diff options
Diffstat (limited to 'src/emscripten-optimizer/optimizer.cpp')
-rw-r--r-- | src/emscripten-optimizer/optimizer.cpp | 3851 |
1 files changed, 3851 insertions, 0 deletions
diff --git a/src/emscripten-optimizer/optimizer.cpp b/src/emscripten-optimizer/optimizer.cpp new file mode 100644 index 000000000..d569fb928 --- /dev/null +++ b/src/emscripten-optimizer/optimizer.cpp @@ -0,0 +1,3851 @@ +#include <cstdint> +#include <cstdio> +#include <cmath> +#include <string> +#include <algorithm> +#include <map> + +#include "simple_ast.h" +#include "optimizer.h" + +#include "optimizer-shared.cpp" + +typedef std::vector<IString> StringVec; + +//================== +// Globals +//================== + +Ref extraInfo; + +//================== +// Infrastructure +//================== + +template<class T, class V> +int indexOf(T list, V value) { + for (size_t i = 0; i < list.size(); i++) { + if (list[i] == value) return i; + } + return -1; +} + +int jsD2I(double x) { + return (int)((int64_t)x); +} + +char *strdupe(const char *str) { + char *ret = (char *)malloc(strlen(str)+1); // leaked! + strcpy(ret, str); + return ret; +} + +IString getHeapStr(int x, bool unsign) { + switch (x) { + case 8: return unsign ? HEAPU8 : HEAP8; + case 16: return unsign ? HEAPU16 : HEAP16; + case 32: return unsign ? HEAPU32 : HEAP32; + } + assert(0); + return ":("; +} + +Ref deStat(Ref node) { + if (node[0] == STAT) return node[1]; + return node; +} + +Ref getStatements(Ref node) { + if (node[0] == DEFUN) { + return node[3]; + } else if (node[0] == BLOCK) { + return node->size() > 1 ? node[1] : nullptr; + } else { + return arena.alloc(); + } +} + +// Types + +AsmType intToAsmType(int type) { + if (type >= 0 && type <= ASM_NONE) return (AsmType)type; + else { + assert(0); + return ASM_NONE; + } +} + +// forward decls +Ref makeEmpty(); +bool isEmpty(Ref node); +Ref makeAsmVarDef(const IString& v, AsmType type); +Ref makeArray(int size_hint); +Ref makeBool(bool b); +Ref makeNum(double x); +Ref makeName(IString str); +Ref makeAsmCoercion(Ref node, AsmType type); +Ref make1(IString type, Ref a); +Ref make3(IString type, Ref a, Ref b, Ref c); + +AsmData::AsmData(Ref f) { + func = f; + + // process initial params + Ref stats = func[3]; + size_t i = 0; + while (i < stats->size()) { + Ref node = stats[i]; + if (node[0] != STAT || node[1][0] != ASSIGN || node[1][2][0] != NAME) break; + node = node[1]; + Ref name = node[2][1]; + int index = func[2]->indexOf(name); + if (index < 0) break; // not an assign into a parameter, but a global + IString& str = name->getIString(); + if (locals.count(str) > 0) break; // already done that param, must be starting function body + locals[str] = Local(detectType(node[3]), true); + params.push_back(str); + stats[i] = makeEmpty(); + i++; + } + // process initial variable definitions and remove '= 0' etc parts - these + // are not actually assignments in asm.js + while (i < stats->size()) { + Ref node = stats[i]; + if (node[0] != VAR) break; + for (size_t j = 0; j < node[1]->size(); j++) { + Ref v = node[1][j]; + IString& name = v[0]->getIString(); + Ref value = v[1]; + if (locals.count(name) == 0) { + locals[name] = Local(detectType(value, nullptr, true), false); + vars.push_back(name); + v->setSize(1); // make an un-assigning var + } else { + assert(j == 0); // cannot break in the middle + goto outside; + } + } + i++; + } + outside: + // look for other var definitions and collect them + while (i < stats->size()) { + traversePre(stats[i], [&](Ref node) { + Ref type = node[0]; + if (type == VAR) { + dump("bad, seeing a var in need of fixing", func); + abort(); //, 'should be no vars to fix! ' + func[1] + ' : ' + JSON.stringify(node)); + } + }); + i++; + } + // look for final RETURN statement to get return type. + Ref retStmt = stats->back(); + if (!!retStmt && retStmt[0] == RETURN && !!retStmt[1]) { + ret = detectType(retStmt[1]); + } else { + ret = ASM_NONE; + } +} + +void AsmData::denormalize() { + Ref stats = func[3]; + // Remove var definitions, if any + for (size_t i = 0; i < stats->size(); i++) { + if (stats[i][0] == VAR) { + stats[i] = makeEmpty(); + } else { + if (!isEmpty(stats[i])) break; + } + } + // calculate variable definitions + Ref varDefs = makeArray(vars.size()); + for (auto v : vars) { + varDefs->push_back(makeAsmVarDef(v, locals[v].type)); + } + // each param needs a line; reuse emptyNodes as much as we can + size_t numParams = params.size(); + size_t emptyNodes = 0; + while (emptyNodes < stats->size()) { + if (!isEmpty(stats[emptyNodes])) break; + emptyNodes++; + } + size_t neededEmptyNodes = numParams + (varDefs->size() ? 1 : 0); // params plus one big var if there are vars + if (neededEmptyNodes > emptyNodes) { + stats->insert(0, neededEmptyNodes - emptyNodes); + } else if (neededEmptyNodes < emptyNodes) { + stats->splice(0, emptyNodes - neededEmptyNodes); + } + // add param coercions + int next = 0; + for (auto param : func[2]->getArray()) { + IString str = param->getIString(); + assert(locals.count(str) > 0); + stats[next++] = make1(STAT, make3(ASSIGN, makeBool(true), makeName(str.c_str()), makeAsmCoercion(makeName(str.c_str()), locals[str].type))); + } + if (varDefs->size()) { + stats[next] = make1(VAR, varDefs); + } + /* + if (inlines->size() > 0) { + var i = 0; + traverse(func, function(node, type) { + if (type == CALL && node[1][0] == NAME && node[1][1] == 'inlinejs') { + node[1] = inlines[i++]; // swap back in the body + } + }); + } + */ + // ensure that there's a final RETURN statement if needed. + if (ret != ASM_NONE) { + Ref retStmt = stats->back(); + if (!retStmt || retStmt[0] != RETURN) { + Ref retVal = makeNum(0); + if (ret != ASM_INT) { + retVal = makeAsmCoercion(retVal, ret); + } + stats->push_back(make1(RETURN, retVal)); + } + } + //printErr('denormalized \n\n' + astToSrc(func) + '\n\n'); +} + +// Constructions TODO: share common constructions, and assert they remain frozen + +Ref makeArray(int size_hint=0) { + return &arena.alloc()->setArray(size_hint); +} + +Ref makeBool(bool b) { + return &arena.alloc()->setBool(b); +} + +Ref makeString(const IString& s) { + return &arena.alloc()->setString(s); +} + +Ref makeEmpty() { + return ValueBuilder::makeToplevel(); +} + +Ref makeNum(double x) { + return ValueBuilder::makeDouble(x); +} + +Ref makeName(IString str) { + return ValueBuilder::makeName(str); +} + +Ref makeBlock() { + return ValueBuilder::makeBlock(); +} + +Ref make1(IString s1, Ref a) { + Ref ret(makeArray(2)); + ret->push_back(makeString(s1)); + ret->push_back(a); + return ret; +} + +Ref make2(IString s1, IString s2, Ref a) { + Ref ret(makeArray(2)); + ret->push_back(makeString(s1)); + ret->push_back(makeString(s2)); + ret->push_back(a); + return ret; +} + +Ref make2(IString s1, Ref a, Ref b) { + Ref ret(makeArray(3)); + ret->push_back(makeString(s1)); + ret->push_back(a); + ret->push_back(b); + return ret; +} + +Ref make3(IString type, IString a, Ref b, Ref c) { + Ref ret(makeArray(4)); + ret->push_back(makeString(type)); + ret->push_back(makeString(a)); + ret->push_back(b); + ret->push_back(c); + return ret; +} + +Ref make3(IString type, Ref a, Ref b, Ref c) { + Ref ret(makeArray(4)); + ret->push_back(makeString(type)); + ret->push_back(a); + ret->push_back(b); + ret->push_back(c); + return ret; +} + +Ref makeAsmVarDef(const IString& v, AsmType type) { + Ref val; + switch (type) { + case ASM_INT: val = makeNum(0); break; + case ASM_DOUBLE: val = make2(UNARY_PREFIX, PLUS, makeNum(0)); break; + case ASM_FLOAT: { + if (!ASM_FLOAT_ZERO.isNull()) { + val = makeName(ASM_FLOAT_ZERO); + } else { + val = make2(CALL, makeName(MATH_FROUND), &(makeArray(1))->push_back(makeNum(0))); + } + break; + } + case ASM_FLOAT32X4: { + val = make2(CALL, makeName(SIMD_FLOAT32X4), &(makeArray(4))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); + break; + } + case ASM_FLOAT64X2: { + val = make2(CALL, makeName(SIMD_FLOAT64X2), &(makeArray(2))->push_back(makeNum(0)).push_back(makeNum(0))); + break; + } + case ASM_INT8X16: { + val = make2(CALL, makeName(SIMD_INT8X16), &(makeArray(16))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); + break; + } + case ASM_INT16X8: { + val = make2(CALL, makeName(SIMD_INT16X8), &(makeArray(8))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); + break; + } + case ASM_INT32X4: { + val = make2(CALL, makeName(SIMD_INT32X4), &(makeArray(4))->push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0)).push_back(makeNum(0))); + break; + } + default: assert(0); + } + return make1(v, val); +} + +Ref makeAsmCoercion(Ref node, AsmType type) { + switch (type) { + case ASM_INT: return make3(BINARY, OR, node, makeNum(0)); + case ASM_DOUBLE: return make2(UNARY_PREFIX, PLUS, node); + case ASM_FLOAT: return make2(CALL, makeName(MATH_FROUND), &(makeArray(1))->push_back(node)); + case ASM_FLOAT32X4: return make2(CALL, makeName(SIMD_FLOAT32X4_CHECK), &(makeArray(1))->push_back(node)); + case ASM_FLOAT64X2: return make2(CALL, makeName(SIMD_FLOAT64X2_CHECK), &(makeArray(1))->push_back(node)); + case ASM_INT8X16: return make2(CALL, makeName(SIMD_INT8X16_CHECK), &(makeArray(1))->push_back(node)); + case ASM_INT16X8: return make2(CALL, makeName(SIMD_INT16X8_CHECK), &(makeArray(1))->push_back(node)); + case ASM_INT32X4: return make2(CALL, makeName(SIMD_INT32X4_CHECK), &(makeArray(1))->push_back(node)); + case ASM_NONE: + default: return node; // non-validating code, emit nothing XXX this is dangerous, we should only allow this when we know we are not validating + } +} + +// Checks + +bool isEmpty(Ref node) { + return (node->size() == 2 && node[0] == TOPLEVEL && node[1]->size() == 0) || + (node->size() > 0 && node[0] == BLOCK && (!node[1] || node[1]->size() == 0)); +} + +bool commable(Ref node) { // TODO: hashing + IString type = node[0]->getIString(); + if (type == ASSIGN || type == BINARY || type == UNARY_PREFIX || type == NAME || type == NUM || type == CALL || type == SEQ || type == CONDITIONAL || type == SUB) return true; + return false; +} + +bool isMathFunc(const char *name) { + static const char *Math_ = "Math_"; + static unsigned size = strlen(Math_); + return strncmp(name, Math_, size) == 0; +} + +bool isMathFunc(Ref value) { + return value->isString() && isMathFunc(value->getCString()); +} + +bool callHasSideEffects(Ref node) { // checks if the call itself (not the args) has side effects (or is not statically known) + return !(node[1][0] == NAME && isMathFunc(node[1][1])); +} + +bool hasSideEffects(Ref node) { // this is 99% incomplete! + IString type = node[0]->getIString(); + switch (type[0]) { + case 'n': + if (type == NUM || type == NAME) return false; + break; + case 's': + if (type == STRING) return false; + if (type == SUB) return hasSideEffects(node[1]) || hasSideEffects(node[2]); + break; + case 'u': + if (type == UNARY_PREFIX) return hasSideEffects(node[2]); + break; + case 'b': + if (type == BINARY) return hasSideEffects(node[2]) || hasSideEffects(node[3]); + break; + case 'c': + if (type == CALL) { + if (callHasSideEffects(node)) return true; + // This is a statically known call, with no side effects. only args can side effect us + for (auto arg : node[2]->getArray()) { + if (hasSideEffects(arg)) return true; + } + return false; + } else if (type == CONDITIONAL) return hasSideEffects(node[1]) || hasSideEffects(node[2]) || hasSideEffects(node[3]); + break; + } + return true; +} + +// checks if a node has just basic operations, nothing with side effects nor that can notice side effects, which +// implies we can move it around in the code +bool triviallySafeToMove(Ref node, AsmData& asmData) { + bool ok = true; + traversePre(node, [&](Ref node) { + Ref type = node[0]; + if (type == STAT || type == BINARY || type == UNARY_PREFIX || type == ASSIGN || type == NUM) return; + else if (type == NAME) { + if (!asmData.isLocal(node[1]->getIString())) ok = false; + } else if (type == CALL) { + if (callHasSideEffects(node)) ok = false; + } else { + ok = false; + } + }); + return ok; +} + +// Transforms + +// We often have branchings that are simplified so one end vanishes, and +// we then get +// if (!