diff options
author | Alon Zakai <azakai@google.com> | 2021-08-05 11:03:34 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-08-05 11:03:34 -0700 |
commit | 243ac8942e1e0136b8d91242642d9bc825a9cfd9 (patch) | |
tree | 15a354159162a566251383913cee329be0c1d1f5 /src | |
parent | 4ba4d31eafb723a28503faffae1702940b6926ca (diff) | |
download | binaryen-243ac8942e1e0136b8d91242642d9bc825a9cfd9.tar.gz binaryen-243ac8942e1e0136b8d91242642d9bc825a9cfd9.tar.bz2 binaryen-243ac8942e1e0136b8d91242642d9bc825a9cfd9.zip |
[Wasm GC] Constant Field Propagation (#4052)
A field in a struct is constant if we can see that in the entire program we
only ever write the same constant value to it. For example, imagine a
vtable type that we construct with the same funcrefs each time, then (if
we have no struct.sets, or if we did, and they had the same value), we
could replace a get with that constant value, since it cannot be anything
else:
(struct.new $T (i32.const 10) (rtt))
..no other conflicting values..
(struct.get $T 0) => (i32.const 10)
If the value is a function reference, then this may allow other passes
to turn what was a call_ref into a direct call and perhaps also get
inlined, effectively a form of devirtualization.
This only works in nominal typing, as we need to know the supertype
of each type. (It could work in theory in structural, but we'd need to do
hard work to find all the possible supertypes, and it would also
become far less effective.)
This deletes a trivial test for running -O on GC content. We have
many more tests for GC at this point, so that test is not needed, and
this PR also optimizes the code into something trivial and
uninteresting anyhow.
Diffstat (limited to 'src')
-rw-r--r-- | src/passes/CMakeLists.txt | 1 | ||||
-rw-r--r-- | src/passes/ConstantFieldPropagation.cpp | 456 | ||||
-rw-r--r-- | src/passes/pass.cpp | 7 | ||||
-rw-r--r-- | src/passes/passes.h | 1 | ||||
-rw-r--r-- | src/wasm-type.h | 2 | ||||
-rw-r--r-- | src/wasm/wasm-type.cpp | 3 |
6 files changed, 470 insertions, 0 deletions
diff --git a/src/passes/CMakeLists.txt b/src/passes/CMakeLists.txt index 9cc5e1f96..ad5600f1b 100644 --- a/src/passes/CMakeLists.txt +++ b/src/passes/CMakeLists.txt @@ -15,6 +15,7 @@ set(passes_SOURCES CoalesceLocals.cpp CodePushing.cpp CodeFolding.cpp + ConstantFieldPropagation.cpp ConstHoisting.cpp DataFlowOpts.cpp DeadArgumentElimination.cpp diff --git a/src/passes/ConstantFieldPropagation.cpp b/src/passes/ConstantFieldPropagation.cpp new file mode 100644 index 000000000..621ceec2a --- /dev/null +++ b/src/passes/ConstantFieldPropagation.cpp @@ -0,0 +1,456 @@ +/* + * Copyright 2021 WebAssembly Community Group participants + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +// +// Find struct fields that are always written to with a constant value, and +// replace gets of them with that value. +// +// For example, if we have a vtable of type T, and we always create it with one +// of the fields containing a ref.func of the same function F, and there is no +// write to that field of a different value (even using a subtype of T), then +// anywhere we see a get of that field we can place a ref.func of F. +// +// FIXME: This pass assumes a closed world. When we start to allow multi-module +// wasm GC programs we need to check for type escaping. +// + +#include "ir/module-utils.h" +#include "ir/properties.h" +#include "ir/utils.h" +#include "pass.h" +#include "support/unique_deferring_queue.h" +#include "wasm-builder.h" +#include "wasm-traversal.h" +#include "wasm.h" + +namespace wasm { + +namespace { + +// A nominal type always knows who its supertype is, if there is one; this class +// provides the list of immediate subtypes. +struct SubTypes { + SubTypes(Module& wasm) { + std::vector<HeapType> types; + std::unordered_map<HeapType, Index> typeIndices; + ModuleUtils::collectHeapTypes(wasm, types, typeIndices); + for (auto type : types) { + note(type); + } + } + + const std::unordered_set<HeapType>& getSubTypes(HeapType type) { + return typeSubTypes[type]; + } + +private: + // Add a type to the graph. + void note(HeapType type) { + HeapType super; + if (type.getSuperType(super)) { + typeSubTypes[super].insert(type); + } + } + + // Maps a type to its subtypes. + std::unordered_map<HeapType, std::unordered_set<HeapType>> typeSubTypes; +}; + +// Represents data about what constant values are possible in a particular +// place. There may be no values, or one, or many, or if a non-constant value is +// possible, then all we can say is that the value is "unknown" - it can be +// anything. +// +// Currently this just looks for a single constant value, and even two constant +// values are treated as unknown. It may be worth optimizing more than