diff options
author | Alon Zakai <azakai@google.com> | 2019-12-19 09:04:08 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-12-19 09:04:08 -0800 |
commit | 4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6 (patch) | |
tree | 91bffc2d47b1fe4bba01e7ada77006ef340bd138 /third_party/llvm-project/include/llvm/Support/MathExtras.h | |
parent | 0048f5b004ddf50e750aa335d0be314a73852058 (diff) | |
download | binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.gz binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.bz2 binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.zip |
DWARF parsing and writing support using LLVM (#2520)
This imports LLVM code for DWARF handling. That code has the
Apache 2 license like us. It's also the same code used to
emit DWARF in the common toolchain, so it seems like a safe choice.
This adds two passes: --dwarfdump which runs the same code LLVM
runs for llvm-dwarfdump. This shows we can parse it ok, and will
be useful for debugging. And --dwarfupdate writes out the DWARF
sections (unchanged from what we read, so it just roundtrips - for
updating we need #2515).
This puts LLVM in thirdparty which is added here.
All the LLVM code is behind USE_LLVM_DWARF, which is on
by default, but off in JS for now, as it increases code size by 20%.
This current approach imports the LLVM files directly. This is not
how they are intended to be used, so it required a bunch of
local changes - more than I expected actually, for the platform-specific
stuff. For now this seems to work, so it may be good enough, but
in the long term we may want to switch to linking against libllvm.
A downside to doing that is that binaryen users would need to
have an LLVM build, and even in the waterfall builds we'd have a
problem - while we ship LLVM there anyhow, we constantly update
it, which means that binaryen would need to be on latest llvm all
the time too (which otherwise, given DWARF is quite stable, we
might not need to constantly update).
An even larger issue is that as I did this work I learned about how
DWARF works in LLVM, and while the reading code is easy to
reuse, the writing code is trickier. The main code path is heavily
integrated with the MC layer, which we don't have - we might want
to create a "fake MC layer" for that, but it sounds hard. Instead,
there is the YAML path which is used mostly for testing, and which
can convert DWARF to and from YAML and from binary. Using
the non-YAML parts there, we can convert binary DWARF to
the YAML layer's nice Info data, then convert that to binary. This
works, however, this is not the path LLVM uses normally, and it
supports only some basic DWARF sections - I had to add ranges
support, in fact. So if we need more complex things, we may end
up needing to use the MC layer approach, or consider some other
DWARF library. However, hopefully that should not affect the core
binaryen code which just calls a library for DWARF stuff.
Helps #2400
Diffstat (limited to 'third_party/llvm-project/include/llvm/Support/MathExtras.h')
-rw-r--r-- | third_party/llvm-project/include/llvm/Support/MathExtras.h | 951 |
1 files changed, 951 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/Support/MathExtras.h b/third_party/llvm-project/include/llvm/Support/MathExtras.h new file mode 100644 index 000000000..004a6f5f6 --- /dev/null +++ b/third_party/llvm-project/include/llvm/Support/MathExtras.h @@ -0,0 +1,951 @@ +//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains some functions that are useful for math stuff. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_SUPPORT_MATHEXTRAS_H +#define LLVM_SUPPORT_MATHEXTRAS_H + +#include "llvm/Support/Compiler.h" +#include "llvm/Support/SwapByteOrder.