diff options
author | Alon Zakai <azakai@google.com> | 2019-12-19 09:04:08 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-12-19 09:04:08 -0800 |
commit | 4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6 (patch) | |
tree | 91bffc2d47b1fe4bba01e7ada77006ef340bd138 /third_party/llvm-project/include/llvm/Support/Endian.h | |
parent | 0048f5b004ddf50e750aa335d0be314a73852058 (diff) | |
download | binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.gz binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.bz2 binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.zip |
DWARF parsing and writing support using LLVM (#2520)
This imports LLVM code for DWARF handling. That code has the
Apache 2 license like us. It's also the same code used to
emit DWARF in the common toolchain, so it seems like a safe choice.
This adds two passes: --dwarfdump which runs the same code LLVM
runs for llvm-dwarfdump. This shows we can parse it ok, and will
be useful for debugging. And --dwarfupdate writes out the DWARF
sections (unchanged from what we read, so it just roundtrips - for
updating we need #2515).
This puts LLVM in thirdparty which is added here.
All the LLVM code is behind USE_LLVM_DWARF, which is on
by default, but off in JS for now, as it increases code size by 20%.
This current approach imports the LLVM files directly. This is not
how they are intended to be used, so it required a bunch of
local changes - more than I expected actually, for the platform-specific
stuff. For now this seems to work, so it may be good enough, but
in the long term we may want to switch to linking against libllvm.
A downside to doing that is that binaryen users would need to
have an LLVM build, and even in the waterfall builds we'd have a
problem - while we ship LLVM there anyhow, we constantly update
it, which means that binaryen would need to be on latest llvm all
the time too (which otherwise, given DWARF is quite stable, we
might not need to constantly update).
An even larger issue is that as I did this work I learned about how
DWARF works in LLVM, and while the reading code is easy to
reuse, the writing code is trickier. The main code path is heavily
integrated with the MC layer, which we don't have - we might want
to create a "fake MC layer" for that, but it sounds hard. Instead,
there is the YAML path which is used mostly for testing, and which
can convert DWARF to and from YAML and from binary. Using
the non-YAML parts there, we can convert binary DWARF to
the YAML layer's nice Info data, then convert that to binary. This
works, however, this is not the path LLVM uses normally, and it
supports only some basic DWARF sections - I had to add ranges
support, in fact. So if we need more complex things, we may end
up needing to use the MC layer approach, or consider some other
DWARF library. However, hopefully that should not affect the core
binaryen code which just calls a library for DWARF stuff.
Helps #2400
Diffstat (limited to 'third_party/llvm-project/include/llvm/Support/Endian.h')
-rw-r--r-- | third_party/llvm-project/include/llvm/Support/Endian.h | 429 |
1 files changed, 429 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/Support/Endian.h b/third_party/llvm-project/include/llvm/Support/Endian.h new file mode 100644 index 000000000..87aecedd3 --- /dev/null +++ b/third_party/llvm-project/include/llvm/Support/Endian.h @@ -0,0 +1,429 @@ +//===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file declares generic functions to read and write endian specific data. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_SUPPORT_ENDIAN_H +#define LLVM_SUPPORT_ENDIAN_H + +#include "llvm/Support/AlignOf.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Host.h" +#include "llvm/Support/SwapByteOrder.h" +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <type_traits> + +namespace llvm { +namespace support { + +enum endianness {big, little, native}; + +// These are named values for common alignments. +enum {aligned = 0, unaligned = 1}; + +namespace detail { + +/// ::value is either alignment, or alignof(T) if alignment is 0. +template<class T, int alignment> +struct PickAlignment { + enum { value = alignment == 0 ? alignof(T) : alignment }; +}; + +} // end namespace detail + +namespace endian { + +constexpr endianness system_endianness() { + return sys::IsBigEndianHost ? big : little; +} + +template <typename value_type> +inline value_type byte_swap(value_type value, endianness endian) { + if ((endian != native) && (endian != system_endianness())) + sys::swapByteOrder(value); + return value; +} + +/// Swap the bytes of value to match the given endianness. +template<typename value_type, endianness endian> +inline value_type byte_swap(value_type value) { + return byte_swap(value, endian); +} + +/// Read a value of a particular endianness from memory. +template <typename value_type, std::size_t alignment> +inline value_type read(const void *memory, endianness endian) { + value_type ret; + + memcpy(&ret, + LLVM_ASSUME_ALIGNED( + memory, (detail::PickAlignment<value_type, alignment>::value)), + sizeof(value_type)); + return byte_swap<value_type>(ret, endian); +} + +template<typename value_type, + endianness endian, + std::size_t alignment> +inline value_type read(const void *memory) { + return read<value_type, alignment>(memory, endian); +} + +/// Read a value of a particular endianness from a buffer, and increment the +/// buffer past that value. +template <typename value_type, std::size_t alignment, typename CharT> +inline value_type readNext(const CharT *&memory, endianness endian) { + value_type ret = read<value_type, alignment>(memory, endian); + memory += sizeof(value_type); + return ret; +} + +template<typename value_type, endianness endian, std::size_t alignment, + typename CharT> +inline value_type readNext(const CharT *&memory) { + return readNext<value_type, alignment, CharT>(memory, endian); +} + +/// Write a value to memory with a particular endianness. +template <typename value_type, std::size_t alignment> +inline void write(void *memory, value_type value, endianness endian) { + value = byte_swap<value_type>(value, endian); + memcpy(LLVM_ASSUME_ALIGNED( + memory, (detail::PickAlignment<value_type, alignment>::value)), + &value, sizeof(value_type)); +} + +template<typename value_type, + endianness endian, + std::size_t alignment> +inline void write(void *memory, value_type value) { + write<value_type, alignment>(memory, value, endian); +} + +template <typename value_type> +using make_unsigned_t = typename std::make_unsigned<value_type>::type; + +/// Read a value of a particular endianness from memory, for a location +/// that starts at the given bit offset within the first byte. +template <typename value_type, endianness endian, std::size_t alignment> +inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) { + assert(startBit < 8); + if (startBit == 0) + return read<value_type, endian, alignment>(memory); + else { + // Read two values and compose the result from them. + value_type val[2]; + memcpy(&val[0], + LLVM_ASSUME_ALIGNED( + memory, (detail::PickAlignment<value_type, alignment>::value)), + sizeof(value_type) * 2); + val[0] = byte_swap<value_type, endian>(val[0]); + val[1] = byte_swap<value_type, endian>(val[1]); + + // Shift bits from the lower value into place. + make_unsigned_t<value_type> lowerVal = val[0] >> startBit; + // Mask off upper bits after right shift in case of signed type. + make_unsigned_t<value_type> numBitsFirstVal = + (sizeof(value_type) * 8) - startBit; + lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1; + + // Get the bits from the upper value. + make_unsigned_t<value_type> upperVal = + val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1); + // Shift them in to place. + upperVal <<= numBitsFirstVal; + + return lowerVal | upperVal; + } +} + +/// Write a value to memory with a particular endianness, for a location +/// that starts at the given bit offset within the first byte. +template <typename value_type, endianness endian, std::size_t alignment> +inline void writeAtBitAlignment(void *memory, value_type value, + uint64_t startBit) { + assert(startBit < 8); + if (startBit == 0) + write<value_type, endian, alignment>(memory, value); + else { + // Read two values and shift the result into them. + value_type val[2]; + memcpy(&val[0], + LLVM_ASSUME_ALIGNED( + memory, (detail::PickAlignment<value_type, alignment>::value)), + sizeof(value_type) * 2); + val[0] = byte_swap<value_type, endian>(val[0]); + val[1] = byte_swap<value_type, endian>(val[1]); + + // Mask off any existing bits in the upper part of the lower value that + // we want to replace. + val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1; + make_unsigned_t<value_type> numBitsFirstVal = + (sizeof(value_type) * 8) - startBit; + make_unsigned_t<value_type> lowerVal = value; + if (startBit > 0) { + // Mask off the upper bits in the new value that are not going to go into + // the lower value. This avoids a left shift of a negative value, which + // is undefined behavior. + lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1); + // Now shift the new bits into place + lowerVal <<= startBit; + } + val[0] |= lowerVal; + + // Mask off any existing bits in the lower part of the upper value that + // we want to replace. + val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1); + // Next shift the bits that go into the upper value into position. + make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal; + // Mask off upper bits after right shift in case of signed type. + upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1; + val[1] |= upperVal; + + // Finally, rewrite values. + val[0] = byte_swap<value_type, endian>(val[0]); + val[1] = byte_swap<value_type, endian>(val[1]); + memcpy(LLVM_ASSUME_ALIGNED( + memory, (detail::PickAlignment<value_type, alignment>::value)), + &val[0], sizeof(value_type) * 2); + } +} + +} // end namespace endian + +namespace detail { + +template <typename ValueType, endianness Endian, std::size_t Alignment, + std::size_t ALIGN = PickAlignment<ValueType, Alignment>::value> +struct packed_endian_specific_integral { + using value_type = ValueType; + static constexpr endianness endian = Endian; + static constexpr std::size_t alignment = Alignment; + + packed_endian_specific_integral() = default; + + explicit packed_endian_specific_integral(value_type val) { *this = val; } + + operator value_type() const { + return endian::read<value_type, endian, alignment>( + (const void*)Value.buffer); + } + + void operator=(value_type newValue) { + endian::write<value_type, endian, alignment>( + (void*)Value.buffer, newValue); + } + + packed_endian_specific_integral &operator+=(value_type newValue) { + *this = *this + newValue; + return *this; + } + + packed_endian_specific_integral &operator-=(value_type newValue) { + *this = *this - newValue; + return *this; + } + + packed_endian_specific_integral &operator|=(value_type newValue) { + *this = *this | newValue; + return *this; + } + + packed_endian_specific_integral &operator&=(value_type newValue) { + *this = *this & newValue; + return *this; + } + +private: + struct { + alignas(ALIGN) char buffer[sizeof(value_type)]; + } Value; + +public: + struct ref { + explicit ref(void *Ptr) : Ptr(Ptr) {} + + operator value_type() const { + return endian::read<value_type, endian, alignment>(Ptr); + } + + void operator=(value_type NewValue) { + endian::write<value_type, endian, alignment>(Ptr, NewValue); + } + + private: + void *Ptr; + }; +}; + +} // end namespace detail + +using ulittle16_t = + detail::packed_endian_specific_integral<uint16_t, little, unaligned>; +using ulittle32_t = + detail::packed_endian_specific_integral<uint32_t, little, unaligned>; +using ulittle64_t = + detail::packed_endian_specific_integral<uint64_t, little, unaligned>; + +using little16_t = + detail::packed_endian_specific_integral<int16_t, little, unaligned>; +using little32_t = + detail::packed_endian_specific_integral<int32_t, little, unaligned>; +using little64_t = + detail::packed_endian_specific_integral<int64_t, little, unaligned>; + +using aligned_ulittle16_t = + detail::packed_endian_specific_integral<uint16_t, little, aligned>; +using aligned_ulittle32_t = + detail::packed_endian_specific_integral<uint32_t, little, aligned>; +using aligned_ulittle64_t = + detail::packed_endian_specific_integral<uint64_t, little, aligned>; + +using aligned_little16_t = + detail::packed_endian_specific_integral<int16_t, little, aligned>; +using aligned_little32_t = + detail::packed_endian_specific_integral<int32_t, little, aligned>; +using aligned_little64_t = + detail::packed_endian_specific_integral<int64_t, little, aligned>; + +using ubig16_t = + detail::packed_endian_specific_integral<uint16_t, big, unaligned>; +using ubig32_t = + detail::packed_endian_specific_integral<uint32_t, big, unaligned>; +using ubig64_t = + detail::packed_endian_specific_integral<uint64_t, big, unaligned>; + +using big16_t = + detail::packed_endian_specific_integral<int16_t, big, unaligned>; +using