that TODO +struct PossibleConstantValues { + // Note a written value as we see it, and update our internal knowledge based + // on it and all previous values noted. + void note(Literal curr) { + if (!noted) { + // This is the first value. + value = curr; + noted = true; + return; + } + + // This is a subsequent value. Check if it is different from all previous + // ones. + if (curr != value) { + noteUnknown(); + } + } + + // Notes a value that is unknown - it can be anything. We have failed to + // identify a constant value here. + void noteUnknown() { + value = Literal(Type::none); + noted = true; + } + + // Combine the information in a given PossibleConstantValues to this one. This + // is the same as if we have called note*() on us with all the history of + // calls to that other object. + // + // Returns whether we changed anything. + bool combine(const PossibleConstantValues& other) { + if (!other.noted) { + return false; + } + if (!noted) { + *this = other; + return other.noted; + } + if (!isConstant()) { + return false; + } + if (!other.isConstant() || getConstantValue() != other.getConstantValue()) { + noteUnknown(); + return true; + } + return false; + } + + // Check if all the values are identical and constant. + bool isConstant() const { return noted && value.type.isConcrete(); } + + // Returns the single constant value. + Literal getConstantValue() const { + assert(isConstant()); + return value; + } + + // Returns whether we have ever noted a value. + bool hasNoted() const { return noted; } + + void dump(std::ostream& o) { + o << '['; + if (!hasNoted()) { + o << "unwritten"; + } else if (!isConstant()) { + o << "unknown"; + } else { + o << value; + } + o << ']'; + } + +private: + // Whether we have noted any values at all. + bool noted = false; + + // The one value we have seen, if there is one. If we realize there is no + // single constant value here, we make this have a non-concrete (impossible) + // type to indicate that. Otherwise, a concrete type indicates we have a + // constant value. + Literal value; +}; + +// A vector of PossibleConstantValues. One such vector will be used per struct +// type, where each element in the vector represents a field. We always assume +// that the vectors are pre-initialized to the right length before accessing any +// data, which this class enforces using assertions, and which is implemented in +// StructValuesMap. +struct StructValues : public std::vector<PossibleConstantValues> { + PossibleConstantValues& operator[](size_t index) { + assert(index < size()); + return std::vector<PossibleConstantValues>::operator[](index); + } +}; + +// Map of types to information about the values their fields can take. +// Concretely, this maps a type to a StructValues which has one element per +// field. +struct StructValuesMap : public std::unordered_map<HeapType, StructValues> { + // When we access an item, if it does not already exist, create it with a + // vector of the right length for that type. + StructValues& operator[](HeapType type) { + auto inserted = insert({type, {}}); + auto& values = inserted.first->second; + if (inserted.second) { + values.resize(type.getStruct().fields.size()); + } + return values; + } + + void dump(std::ostream& o) { + o << "dump " << this << '\n'; + for (auto& kv : (*this)) { + auto type = kv.first; + auto& vec = kv.second; + o << "dump " << type << " " << &vec << ' '; + for (auto x : vec) { + x.dump(o); + o << " "; + }; + o << '\n'; + } + } +}; + +// Map of functions to their field value infos. We compute those in parallel, +// then later we will merge them all. +using FunctionStructValuesMap = std::unordered_map<Function*, StructValuesMap>; + +// Scan each function to note all its writes to struct fields. +struct Scanner : public WalkerPass<PostWalker<Scanner>> { + bool isFunctionParallel() override { return true; } + + Pass* create() override { return new Scanner(functionInfos); } + + Scanner(FunctionStructValuesMap& functionInfos) + : functionInfos(functionInfos) {} + + void visitStructNew(StructNew* curr) { + auto type = curr->type; + if (type == Type::unreachable) { + return; + } + + // Note writes to all the fields of the struct. + auto heapType = type.getHeapType(); + auto& values = getStructValues(heapType); + auto& fields = heapType.getStruct().fields; + for (Index i = 0; i < fields.size(); i++) { + auto& fieldValues = values[i]; + if (curr->isWithDefault()) { + fieldValues.note(Literal::makeZero(fields[i].type)); + } else { + noteExpression(curr->operands[i], fieldValues); + } + } + } + + void visitStructSet(StructSet* curr) { + auto type = curr->ref->type; + if (type == Type::unreachable) { + return; + } + + // Note a write to this field of the