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstring> +#include <limits> +#include <type_traits> + +#ifdef __ANDROID_NDK__ +#include <android/api-level.h> +#endif + +#ifdef _MSC_VER +// Declare these intrinsics manually rather including intrin.h. It's very +// expensive, and MathExtras.h is popular. +// #include <intrin.h> +extern "C" { +unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); +unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); +unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); +unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); +} +#endif + +namespace llvm { + +/// The behavior an operation has on an input of 0. +enum ZeroBehavior { + /// The returned value is undefined. + ZB_Undefined, + /// The returned value is numeric_limits<T>::max() + ZB_Max, + /// The returned value is numeric_limits<T>::digits + ZB_Width +}; + +/// Mathematical constants. +namespace numbers { +// TODO: Track C++20 std::numbers. +// TODO: Favor using the hexadecimal FP constants (requires C++17). +constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 + egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 + ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 + ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 + log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) + log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) + pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 + inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 + sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 + inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 + sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 + inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) + sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 + inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) + phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 +constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 + egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 + ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 + ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 + log2ef = 1.44269504F, // (0x1.715476P+0) + log10ef = .434294482F, // (0x1.bcb7b2P-2) + pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 + inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 + sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 + inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 + sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 + inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) + sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 + inv_sqrt3f = .577350269F, // (0x1.279a74P-1) + phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 +} // namespace numbers + +namespace detail { +template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { + static unsigned count(T Val, ZeroBehavior) { + if (!Val) + return std::numeric_limits<T>::digits; + if (Val & 0x1) + return 0; + + // Bisection method. + unsigned ZeroBits = 0; + T Shift = std::numeric_limits<T>::digits >> 1; + T Mask = std::numeric_limits<T>::max() >> Shift; + while (Shift) { + if ((Val & Mask) == 0) { + Val >>= Shift; + ZeroBits |= Shift; + } + Shift >>= 1; + Mask >>= Shift; + } + return ZeroBits; + } +}; + +#if defined(__GNUC__) || defined(_MSC_VER) +template <typename T> struct TrailingZerosCounter<T, 4> { + static unsigned count(T Val, ZeroBehavior ZB) { + if (ZB != ZB_Undefined && Val == 0) + return 32; + +#if __has_builtin(__builtin_ctz) || defined(__GNUC__) + return __builtin_ctz(Val); +#elif defined(_MSC_VER) + unsigned long Index; + _BitScanForward(&Index, Val); + return Index; +#endif + } +}; + +#if !defined(_MSC_VER) || defined(_M_X64) +template <typename T> struct TrailingZerosCounter<T, 8> { + static unsigned count(T Val, ZeroBehavior ZB) { + if (ZB != ZB_Undefined && Val == 0) + return 64; + +#if __has_builtin(__builtin_ctzll) || defined(__GNUC__) + return __builtin_ctzll(Val); +#elif defined(_MSC_VER) + unsigned long Index; + _BitScanForward64(&Index, Val); + return Index; +#endif + } +}; +#endif +#endif +} // namespace detail + +/// Count number of 0's from the least significant bit to the most +/// stopping at the first 1. +/// +/// Only unsigned integral types are allowed. +/// +/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are +/// valid arguments. +template <typename T> +unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { + static_assert(std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + "Only unsigned integral types are allowed."); + return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); +} + +namespace detail { +template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { + static unsigned count(T Val, ZeroBehavior) { + if (!Val) + return std::numeric_limits<T>::digits; + + // Bisection method. + unsigned ZeroBits = 0; + for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { + T Tmp = Val >> Shift; + if (Tmp) + Val = Tmp; + else + ZeroBits |= Shift; + } + return ZeroBits; + } +}; + +#if defined(__GNUC__) || defined(_MSC_VER) +template <typename T> struct LeadingZerosCounter<T, 4> { + static unsigned count(T Val, ZeroBehavior ZB) { + if (ZB != ZB_Undefined && Val == 0) + return 32; + +#if __has_builtin(__builtin_clz) || defined(__GNUC__) + return __builtin_clz(Val); +#elif defined(_MSC_VER) + unsigned long Index; + _BitScanReverse(&Index, Val); + return Index ^ 31; +#endif + } +}; + +#if !defined(_MSC_VER) || defined(_M_X64) +template <typename T> struct LeadingZerosCounter<T, 8> { + static unsigned count(T Val, ZeroBehavior ZB) { + if (ZB != ZB_Undefined && Val == 0) + return 64; + +#if __has_builtin(__builtin_clzll) || defined(__GNUC__) + return __builtin_clzll(Val); +#elif defined(_MSC_VER) + unsigned long Index; + _BitScanReverse64(&Index, Val); + return Index ^ 63; +#endif + } +}; +#endif +#endif +} // namespace detail + +/// Count number of 0's from the most significant bit to the least +/// stopping at the first 1. +/// +/// Only unsigned integral types are allowed. +/// +/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are +/// valid arguments. +template <typename T> +unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { + static_assert(std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + "Only unsigned integral types are allowed."); + return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); +} + +/// Get the index of the first set bit starting from the least +/// significant bit. +/// +/// Only unsigned integral types are allowed. +/// +/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are +/// valid arguments. +template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { + if (ZB == ZB_Max && Val == 0) + return std::numeric_limits<T>::max(); + + return countTrailingZeros(Val, ZB_Undefined); +} + +/// Create a bitmask with the N right-most bits set to 1, and all other +/// bits set to 0. Only unsigned types are allowed. +template <typename T> T maskTrailingOnes(unsigned N) { + static_assert(std::is_unsigned<T>::value, "Invalid type!"); + const unsigned Bits = CHAR_BIT * sizeof(T); + assert(N <= Bits && "Invalid bit index"); + return N == 0 ? 0 : (T(-1) >> (Bits - N)); +} + +/// Create a bitmask with the N left-most bits set to 1, and all other +/// bits set to 0. Only unsigned types are allowed. +template <typename T> T maskLeadingOnes(unsigned N) { + return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); +} + +/// Create a bitmask with the N right-most bits set to 0, and all other +/// bits set to 1. Only unsigned types are allowed. +template <typename T> T maskTrailingZeros(unsigned N) { + return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); +} + +/// Create a bitmask with the N left-most bits set to 0, and all other +/// bits set to 1. Only unsigned types are allowed. +template <typename T> T maskLeadingZeros(unsigned N) { + return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); +} + +/// Get the index of the last set bit starting from the least +/// significant bit. +/// +/// Only unsigned integral types are allowed. +/// +/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are +/// valid arguments. +template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { + if (ZB == ZB_Max && Val == 0) + return std::numeric_limits<T>::max(); + + // Use ^ instead of - because both gcc and llvm can remove the associated ^ + // in the __builtin_clz intrinsic on x86. + return countLeadingZeros(Val, ZB_Undefined) ^ + (std::numeric_limits<T>::digits - 1); +} + +/// Macro compressed bit reversal table for 256 bits. +/// +/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable +static const unsigned char BitReverseTable256[256] = { +#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 +#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) +#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) + R6(0), R6(2), R6(1), R6(3) +#undef R2 +#undef R4 +#undef R6 +}; + +/// Reverse the bits in \p Val. +template <typename T> +T reverseBits(T Val) { + unsigned char in[sizeof(Val)]; + unsigned char out[sizeof(Val)]; + std::memcpy(in, &Val, sizeof(Val)); + for (unsigned i = 0; i < sizeof(Val); ++i) + out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; + std::memcpy(&Val, out, sizeof(Val)); + return Val; +} + +// NOTE: The following