summaryrefslogtreecommitdiff
path: root/test/unit/test_cluster_fuzz.py
diff options
context:
space:
mode:
authorAlon Zakai <azakai@google.com>2024-11-21 15:04:29 -0800
committerGitHub <noreply@github.com>2024-11-21 15:04:29 -0800
commit4488a3e351214e038600f58e5806c31ad0bfae46 (patch)
tree1306b6a89a5fd54ec77e9ed7ce6cdcb4fd5fde1c /test/unit/test_cluster_fuzz.py
parent901ba6024f3ca9117c5720be3cf19ab75034070a (diff)
downloadbinaryen-4488a3e351214e038600f58e5806c31ad0bfae46.tar.gz
binaryen-4488a3e351214e038600f58e5806c31ad0bfae46.tar.bz2
binaryen-4488a3e351214e038600f58e5806c31ad0bfae46.zip
[NFC] Refactor ClusterFuzz run.py (#7101)
This just moves code around. It will allow more code reuse in a later PR. Also add a bit of test logging.
Diffstat (limited to 'test/unit/test_cluster_fuzz.py')
-rw-r--r--test/unit/test_cluster_fuzz.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/test/unit/test_cluster_fuzz.py b/test/unit/test_cluster_fuzz.py
index 8ec1d8928..387f65fd1 100644
--- a/test/unit/test_cluster_fuzz.py
+++ b/test/unit/test_cluster_fuzz.py
@@ -217,10 +217,10 @@ class ClusterFuzz(utils.BinaryenTestCase):
print()
- # struct.news appear to be distributed as mean 15, stddev 24, median 10,
- # so over 100 samples we are incredibly likely to see an interesting
- # number at least once. It is also incredibly unlikely for the stdev to
- # be zero.
+ print('struct.news are distributed as ~ mean 15, stddev 24, median 10')
+ # Given that, with 100 samples we are incredibly likely to see an
+ # interesting number at least once. It is also incredibly unlikely for
+ # the stdev to be zero.
print(f'mean struct.news: {statistics.mean(seen_struct_news)}')
print(f'stdev struct.news: {statistics.stdev(seen_struct_news)}')
print(f'median struct.news: {statistics.median(seen_struct_news)}')
@@ -229,7 +229,7 @@ class ClusterFuzz(utils.BinaryenTestCase):
print()
- # sizes appear to be distributed as mean 2933, stddev 2011, median 2510.
+ print('sizes are distributed as ~ mean 2933, stddev 2011, median 2510')
print(f'mean sizes: {statistics.mean(seen_sizes)}')
print(f'stdev sizes: {statistics.stdev(seen_sizes)}')
print(f'median sizes: {statistics.median(seen_sizes)}')
@@ -238,7 +238,7 @@ class ClusterFuzz(utils.BinaryenTestCase):
print()
- # exports appear to be distributed as mean 9, stddev 6, median 8.
+ print('exports are distributed as ~ mean 9, stddev 6, median 8')
print(f'mean exports: {statistics.mean(seen_exports)}')
print(f'stdev exports: {statistics.stdev(seen_exports)}')
print(f'median exports: {statistics.median(seen_exports)}')
@@ -264,8 +264,7 @@ class ClusterFuzz(utils.BinaryenTestCase):
# probability to be a build or a call, so over the 100 testcases here we
# have an overwhelming probability to see at least one extra build and
# one extra call.
- #
- # builds and calls are distributed as mean 4, stddev 5, median 2.
+ print('JS builds are distributed as ~ mean 4, stddev 5, median 2')
print(f'mean JS builds: {statistics.mean(seen_builds)}')
print(f'stdev JS builds: {statistics.stdev(seen_builds)}')
print(f'median JS builds: {statistics.median(seen_builds)}')
@@ -276,6 +275,7 @@ class ClusterFuzz(utils.BinaryenTestCase):
print()
+ print('JS calls are distributed as ~ mean 4, stddev 5, median 2')
print(f'mean JS calls: {statistics.mean(seen_calls)}')
print(f'stdev JS calls: {statistics.stdev(seen_calls)}')
print(f'median JS calls: {statistics.median(seen_calls)}')