(x < 5)) +// or such. Simplifying these saves space and time. +Ref simplifyNotCompsDirect(Ref node) { + if (node[0] == UNARY_PREFIX && node[1] == L_NOT) { + // de-morgan's laws do not work on floats, due to nans >:( + if (node[2][0] == BINARY && (detectType(node[2][2]) == ASM_INT && detectType(node[2][3]) == ASM_INT)) { + Ref op = node[2][1]; + switch(op->getCString()[0]) { + case '<': { + if (op == LT) { op->setString(GE); break; } + if (op == LE) { op->setString(GT); break; } + return node; + } + case '>': { + if (op == GT) { op->setString(LE); break; } + if (op == GE) { op->setString(LT); break; } + return node; + } + case '=': { + if (op == EQ) { op->setString(NE); break; } + return node; + } + case '!': { + if (op == NE) { op->setString(EQ); break; } + return node; + } + default: return node; + } + return make3(BINARY, op, node[2][2], node[2][3]); + } else if (node[2][0] == UNARY_PREFIX && node[2][1] == L_NOT) { + return node[2][2]; + } + } + return node; +} + +Ref flipCondition(Ref cond) { + return simplifyNotCompsDirect(make2(UNARY_PREFIX, L_NOT, cond)); +} + +void safeCopy(Ref target, Ref source) { // safely copy source onto target, even if source is a subnode of target + Ref temp = source; // hold on to source + *target = *temp; +} + +void clearEmptyNodes(Ref arr) { + int skip = 0; + for (size_t i = 0; i < arr->size(); i++) { + if (skip) { + arr[i-skip] = arr[i]; + } + if (isEmpty(deStat(arr[i]))) { + skip++; + } + } + if (skip) arr->setSize(arr->size() - skip); +} +void clearUselessNodes(Ref arr) { + int skip = 0; + for (size_t i = 0; i < arr->size(); i++) { + Ref curr = arr[i]; + if (skip) { + arr[i-skip] = curr; + } + if (isEmpty(deStat(curr)) || (curr[0] == STAT && !hasSideEffects(curr[1]))) { + skip++; + } + } + if (skip) arr->setSize(arr->size() - skip); +} + +void removeAllEmptySubNodes(Ref ast) { + traversePre(ast, [](Ref node) { + if (node[0] == DEFUN) { + clearEmptyNodes(node[3]); + } else if (node[0] == BLOCK && node->size() > 1 && !!node[1]) { + clearEmptyNodes(node[1]); + } else if (node[0] == SEQ && isEmpty(node[1])) { + safeCopy(node, node[2]); + } + }); +} +void removeAllUselessSubNodes(Ref ast) { + traversePrePost(ast, [](Ref node) { + Ref type = node[0]; + if (type == DEFUN) { + clearUselessNodes(node[3]); + } else if (type == BLOCK && node->size() > 1 && !!node[1]) { + clearUselessNodes(node[1]); + } else if (type == SEQ && isEmpty(node[1])) { + safeCopy(node, node[2]); + } + }, [](Ref node) { + Ref type = node[0]; + if (type == IF) { + bool empty2 = isEmpty(node[2]), has3 = node->size() == 4 && !!node[3], empty3 = !has3 || isEmpty(node[3]); + if (!empty2 && empty3 && has3) { // empty else clauses + node->setSize(3); + } else if (empty2 && !empty3) { // empty if blocks + safeCopy(node, make2(IF, make2(UNARY_PREFIX, L_NOT, node[1]), node[3])); + } else if (empty2 && empty3) { + if (hasSideEffects(node[1])) { + safeCopy(node, make1(STAT, node[1])); + } else { + safeCopy(node, makeEmpty()); + } + } + } + }); +} + +Ref unVarify(Ref vars) { // transform var x=1, y=2 etc. into (x=1, y=2), i.e., the same assigns, but without a var definition + Ref ret = makeArray(1); + ret->push_back(makeString(STAT)); + if (vars->size() == 1) { + ret->push_back(make3(ASSIGN, makeBool(true), makeName(vars[0][0]->getIString()), vars[0][1])); + } else { + ret->push_back(makeArray(vars->size()-1)); + Ref curr = ret[1]; + for (size_t i = 0; i+1 < vars->size(); i++) { + curr->push_back(makeString(SEQ)); + curr->push_back(make3(ASSIGN, makeBool(true), makeName(vars[i][0]->getIString()), vars[i][1])); + if (i != vars->size()-2) { + curr->push_back(makeArray()); + curr = curr[2]; + } + } + curr->push_back(make3(ASSIGN, makeBool(true), makeName(vars->back()[0]->getIString()), vars->back()[1])); + } + return ret; +} + +// Calculations + +int measureCost(Ref ast) { + int size = 0; + traversePre(ast, [&size](Ref node) { + Ref type = node[0]; + if (type == NUM || type == UNARY_PREFIX) size--; + else if (type == BINARY) { + if (node[3][0] == NUM && node[3][1]->getNumber() == 0) size--; + else if (node[1] == DIV || node[1] == MOD) size += 2; + } + else if (type == CALL && !callHasSideEffects(node)) size -= 2; + else if (type == SUB) size++; + size++; + }); + return size; +} + +//================== +// Params +//================== + +bool preciseF32 = false, + receiveJSON = false, + emitJSON = false, + minifyWhitespace = false, + last = false; + +//===================== +// Optimization passes +//===================== + +#define HASES \ + bool has(const IString& str) { \ + return count(str) > 0; \ + } \ + bool has(Ref node) { \ + return node->isString() && count(node->getIString()) > 0; \ + } + +class StringSet : public cashew::IStringSet { +public: + StringSet() {} + StringSet(const char *str) : IStringSet(str) {} + + HASES + + void dump() { + err("==="); + for (auto str : *this) { + errv("%s", str.c_str()); + } + err("==="); + } +}; + +StringSet USEFUL_BINARY_OPS("<< >> | & ^"), + COMPARE_OPS("< <= > >= == == != !=="), + BITWISE("| & ^"), + SAFE_BINARY_OPS("+ -"), // division is unsafe as it creates non-ints in JS; mod is unsafe as signs matter so we can't remove |0's; mul does not nest with +,- in asm + COERCION_REQUIRING_OPS("sub unary-prefix"), // ops that in asm must be coerced right away + COERCION_REQUIRING_BINARIES("* / %"); // binary ops that in asm must be coerced + +StringSet ASSOCIATIVE_BINARIES("+ * | & ^"), + CONTROL_FLOW("do while for if switch"), + LOOP("do while for"), + NAME_OR_NUM("name num"), + CONDITION_CHECKERS("if do while switch"), + SAFE_TO_DROP_COERCION("unary-prefix name num"); + +StringSet BREAK_CAPTURERS("do while for switch"), + CONTINUE_CAPTURERS("do while for"), + FUNCTIONS_THAT_ALWAYS_THROW("abort ___resumeException ___cxa_throw ___cxa_rethrow"); + +bool isFunctionTable(const char *name) { + static const char *functionTable = "FUNCTION_TABLE"; + static unsigned size = strlen(functionTable); + return strncmp(name, functionTable, size) == 0; +} + +bool isFunctionTable(Ref value) { + return value->isString() && isFunctionTable(value->getCString()); +} + +// Internal utilities + +bool canDropCoercion(Ref node) { + if (SAFE_TO_DROP_COERCION.has(node[0])) return true; + if (node[0] == BINARY) { + switch (node[1]->getCString()[0]) { + case '>': return node[1] == RSHIFT || node[1] == TRSHIFT; + case '<': return node[1] == LSHIFT; + case '|': case '^': case '&': return true; + } + } + return false; +} + +Ref simplifyCondition(Ref node) { + node = simplifyNotCompsDirect(node); + // on integers, if (x == 0) is the same as if (x), and if (x != 0) as if (!x) + if (node[0] == BINARY && (node[1] == EQ || node[1] == NE)) { + Ref target; + if (detectType(node[2]) == ASM_INT && node[3][0] == NUM && node[3][1]->getNumber() == 0) { + target = node[2]; + } else if (detectType(node[3]) == ASM_INT && node[2][0] == NUM && node[2][1]->getNumber() == 0) { + target = node[3]; + } + if (!!target) { + if (target[0] == BINARY && (target[1] == OR || target[1] == TRSHIFT) && target[3][0] == NUM && target[3][1]->getNumber() == 0 && + canDropCoercion(target[2])) { + target = target[2]; // drop the coercion, in a condition it is ok to do if (x) + } + if (node[1] == EQ) { + return make2(UNARY_PREFIX, L_NOT, target); + } else { + return target; + } + } + } + return