support functions use the _32/_64 extensions instead of +// type overloading so that signed and unsigned integers can be used without +// ambiguity. + +/// Return the high 32 bits of a 64 bit value. +constexpr inline uint32_t Hi_32(uint64_t Value) { + return static_cast<uint32_t>(Value >> 32); +} + +/// Return the low 32 bits of a 64 bit value. +constexpr inline uint32_t Lo_32(uint64_t Value) { + return static_cast<uint32_t>(Value); +} + +/// Make a 64-bit integer from a high / low pair of 32-bit integers. +constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { + return ((uint64_t)High << 32) | (uint64_t)Low; +} + +/// Checks if an integer fits into the given bit width. +template <unsigned N> constexpr inline bool isInt(int64_t x) { + return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); +} +// Template specializations to get better code for common cases. +template <> constexpr inline bool isInt<8>(int64_t x) { + return static_cast<int8_t>(x) == x; +} +template <> constexpr inline bool isInt<16>(int64_t x) { + return static_cast<int16_t>(x) == x; +} +template <> constexpr inline bool isInt<32>(int64_t x) { + return static_cast<int32_t>(x) == x; +} + +/// Checks if a signed integer is an N bit number shifted left by S. +template <unsigned N, unsigned S> +constexpr inline bool isShiftedInt(int64_t x) { + static_assert( + N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); + static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); + return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); +} + +/// Checks if an unsigned integer fits into the given bit width. +/// +/// This is written as two functions rather than as simply +/// +/// return N >= 64 || X < (UINT64_C(1) << N); +/// +/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting +/// left too many places. +template <unsigned N> +constexpr inline typename std::enable_if<(N < 64), bool>::type +isUInt(uint64_t X) { + static_assert(N > 0, "isUInt<0> doesn't make sense"); + return X < (UINT64_C(1) << (N)); +} +template <unsigned N> +constexpr inline typename std::enable_if<N >= 64, bool>::type +isUInt(uint64_t X) { + return true; +} + +// Template specializations to get better code for common cases. +template <> constexpr inline bool isUInt<8>(uint64_t x) { + return static_cast<uint8_t>(x) == x; +} +template <> constexpr inline bool isUInt<16>(uint64_t x) { + return static_cast<uint16_t>(x) == x; +} +template <> constexpr inline bool isUInt<32>(uint64_t x) { + return static_cast<uint32_t>(x) == x; +} + +/// Checks if a unsigned integer is an N bit number shifted left by S. +template <unsigned N, unsigned S> +constexpr inline bool isShiftedUInt(uint64_t x) { + static_assert( + N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); + static_assert(N + S <= 64, + "isShiftedUInt<N, S> with N + S > 64 is too wide."); + // Per the two static_asserts above, S must be strictly less than 64. So + // 1 << S is not undefined behavior. + return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); +} + +/// Gets the maximum value for a N-bit unsigned integer. +inline uint64_t maxUIntN(uint64_t N) { + assert(N > 0 && N <= 64 && "integer width out of range"); + + // uint64_t(1) << 64 is undefined behavior, so we can't do + // (uint64_t(1) << N) - 1 + // without checking first that N != 64. But this works and doesn't have a + // branch. + return UINT64_MAX >> (64 - N); +} + +/// Gets the minimum value for a N-bit signed integer. +inline int64_t minIntN(int64_t N) { + assert(N > 0 && N <= 64 && "integer width out of range"); + + return -(UINT64_C(1)<<(N-1)); +} + +/// Gets the maximum value for a N-bit signed integer. +inline int64_t maxIntN(int64_t N) { + assert(N > 0 && N <= 64 && "integer width out of range"); + + // This relies on two's complement wraparound when N == 64, so we convert to + // int64_t only at the very end to avoid UB. + return (UINT64_C(1) << (N - 1)) - 1; +} + +/// Checks if an unsigned integer fits into the given (dynamic) bit width. +inline bool isUIntN(unsigned N, uint64_t x) { + return N >= 64 || x <= maxUIntN(N); +} + +/// Checks if an signed integer fits into the given (dynamic) bit width. +inline bool isIntN(unsigned N, int64_t x) { + return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); +} + +/// Return true if the argument is a non-empty sequence of ones