diff options
author | Alon Zakai <azakai@google.com> | 2019-12-19 09:04:08 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-12-19 09:04:08 -0800 |
commit | 4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6 (patch) | |
tree | 91bffc2d47b1fe4bba01e7ada77006ef340bd138 /third_party/llvm-project/include/llvm/ADT/EpochTracker.h | |
parent | 0048f5b004ddf50e750aa335d0be314a73852058 (diff) | |
download | binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.gz binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.bz2 binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.zip |
DWARF parsing and writing support using LLVM (#2520)
This imports LLVM code for DWARF handling. That code has the
Apache 2 license like us. It's also the same code used to
emit DWARF in the common toolchain, so it seems like a safe choice.
This adds two passes: --dwarfdump which runs the same code LLVM
runs for llvm-dwarfdump. This shows we can parse it ok, and will
be useful for debugging. And --dwarfupdate writes out the DWARF
sections (unchanged from what we read, so it just roundtrips - for
updating we need #2515).
This puts LLVM in thirdparty which is added here.
All the LLVM code is behind USE_LLVM_DWARF, which is on
by default, but off in JS for now, as it increases code size by 20%.
This current approach imports the LLVM files directly. This is not
how they are intended to be used, so it required a bunch of
local changes - more than I expected actually, for the platform-specific
stuff. For now this seems to work, so it may be good enough, but
in the long term we may want to switch to linking against libllvm.
A downside to doing that is that binaryen users would need to
have an LLVM build, and even in the waterfall builds we'd have a
problem - while we ship LLVM there anyhow, we constantly update
it, which means that binaryen would need to be on latest llvm all
the time too (which otherwise, given DWARF is quite stable, we
might not need to constantly update).
An even larger issue is that as I did this work I learned about how
DWARF works in LLVM, and while the reading code is easy to
reuse, the writing code is trickier. The main code path is heavily
integrated with the MC layer, which we don't have - we might want
to create a "fake MC layer" for that, but it sounds hard. Instead,
there is the YAML path which is used mostly for testing, and which
can convert DWARF to and from YAML and from binary. Using
the non-YAML parts there, we can convert binary DWARF to
the YAML layer's nice Info data, then convert that to binary. This
works, however, this is not the path LLVM uses normally, and it
supports only some basic DWARF sections - I had to add ranges
support, in fact. So if we need more complex things, we may end
up needing to use the MC layer approach, or consider some other
DWARF library. However, hopefully that should not affect the core
binaryen code which just calls a library for DWARF stuff.
Helps #2400
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/EpochTracker.h')
-rw-r--r-- | third_party/llvm-project/include/llvm/ADT/EpochTracker.h | 98 |
1 files changed, 98 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/EpochTracker.h b/third_party/llvm-project/include/llvm/ADT/EpochTracker.h new file mode 100644 index 000000000..a782b4756 --- /dev/null +++ b/third_party/llvm-project/include/llvm/ADT/EpochTracker.h @@ -0,0 +1,98 @@ +//===- llvm/ADT/EpochTracker.h - ADT epoch tracking --------------*- C++ -*-==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the DebugEpochBase and DebugEpochBase::HandleBase classes. +// These can be used to write iterators that are fail-fast when LLVM is built +// with asserts enabled. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_EPOCH_TRACKER_H +#define LLVM_ADT_EPOCH_TRACKER_H + +#include "llvm/Config/abi-breaking.h" + +#include <cstdint> + +namespace llvm { + +#if LLVM_ENABLE_ABI_BREAKING_CHECKS + +/// A base class for data structure classes wishing to make iterators +/// ("handles") pointing into themselves fail-fast. When building without +/// asserts, this class is empty and does nothing. +/// +/// DebugEpochBase does not by itself track handles pointing into itself. The +/// expectation is that routines touching the handles will poll on +/// isHandleInSync at appropriate points to assert that the handle they're using +/// is still valid. +/// +class DebugEpochBase { + uint64_t Epoch; + +public: + DebugEpochBase() : Epoch(0) {} + + /// Calling incrementEpoch invalidates all handles pointing into the + /// calling instance. + void incrementEpoch() { ++Epoch; } + + /// The destructor calls incrementEpoch to make use-after-free bugs + /// more likely to crash deterministically. + ~DebugEpochBase() { incrementEpoch(); } + + /// A base class for iterator classes ("handles") that wish to poll for + /// iterator invalidating modifications in the underlying data structure. + /// When LLVM is built without asserts, this class is empty and does nothing. + /// + /// HandleBase does not track the parent data structure by itself. It expects + /// the routines modifying the data structure to call incrementEpoch when they + /// make an iterator-invalidating modification. + /// + class HandleBase { + const uint64_t *EpochAddress; + uint64_t EpochAtCreation; + + public: + HandleBase() : EpochAddress(nullptr), EpochAtCreation(UINT64_MAX) {} + + explicit HandleBase(const DebugEpochBase *Parent) + : EpochAddress(&Parent->Epoch), EpochAtCreation(Parent->Epoch) {} + + /// Returns true if the DebugEpochBase this Handle is linked to has + /// not called incrementEpoch on itself since the creation of this + /// HandleBase instance. + bool isHandleInSync() const { return *EpochAddress == EpochAtCreation; } + + /// Returns a pointer to the epoch word stored in the data structure + /// this handle points into. Can be used to check if two iterators point + /// into the same data structure. + const void *getEpochAddress() const { return EpochAddress; } + }; +}; + +#else + +class DebugEpochBase { +public: + void incrementEpoch() {} + + class HandleBase { + public: + HandleBase() = default; + explicit HandleBase(const DebugEpochBase *) {} + bool isHandleInSync() const { return true; } + const void *getEpochAddress() const { return nullptr; } + }; +}; + +#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS + +} // namespace llvm + +#endif |