node; +} + +// Passes + +// Eliminator aka Expressionizer +// +// The goal of this pass is to eliminate unneeded variables (which represent one of the infinite registers in the LLVM +// model) and thus to generate complex expressions where possible, for example +// +// var x = a(10); +// var y = HEAP[20]; +// print(x+y); +// +// can be transformed into +// +// print(a(10)+HEAP[20]); +// +// The basic principle is to scan along the code in the order of parsing/execution, and keep a list of tracked +// variables that are current contenders for elimination. We must untrack when we see something that we cannot +// cross, for example, a write to memory means we must invalidate variables that depend on reading from +// memory, since if we change the order then we do not preserve the computation. +// +// We rely on some assumptions about emscripten-generated code here, which means we can do a lot more than +// a general JS optimization can. For example, we assume that SUB nodes (indexing like HEAP[..]) are +// memory accesses or FUNCTION_TABLE accesses, and in both cases that the symbol cannot be replaced although +// the contents can. So we assume FUNCTION_TABLE might have its contents changed but not be pointed to +// a different object, which allows +// +// var x = f(); +// FUNCTION_TABLE[x](); +// +// to be optimized (f could replace FUNCTION_TABLE, so in general JS eliminating x is not valid). +// +// In memSafe mode, we are more careful and assume functions can replace HEAP and FUNCTION_TABLE, which +// can happen in ALLOW_MEMORY_GROWTH mode + +StringSet ELIMINATION_SAFE_NODES("assign call if toplevel do return label switch binary unary-prefix"); // do is checked carefully, however +StringSet IGNORABLE_ELIMINATOR_SCAN_NODES("num toplevel string break continue dot"); // dot can only be STRING_TABLE.* +StringSet ABORTING_ELIMINATOR_SCAN_NODES("new object function defun for while array throw"); // we could handle some of these, TODO, but nontrivial (e.g. for while, the condition is hit multiple times after the body) +StringSet HEAP_NAMES("HEAP8 HEAP16 HEAP32 HEAPU8 HEAPU16 HEAPU32 HEAPF32 HEAPF64"); + +bool isTempDoublePtrAccess(Ref node) { // these are used in bitcasts; they are not really affecting memory, and should cause no invalidation + assert(node[0] == SUB); + return (node[2][0] == NAME && node[2][1] == TEMP_DOUBLE_PTR) || + (node[2][0] == BINARY && ((node[2][2][0] == NAME && node[2][2][1] == TEMP_DOUBLE_PTR) || + (node[2][3][0] == NAME && node[2][3][1] == TEMP_DOUBLE_PTR))); +} + +class StringIntMap : public std::unordered_map<IString, int> { +public: + HASES +}; + +class StringStringMap : public std::unordered_map<IString, IString> { +public: + HASES +}; + +class StringRefMap : public std::unordered_map<IString, Ref> { +public: + HASES +}; + +class StringTypeMap : public std::unordered_map<IString, AsmType> { +public: + HASES +}; + +void eliminate(Ref ast, bool memSafe) { +#ifdef PROFILING + clock_t tasmdata = 0; + clock_t tfnexamine = 0; + clock_t tvarcheck = 0; + clock_t tstmtelim = 0; + clock_t tstmtscan = 0; + clock_t tcleanvars = 0; + clock_t treconstruct = 0; +#endif + + // Find variables that have a single use, and if they can be eliminated, do so + traverseFunctions(ast, [&](Ref func) { + +#ifdef PROFILING + clock_t start = clock(); +#endif + + AsmData asmData(func); + +#ifdef PROFILING + tasmdata += clock() - start; + start = clock(); +#endif + + // First, find the potentially eliminatable functions: that have one definition and one use + + StringIntMap definitions; + StringIntMap uses; + StringIntMap namings; + StringRefMap values; + StringIntMap varsToRemove; // variables being removed, that we can eliminate all 'var x;' of (this refers to VAR nodes we should remove) + // 1 means we should remove it, 2 means we successfully removed it + StringSet varsToTryToRemove; // variables that have 