starting at the +/// least significant bit with the remainder zero (32 bit version). +/// Ex. isMask_32(0x0000FFFFU) == true. +constexpr inline bool isMask_32(uint32_t Value) { + return Value && ((Value + 1) & Value) == 0; +} + +/// Return true if the argument is a non-empty sequence of ones starting at the +/// least significant bit with the remainder zero (64 bit version). +constexpr inline bool isMask_64(uint64_t Value) { + return Value && ((Value + 1) & Value) == 0; +} + +/// Return true if the argument contains a non-empty sequence of ones with the +/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. +constexpr inline bool isShiftedMask_32(uint32_t Value) { + return Value && isMask_32((Value - 1) | Value); +} + +/// Return true if the argument contains a non-empty sequence of ones with the +/// remainder zero (64 bit version.) +constexpr inline bool isShiftedMask_64(uint64_t Value) { + return Value && isMask_64((Value - 1) | Value); +} + +/// Return true if the argument is a power of two > 0. +/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) +constexpr inline bool isPowerOf2_32(uint32_t Value) { + return Value && !(Value & (Value - 1)); +} + +/// Return true if the argument is a power of two > 0 (64 bit edition.) +constexpr inline bool isPowerOf2_64(uint64_t Value) { + return Value && !(Value & (Value - 1)); +} + +/// Return a byte-swapped representation of the 16-bit argument. +inline uint16_t ByteSwap_16(uint16_t Value) { + return sys::SwapByteOrder_16(Value); +} + +/// Return a byte-swapped representation of the 32-bit argument. +inline uint32_t ByteSwap_32(uint32_t Value) { + return sys::SwapByteOrder_32(Value); +} + +/// Return a byte-swapped representation of the 64-bit argument. +inline uint64_t ByteSwap_64(uint64_t Value) { + return sys::SwapByteOrder_64(Value); +} + +/// Count the number of ones from the most significant bit to the first +/// zero bit. +/// +/// Ex. countLeadingOnes(0xFF0FFF00) == 8. +/// Only unsigned integral types are allowed. +/// +/// \param ZB the behavior on an input of all ones. Only ZB_Width and +/// ZB_Undefined are valid arguments. +template <typename T> +unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { + static_assert(std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + "Only unsigned integral types are allowed."); + return countLeadingZeros<T>(~Value, ZB); +} + +/// Count the number of ones from the least significant bit to the first +/// zero bit. +/// +/// Ex. countTrailingOnes(0x00FF00FF) == 8. +/// Only unsigned integral types are allowed. +/// +/// \param ZB the behavior on an input of all ones. Only ZB_Width and +/// ZB_Undefined are valid arguments. +template <typename T> +unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { + static_assert(std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + "Only unsigned integral types are allowed."); + return countTrailingZeros<T>(~Value, ZB); +} + +namespace detail { +template <typename T, std::size_t SizeOfT> struct PopulationCounter { + static unsigned count(T Value) { + // Generic version, forward to 32 bits. + static_assert(SizeOfT <= 4, "Not implemented!"); +#if defined(__GNUC__) + return __builtin_popcount(Value); +#else + uint32_t v = Value; + v = v - ((v >> 1) & 0x55555555); + v = (v & 0x33333333) + ((v >> 2) & 0x33333333); + return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; +#endif + } +}; + +template <typename T> struct PopulationCounter<T, 8> { + static unsigned count(T Value) { +#if defined(__GNUC__) + return __builtin_popcountll(Value); +#else + uint64_t v = Value; + v = v - ((v >> 1) & 0x5555555555555555ULL); + v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); + v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; + return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); +#endif + } +}; +} // namespace detail + +/// Count the number of set bits in a value. +/// Ex. countPopulation(0xF000F000) = 8 +/// Returns 0 if the word is zero. +template <typename T> +inline unsigned countPopulation(T Value) { + static_assert(std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed, + "Only unsigned integral types are allowed."); + return detail::PopulationCounter<T, sizeof(T)>::count(Value); +} + +/// Compile time Log2. +/// Valid only for positive powers of two. +template <size_t kValue> constexpr inline size_t