active.Node->Children[FirstChar];
+
+ unsigned SubstringLen = numElementsInSubstring(NextNode);
+
+ // Is the current suffix we're trying to insert longer than the size of
+ // the child we want to move to?
+ if (Active.Len >= SubstringLen) {
+ // If yes, then consume the characters we've seen and move to the next
+ // node.
+ // TODO: Enable the below assert
+ // assert(isa<SuffixTreeInternalNode>(NextNode) &&
+ // "Expected an internal node?");
+ Active.Idx += SubstringLen;
+ Active.Len -= SubstringLen;
+ Active.Node = cast<SuffixTreeInternalNode>(NextNode);
+ continue;
+ }
+
+ // Otherwise, the suffix we're trying to insert must be contained in the
+ // next node we want to move to.
+ unsigned LastChar = Str[EndIdx];
+
+ // Is the string we're trying to insert a substring of the next node?
+ if (Str[NextNode->getStartIdx() + Active.Len] == LastChar) {
+ // If yes, then we're done for this step. Remember our insertion point
+ // and move to the next end index. At this point, we have an implicit
+ // suffix tree.
+ if (NeedsLink && !Active.Node->isRoot()) {
+ NeedsLink->setLink(Active.Node);
+ NeedsLink = nullptr;
+ }
+
+ Active.Len++;
+ break;
+ }
+
+ // The string we're trying to insert isn't a substring of the next node,
+ // but matches up to a point. Split the node.
+ //
+ // For example, say we ended our search at a node n and we're trying to
+ // insert ABD. Then we'll create a new node s for AB, reduce n to just
+ // representing C, and insert a new leaf node l to represent d. This
+ // allows us to ensure that if n was a leaf, it remains a leaf.
+ //
+ // | ABC ---split---> | AB
+ // n s
+ // C / \ D
+ // n l
+
+ // The node s from the diagram
+ SuffixTreeInternalNode* SplitNode =
+ insertInternalNode(Active.Node,
+ NextNode->getStartIdx(),
+ NextNode->getStartIdx() + Active.Len - 1,
+ FirstChar);
+
+ // Insert the new node representing the new substring into the tree as
+ // a child of the split node. This is the node l from the diagram.
+ insertLeaf(*SplitNode, EndIdx, LastChar);
+
+ // Make the old node a child of the split node and update its start
+ // index. This is the node n from the diagram.
+ NextNode->incrementStartIdx(Active.Len);
+ SplitNode->Children[Str[NextNode->getStartIdx()]] = NextNode;
+
+ // SplitNode is an internal node, update the suffix link.
+ if (NeedsLink) {
+ NeedsLink->setLink(SplitNode);
+ }
+
+ NeedsLink = SplitNode;
+ }
+
+ // We've added something new to the tree, so there's one less suffix to
+ // add.
+ SuffixesToAdd--;
+
+ if (Active.Node->isRoot()) {
+ if (Active.Len > 0) {
+ Active.Len--;
+ Active.Idx = EndIdx - SuffixesToAdd + 1;
+ }
+ } else {
+ // Start the next phase at the next smallest suffix.
+ Active.Node = Active.Node->getLink();
+ }
+ }
+
+ return SuffixesToAdd;
+}
+
+void SuffixTree::RepeatedSubstringIterator::advance() {
+ // Clear the current state. If we're at the end of the range, then this
+ // is the state we want to be in.
+ RS = RepeatedSubstring();
+ N = nullptr;
+
+ // Each leaf node represents a repeat of a string.
+ std::vector<unsigned> RepeatedSubstringStarts;
+
+ // Continue visiting nodes until we find one which repeats more than once.
+ while (!InternalNodesToVisit.empty()) {
+ RepeatedSubstringStarts.clear();
+ auto* Curr = InternalNodesToVisit.back();
+ InternalNodesToVisit.pop_back();
+
+ // Keep track of the length of the string associated with the node. If
+ // it's too short, we'll quit.
+ unsigned Length = Curr->getConcatLen();
+
+ // Iterate over each child, saving internal nodes for visiting, and
+ // leaf nodes in LeafChildren. Internal nodes represent individual
+ // strings, which may repeat.
+ for (auto& ChildPair : Curr->Children) {
+ // Save all of this node's children for processing.
+ if (auto* InternalChild =
+ dyn_cast<SuffixTreeInternalNode>(ChildPair.second)) {
+ InternalNodesToVisit.push_back(InternalChild);
+ continue;
+ }
+
+ if (Length < MinLength) {
+ continue;
+ }
+
+ // Have an occurrence of a potentially repeated string. Save it.
+ auto* Leaf = cast<SuffixTreeLeafNode>(ChildPair.second);
+ RepeatedSubstringStarts.push_back(Leaf->getSuffixIdx());
+ }
+
+ // The root never represents a repeated substring. If we're looking at
+ // that, then skip it.
+ if (Curr->isRoot()) {
+ continue;
+ }
+
+ // Do we have any repeated substrings?
+ if (RepeatedSubstringStarts.size() < 2) {
+ continue;
+ }
+
+ // Yes. Update the state to reflect this, and then bail out.
+ N = Curr;
+ RS.Length = Length;
+ for (unsigned StartIdx : RepeatedSubstringStarts) {
+ RS.StartIndices.push_back(StartIdx);
+ }
+ break;
+ }
+ // At this point, either NewRS is an empty RepeatedSubstring, or it was
+ // set in the above loop. Similarly, N is either nullptr, or the node
+ // associated with NewRS.
+}
+
+} // namespace wasm