struct. + auto heapType = type.getHeapType(); + noteExpression(curr->value, getStructValues(heapType)[curr->index]); + } + +private: + FunctionStructValuesMap& functionInfos; + + StructValues& getStructValues(HeapType type) { + return functionInfos[getFunction()][type]; + } + + // Note a value, checking whether it is a constant or not. + void noteExpression(Expression* expr, PossibleConstantValues& info) { + expr = + Properties::getFallthrough(expr, getPassOptions(), getModule()->features); + if (!Properties::isConstantExpression(expr)) { + info.noteUnknown(); + } else { + info.note(Properties::getLiteral(expr)); + } + } +}; + +// Optimize struct gets based on what we've learned about writes. +// +// TODO Aside from writes, we could use information like whether any struct of +// this type has even been created (to handle the case of struct.sets but +// no struct.news). +struct FunctionOptimizer : public WalkerPass<PostWalker<FunctionOptimizer>> { + bool isFunctionParallel() override { return true; } + + Pass* create() override { return new FunctionOptimizer(infos); } + + FunctionOptimizer(StructValuesMap& infos) : infos(infos) {} + + void visitStructGet(StructGet* curr) { + auto type = curr->ref->type; + if (type == Type::unreachable) { + return; + } + + Builder builder(*getModule()); + + // Find the info for this field, and see if we can optimize. First, see if + // there is any information for this heap type at all. If there isn't, it is + // as if nothing was ever noted for that field. + PossibleConstantValues info; + assert(!info.hasNoted()); + auto iter = infos.find(type.getHeapType()); + if (iter != infos.end()) { + // There is information on this type, fetch it. + info = iter->second[curr->index]; + } + + if (!info.hasNoted()) { + // This field is never written at all. That means that we do not even + // construct any data of this type, and so it is a logic error to reach + // this location in the code. (Unless we are in an open-world + // situation, which we assume we are not in.) Replace this get with a + // trap. Note that we do not need to care about the nullability of the + // reference, as if it should have trapped, we are replacing it with + // another trap, which we allow to reorder (but we do need to care about + // side effects in the reference, so keep it around). + replaceCurrent(builder.makeSequence(builder.makeDrop(curr->ref), + builder.makeUnreachable())); + changed = true; + return; + } + + // If the value is not a constant, then it is unknown and we must give up. + if (!info.isConstant()) { + return; + } + + // We can do this! Replace the get with a trap on a null reference using a + // ref.as_non_null (we need to trap as the get would have done so), plus the + // constant value. (Leave it to further optimizations to get rid of the + // ref.) + replaceCurrent(builder.makeSequence( + builder.makeDrop(builder.makeRefAs(RefAsNonNull, curr->ref)), + builder.makeConstantExpression(info.getConstantValue()))); + changed = true; + } + + void doWalkFunction(Function* func) { + WalkerPass<PostWalker<FunctionOptimizer>>::doWalkFunction(func); + + // If we changed anything, we need to update parent types as types may have + // changed. + if (changed) { + ReFinalize().walkFunctionInModule(func, getModule()); + } + } + +private: + StructValuesMap& infos; + + bool changed = false; +}; + +struct ConstantFieldPropagation : public Pass { + void run(PassRunner* runner, Module* module) override { + if (getTypeSystem() != TypeSystem::Nominal) { + Fatal() << "ConstantFieldPropagation requires nominal typing"; + } + + // Find and analyze all writes inside each function. + FunctionStructValuesMap functionInfos; + for (auto& func : module->functions) { + // Initialize the data for each function, so that we can operate on this + // structure in parallel without modifying it. + functionInfos[func.get()]; + } + Scanner scanner(functionInfos); + scanner.run(runner, module); + scanner.walkModuleCode(module); + + // Combine the data from the functions. + StructValuesMap combinedInfos; + for (auto& kv : functionInfos) { + StructValuesMap& infos = kv.second; + for (auto& kv : infos) { + auto type = kv.first; + auto& info = kv.second; + for (Index i = 0; i < info.size(); i++) { + combinedInfos[type][i].combine(info[i]); + } + } + } + + // Handle subtyping. |combinedInfo| so far contains data that represents + // each struct.new and struct.set's operation on the struct type used in + // that instruction. That is, if we do a struct.set to type T, the value was + // noted for type T. But our actual goal is to answer questions about + // struct.gets. Specifically, when later we see: + // + // (struct.get $A x (REF-1)) + // + // Then we want to be