CTLog2() { + static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), + "Value is not a valid power of 2"); + return 1 + CTLog2<kValue / 2>(); +} + +template <> constexpr inline size_t CTLog2<1>() { return 0; } + +/// Return the log base 2 of the specified value. +inline double Log2(double Value) { +#if defined(__ANDROID_API__) && __ANDROID_API__ < 18 + return __builtin_log(Value) / __builtin_log(2.0); +#else + return log2(Value); +#endif +} + +/// Return the floor log base 2 of the specified value, -1 if the value is zero. +/// (32 bit edition.) +/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 +inline unsigned Log2_32(uint32_t Value) { + return 31 - countLeadingZeros(Value); +} + +/// Return the floor log base 2 of the specified value, -1 if the value is zero. +/// (64 bit edition.) +inline unsigned Log2_64(uint64_t Value) { + return 63 - countLeadingZeros(Value); +} + +/// Return the ceil log base 2 of the specified value, 32 if the value is zero. +/// (32 bit edition). +/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 +inline unsigned Log2_32_Ceil(uint32_t Value) { + return 32 - countLeadingZeros(Value - 1); +} + +/// Return the ceil log base 2 of the specified value, 64 if the value is zero. +/// (64 bit edition.) +inline unsigned Log2_64_Ceil(uint64_t Value) { + return 64 - countLeadingZeros(Value - 1); +} + +/// Return the greatest common divisor of the values using Euclid's algorithm. +template <typename T> +inline T greatestCommonDivisor(T A, T B) { + while (B) { + T Tmp = B; + B = A % B; + A = Tmp; + } + return A; +} + +inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { + return greatestCommonDivisor<uint64_t>(A, B); +} + +/// This function takes a 64-bit integer and returns the bit equivalent double. +inline double BitsToDouble(uint64_t Bits) { + double D; + static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); + memcpy(&D, &Bits, sizeof(Bits)); + return D; +} + +/// This function takes a 32-bit integer and returns the bit equivalent float. +inline float BitsToFloat(uint32_t Bits) { + float F; + static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); + memcpy(&F, &Bits, sizeof(Bits)); + return F; +} + +/// This function takes a double and returns the bit equivalent 64-bit integer. +/// Note that copying doubles around changes the bits of NaNs on some hosts, +/// notably x86, so this routine cannot be used if these bits are needed. +inline uint64_t DoubleToBits(double Double) { + uint64_t Bits; + static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); + memcpy(&Bits, &Double, sizeof(Double)); + return Bits; +} + +/// This function takes a float and returns the bit equivalent 32-bit integer. +/// Note that copying floats around changes the bits of NaNs on some hosts, +/// notably x86, so this routine cannot be used if these bits are needed. +inline uint32_t FloatToBits(float Float) { + uint32_t Bits; + static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); + memcpy(&Bits, &Float, sizeof(Float)); + return Bits; +} + +/// A and B are either alignments or offsets. Return the minimum alignment that +/// may be assumed after adding the two together. +constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { + // The largest power of 2 that divides both A and B. + // + // Replace "-Value" by "1+~Value" in the following commented code to avoid + // MSVC warning C4146 + // return (A | B) & -(A | B); + return (A | B) & (1 + ~(A | B)); +} + +/// Returns the next power of two (in 64-bits) that is strictly greater than A. +/// Returns zero on overflow. +inline uint64_t NextPowerOf2(uint64_t A) { + A |= (A >> 1); + A |= (A >> 2); + A |= (A >> 4); + A |= (A >> 8); + A |= (A >> 16); + A |= (A >> 32); + return A + 1; +} + +/// Returns the power of two which is less than or equal to the given value. +/// Essentially, it is a floor operation across the domain of powers of two. +inline uint64_t PowerOf2Floor(uint64_t A) { + if (!A) return 0; + return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); +} + +/// Returns the power of two which is greater than or equal to the given value. +/// Essentially, it is a ceil operation across the domain of powers of two. +inline uint64_t PowerOf2Ceil(uint64_t A) { + if (!A) + return 0; + return NextPowerOf2(A - 1); +} + +/// Returns the next integer (mod 2**64) that is greater