big32_t = + detail::packed_endian_specific_integral<int32_t, big, unaligned>; +using big64_t = + detail::packed_endian_specific_integral<int64_t, big, unaligned>; + +using aligned_ubig16_t = + detail::packed_endian_specific_integral<uint16_t, big, aligned>; +using aligned_ubig32_t = + detail::packed_endian_specific_integral<uint32_t, big, aligned>; +using aligned_ubig64_t = + detail::packed_endian_specific_integral<uint64_t, big, aligned>; + +using aligned_big16_t = + detail::packed_endian_specific_integral<int16_t, big, aligned>; +using aligned_big32_t = + detail::packed_endian_specific_integral<int32_t, big, aligned>; +using aligned_big64_t = + detail::packed_endian_specific_integral<int64_t, big, aligned>; + +using unaligned_uint16_t = + detail::packed_endian_specific_integral<uint16_t, native, unaligned>; +using unaligned_uint32_t = + detail::packed_endian_specific_integral<uint32_t, native, unaligned>; +using unaligned_uint64_t = + detail::packed_endian_specific_integral<uint64_t, native, unaligned>; + +using unaligned_int16_t = + detail::packed_endian_specific_integral<int16_t, native, unaligned>; +using unaligned_int32_t = + detail::packed_endian_specific_integral<int32_t, native, unaligned>; +using unaligned_int64_t = + detail::packed_endian_specific_integral<int64_t, native, unaligned>; + +template <typename T> +using little_t = detail::packed_endian_specific_integral<T, little, unaligned>; +template <typename T> +using big_t = detail::packed_endian_specific_integral<T, big, unaligned>; + +template <typename T> +using aligned_little_t = + detail::packed_endian_specific_integral<T, little, aligned>; +template <typename T> +using aligned_big_t = detail::packed_endian_specific_integral<T, big, aligned>; + +namespace endian { + +template <typename T> inline T read(const void *P, endianness E) { + return read<T, unaligned>(P, E); +} + +template <typename T, endianness E> inline T read(const void *P) { + return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P; +} + +inline uint16_t read16(const void *P, endianness E) { + return read<uint16_t>(P, E); +} +inline uint32_t read32(const void *P, endianness E) { + return read<uint32_t>(P, E); +} +inline uint64_t read64(const void *P, endianness E) { + return read<uint64_t>(P, E); +} + +template <endianness E> inline uint16_t read16(const void *P) { + return read<uint16_t, E>(P); +} +template <endianness E> inline uint32_t read32(const void *P) { + return read<uint32_t, E>(P); +} +template <endianness E> inline uint64_t read64(const void *P) { + return read<uint64_t, E>(P); +} + +inline uint16_t read16le(const void *P) { return read16<little>(P); } +inline uint32_t read32le(const void *P) { return read32<little>(P); } +inline uint64_t read64le(const void *P) { return read64<little>(P); } +inline uint16_t read16be(const void *P) { return read16<big>(P); } +inline uint32_t read32be(const void *P) { return read32<big>(P); } +inline uint64_t read64be(const void *P) { return read64<big>(P); } + +template <typename T> inline void write(void *P, T V, endianness E) { + write<T, unaligned>(P, V, E); +} + +template <typename T, endianness E> inline void write(void *P, T V) { + *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V; +} + +inline void write16(void *P, uint16_t V, endianness E) { + write<uint16_t>(P, V, E); +} +inline void write32(void *P, uint32_t V, endianness E) { + write<uint32_t>(P, V, E); +} +inline void write64(void *P, uint64_t V, endianness E) { + write<uint64_t>(P, V, E); +} + +template <endianness E> inline void write16(void *P, uint16_t V) { + write<uint16_t, E>(P, V); +} +template <endianness E> inline void write32(void *P, uint32_t V) { + write<uint32_t, E>(P, V); +} +template <endianness E> inline void write64(void *P, uint64_t V) { + write<uint64_t, E>(P, V); +} + +inline void write16le(void *P, uint16_t V) { write16<little>(P, V); } +inline void write32le(void *P, uint32_t V) { write32<little>(P, V); } +inline void write64le(void *P, uint64_t V) { write64<little>(P, V); } +inline void write16be(void *P, uint16_t V) { write16<big>(P, V); } +inline void write32be(void *P, uint32_t V) { write32<big>(P, V); } +inline void write64be(void *P, uint64_t V) { write64<big>(P, V); } + +} // end namespace endian + +} // end namespace support +} // end namespace llvm + +#endif // LLVM_SUPPORT_ENDIAN_H |