aware of all the relevant struct.sets, that is, the + // sets that can write data that this get reads. Given a set + // + // (struct.set $B x (REF-2) (..value..)) + // + // then + // + // 1. If $B is a subtype of $A, it is relevant: the get might read from a + // struct of type $B (i.e., REF-1 and REF-2 might be identical, and both + // be a struct of type $B). + // 2. If $B is a supertype of $A that still has the field x then it may + // also be relevant: since $A is a subtype of $B, the set may write to a + // struct of type $A (and again, REF-1 and REF-2 may be identical). + // + // Thus, if either $A <: $B or $B <: $A then we must consider the get and + // set to be relevant to each other. To make our later lookups for gets + // efficient, we therefore propagate information about the possible values + // in each field to both subtypes and supertypes. + // + // TODO: Model struct.new separately from struct.set. With new we actually + // do know the specific type being written to, which means a get is + // only relevant for a new if the get is of a subtype. That means we + // only need to propagate values from new to subtypes. + // + // TODO: A topological sort could avoid repeated work here perhaps. + SubTypes subTypes(*module); + UniqueDeferredQueue<HeapType> work; + for (auto& kv : combinedInfos) { + auto type = kv.first; + work.push(type); + } + while (!work.empty()) { + auto type = work.pop(); + auto& infos = combinedInfos[type]; + + // Propagate shared fields to the supertype. + HeapType superType; + if (type.getSuperType(superType)) { + auto& superInfos = combinedInfos[superType]; + auto& superFields = superType.getStruct().fields; + for (Index i = 0; i < superFields.size(); i++) { + if (superInfos[i].combine(infos[i])) { + work.push(superType); + } + } + } + + // Propagate shared fields to the subtypes. + auto numFields = type.getStruct().fields.size(); + for (auto subType : subTypes.getSubTypes(type)) { + auto& subInfos = combinedInfos[subType]; + for (Index i = 0; i < numFields; i++) { + if (subInfos[i].combine(infos[i])) { + work.push(subType); + } + } + } + } + + // Optimize. + // TODO: Skip this if we cannot optimize anything + FunctionOptimizer(combinedInfos).run(runner, module); + + // TODO: Actually remove the field from the type, where possible? That might + // be best in another pass. + } +}; + +} // anonymous namespace + +Pass* createConstantFieldPropagationPass() { + return new ConstantFieldPropagation(); +} + +} // namespace wasm diff --git a/src/passes/pass.cpp b/src/passes/pass.cpp index 137a89703..fa706dd10 100644 --- a/src/passes/pass.cpp +++ b/src/passes/pass.cpp @@ -102,6 +102,9 @@ void PassRegistry::registerPasses() { registerPass("const-hoisting", "hoist repeated constants to a local", createConstHoistingPass); + registerPass("cfp", + "propagate constant struct field values", + createConstantFieldPropagationPass); registerPass( "dce", "removes unreachable code", createDeadCodeEliminationPass); registerPass("dealign", @@ -499,6 +502,10 @@ void PassRunner::addDefaultFunctionOptimizationPasses() { void PassRunner::addDefaultGlobalOptimizationPrePasses() { addIfNoDWARFIssues("duplicate-function-elimination"); addIfNoDWARFIssues("memory-packing"); + if (wasm->features.hasGC() && getTypeSystem() == TypeSystem::Nominal && + options.optimizeLevel >= 2) { + addIfNoDWARFIssues("cfp"); + } } void PassRunner::addDefaultGlobalOptimizationPostPasses() { diff --git a/src/passes/passes.h b/src/passes/passes.h index c58259f86..9a9d6378d 100644 --- a/src/passes/passes.h +++ b/src/passes/passes.h @@ -30,6 +30,7 @@ Pass* createCoalesceLocalsWithLearningPass(); Pass* createCodeFoldingPass(); Pass* createCodePushingPass(); Pass* createConstHoistingPass(); +Pass* createConstantFieldPropagationPass(); Pass* createDAEPass(); Pass* createDAEOptimizingPass(); Pass* createDataFlowOptsPass(); diff --git a/src/wasm-type.h b/src/wasm-type.h index ff1019e55..43a93b4aa 100644 --- a/src/wasm-type.h +++ b/src/wasm-type.h @@ -41,6 +41,8 @@ enum class TypeSystem { // created. The default system is equirecursive. void setTypeSystem(TypeSystem system); +TypeSystem getTypeSystem(); + // The types defined in this file. All of them are small and typically passed by // value except for `Tuple` and `Struct`, which may own an unbounded amount of // data. diff --git a/src/wasm/wasm-type.cpp b/src/wasm/wasm-type.cpp index 998d1a96b..34d7e942f 100644 --- a/src/wasm/wasm-type.cpp +++ b/src/wasm/wasm-type.cpp @@ -43,8 +43,11 @@ namespace wasm { static TypeSystem typeSystem = TypeSystem::Equirecursive; + void setTypeSystem(TypeSystem system) { typeSystem = system; } +TypeSystem getTypeSystem() { return typeSystem; } + namespace { struct TypeInfo { |