than or equal to +/// \p Value and is a multiple of \p Align. \p Align must be non-zero. +/// +/// If non-zero \p Skew is specified, the return value will be a minimal +/// integer that is greater than or equal to \p Value and equal to +/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than +/// \p Align, its value is adjusted to '\p Skew mod \p Align'. +/// +/// Examples: +/// \code +/// alignTo(5, 8) = 8 +/// alignTo(17, 8) = 24 +/// alignTo(~0LL, 8) = 0 +/// alignTo(321, 255) = 510 +/// +/// alignTo(5, 8, 7) = 7 +/// alignTo(17, 8, 1) = 17 +/// alignTo(~0LL, 8, 3) = 3 +/// alignTo(321, 255, 42) = 552 +/// \endcode +inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { + assert(Align != 0u && "Align can't be 0."); + Skew %= Align; + return (Value + Align - 1 - Skew) / Align * Align + Skew; +} + +/// Returns the next integer (mod 2**64) that is greater than or equal to +/// \p Value and is a multiple of \c Align. \c Align must be non-zero. +template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { + static_assert(Align != 0u, "Align must be non-zero"); + return (Value + Align - 1) / Align * Align; +} + +/// Returns the integer ceil(Numerator / Denominator). +inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { + return alignTo(Numerator, Denominator) / Denominator; +} + +/// Returns the largest uint64_t less than or equal to \p Value and is +/// \p Skew mod \p Align. \p Align must be non-zero +inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { + assert(Align != 0u && "Align can't be 0."); + Skew %= Align; + return (Value - Skew) / Align * Align + Skew; +} + +/// Sign-extend the number in the bottom B bits of X to a 32-bit integer. +/// Requires 0 < B <= 32. +template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { + static_assert(B > 0, "Bit width can't be 0."); + static_assert(B <= 32, "Bit width out of range."); + return int32_t(X << (32 - B)) >> (32 - B); +} + +/// Sign-extend the number in the bottom B bits of X to a 32-bit integer. +/// Requires 0 < B < 32. +inline int32_t SignExtend32(uint32_t X, unsigned B) { + assert(B > 0 && "Bit width can't be 0."); + assert(B <= 32 && "Bit width out of range."); + return int32_t(X << (32 - B)) >> (32 - B); +} + +/// Sign-extend the number in the bottom B bits of X to a 64-bit integer. +/// Requires 0 < B < 64. +template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { + static_assert(B > 0, "Bit width can't be 0."); + static_assert(B <= 64, "Bit width out of range."); + return int64_t(x << (64 - B)) >> (64 - B); +} + +/// Sign-extend the number in the bottom B bits of X to a 64-bit integer. +/// Requires 0 < B < 64. +inline int64_t SignExtend64(uint64_t X, unsigned B) { + assert(B > 0 && "Bit width can't be 0."); + assert(B <= 64 && "Bit width out of range."); + return int64_t(X << (64 - B)) >> (64 - B); +} + +/// Subtract two unsigned integers, X and Y, of type T and return the absolute +/// value of the result. +template <typename T> +typename std::enable_if<std::is_unsigned<T>::value, T>::type +AbsoluteDifference(T X, T Y) { + return std::max(X, Y) - std::min(X, Y); +} + +/// Add two unsigned integers, X and Y, of type T. Clamp the result to the +/// maximum representable value of T on overflow. ResultOverflowed indicates if +/// the result is larger than the maximum representable value of type T. +template <typename T> +typename std::enable_if<std::is_unsigned<T>::value, T>::type +SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { + bool Dummy; + bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; + // Hacker's Delight, p. 29 + T Z = X + Y; + Overflowed = (Z < X || Z < Y); + if (Overflowed) + return std::numeric_limits<T>::max(); + else + return Z; +} + +/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the +/// maximum representable value of T on overflow. ResultOverflowed indicates if +/// the result is larger than the maximum representable value of type T. +template <typename T> +typename std::enable_if<std::is_unsigned<T>::value, T>::type +SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { + bool Dummy; + bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; + + // Hacker's Delight, p. 30 has a different algorithm, but we don't use that + // because it fails for uint16_t (where multiplication can have undefined + // behavior due to promotion to int), and requires a division in addition + // to the multiplication. + + Overflowed = false; + + // Log2(Z) would be either Log2Z or Log2Z + 1. + // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z + // will necessarily be less than Log2Max as desired. + int Log2Z = Log2_64(X) + Log2_64(Y); + const T Max = std::numeric_limits<T>::max(); + int Log2Max = Log2_64(Max); + if (Log2Z < Log2Max) { + return X * Y; + } + if (Log2Z > Log2Max) { + Overflowed = true; + return Max; + } + + // We're going to use the top bit, and maybe overflow one + // bit past it. Multiply all but the bottom bit then add + // that on at the end. + T Z = (X >> 1) * Y; + if (Z & ~(Max >> 1)) { + Overflowed = true; + return Max; + } + Z <<= 1; + if (X & 1) + return SaturatingAdd(Z, Y, ResultOverflowed); + + return Z; +} + +/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to +/// the product. Clamp the result to the maximum representable value of T on +/// overflow. ResultOverflowed indicates if the result is larger than the +/// maximum representable value of type T. +template <typename T> +typename std::enable_if<std::is_unsigned<T>::value, T>::type +SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { + bool Dummy; + bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; + + T Product = SaturatingMultiply(X, Y, &Overflowed); + if (Overflowed) + return Product; + + return SaturatingAdd(A, Product, &Overflowed); +} + +/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. +extern const float huge_valf; + + +/// Add two signed integers, computing the two's complement truncated result, +/// returning true if overflow occured. +template <typename T> +typename std::enable_if<std::is_signed<T>::value, T>::type +AddOverflow(T X, T Y, T &Result) { +#if __has_builtin(__builtin_add_overflow) + return __builtin_add_overflow(X, Y, &Result); +#else + // Perform the unsigned addition. + using U = typename std::make_unsigned<T>::type; + const U UX = static_cast<U>(X); + const U UY = static_cast<U>(Y); + const U UResult = UX + UY; + + // Convert to signed. + Result = static_cast<T>(UResult); + + // Adding two positive numbers should result in a positive number. + if (X > 0 && Y > 0) + return Result <= 0; + // Adding two negatives should result in a negative number. + if (X < 0 && Y < 0) + return Result >= 0; + return false; +#endif +} + +/// Subtract two signed integers, computing the two's complement truncated +/// result, returning true if an overflow ocurred. +template <typename T> +typename std::enable_if<std::is_signed<T>::value, T>::type +SubOverflow(T X, T Y, T &Result) { +#if __has_builtin(__builtin_sub_overflow) + return __builtin_sub_overflow(X, Y, &Result); +#else + // Perform the unsigned addition. + using U = typename std::make_unsigned<T>::type; + const U UX = static_cast<U>(X); + const U UY = static_cast<U>(Y); + const U UResult = UX - UY; + + // Convert to signed. + Result = static_cast<T>(UResult); + + // Subtracting a positive number from a negative results in a negative number. + if (X <= 0 && Y > 0) + return Result >= 0; + // Subtracting a negative number from a positive results in a positive number. + if (X >= 0 && Y < 0) + return Result <= 0; + return false; +#endif +} + + +/// Multiply two signed integers, computing the two's complement truncated +/// result, returning true if an overflow ocurred. +template <typename T> +typename std::enable_if<std::is_signed<T>::value, T>::type +MulOverflow(T X, T Y, T &Result) { + // Perform the unsigned multiplication on absolute values. + using U = typename std::make_unsigned<T>::type; + const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); + const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); + const U UResult = UX * UY; + + // Convert to signed. + const bool IsNegative = (X < 0) ^ (Y < 0); + Result = IsNegative ? (0 - UResult) : UResult; + + // If any of the args was 0, result is 0 and no overflow occurs. + if (UX == 0 || UY == 0) + return false; + + // UX and UY are in [1, 2^n], where n is the number of digits. + // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for + // positive) divided by an argument compares to the other. + if (IsNegative) + return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; + else + return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; +} + +} // End llvm namespace + +#endif |