0 uses, but have side effects - when we scan we can try to remove them + + // examine body and note locals + traversePre(func, [&](Ref node) { + Ref type = node[0]; + if (type == NAME) { + IString& name = node[1]->getIString(); + uses[name]++; + namings[name]++; + } else if (type == ASSIGN) { + Ref target = node[2]; + if (target[0] == NAME) { + IString& name = target[1]->getIString(); + // values is only used if definitions is 1 + if (definitions[name]++ == 0) { + values[name] = node[3]; + } + assert(node[1]->isBool(true)); // not +=, -= etc., just = + uses[name]--; // because the name node will show up by itself in the previous case + } + } + }); + +#ifdef PROFILING + tfnexamine += clock() - start; + start = clock(); +#endif + + StringSet potentials; // local variables with 1 definition and 1 use + StringSet sideEffectFree; // whether a local variable has no side effects in its definition. Only relevant when there are no uses + + auto unprocessVariable = [&](IString name) { + potentials.erase(name); + varsToRemove.erase(name); + sideEffectFree.erase(name); + varsToTryToRemove.erase(name); + }; + std::function<void (IString)> processVariable = [&](IString name) { + if (definitions[name] == 1 && uses[name] == 1) { + potentials.insert(name); + } else if (uses[name] == 0 && definitions[name] <= 1) { // no uses, no def or 1 def (cannot operate on phis, and the llvm optimizer will remove unneeded phis anyhow) (no definition means it is a function parameter, or a local with just |var x;| but no defining assignment) + bool sideEffects = false; + auto val = values.find(name); + Ref value; + if (val != values.end()) { + value = val->second; + // TODO: merge with other side effect code + // First, pattern-match + // (HEAP32[((tempDoublePtr)>>2)]=((HEAP32[(($_sroa_0_0__idx1)>>2)])|0),HEAP32[(((tempDoublePtr)+(4))>>2)]=((HEAP32[((($_sroa_0_0__idx1)+(4))>>2)])|0),(+(HEAPF64[(tempDoublePtr)>>3]))) + // which has no side effects and is the special form of converting double to i64. + if (!(value[0] == SEQ && value[1][0] == ASSIGN && value[1][2][0] == SUB && value[1][2][2][0] == BINARY && value[1][2][2][1] == RSHIFT && + value[1][2][2][2][0] == NAME && value[1][2][2][2][1] == TEMP_DOUBLE_PTR)) { + // If not that, then traverse and scan normally. + sideEffects = hasSideEffects(value); + } + } + if (!sideEffects) { + varsToRemove[name] = !definitions[name] ? 2 : 1; // remove it normally + sideEffectFree.insert(name); + // Each time we remove a variable with 0 uses, if its value has no + // side effects and vanishes too, then we can remove a use from variables + // appearing in it, and possibly eliminate again + if (!!value) { + traversePre(value, [&](Ref node) { + if (node[0] == NAME) { + IString name = node[1]->getIString(); + node[1]->setString(EMPTY); // we can remove this - it will never be shown, and should not be left to confuse us as we traverse + if (asmData.isLocal(name)) { + uses[name]--; // cannot be infinite recursion since we descend an energy function + assert(uses[name] >= 0); + unprocessVariable(name); + processVariable(name); + } + } else if (node[0] == CALL) { + // no side effects, so this must be a Math.* call or such. We can just ignore it and all children + node[0]->setString(NAME); + node[1]->setString(EMPTY); + } + }); + } + } else { + varsToTryToRemove.insert(name); // try to remove it later during scanning + } + } + }; + for (auto name : asmData.locals) { + processVariable(name.first); + } + +#ifdef PROFILING + tvarcheck += clock() - start; + start = clock(); +#endif + + //printErr('defs: ' + JSON.stringify(definitions)); + //printErr('uses: ' + JSON.stringify(uses)); + //printErr('values: ' + JSON.stringify(values)); + //printErr('locals: ' + JSON.stringify(locals)); + //printErr('varsToRemove: ' + JSON.stringify(varsToRemove)); + //printErr('varsToTryToRemove: ' + JSON.stringify(varsToTryToRemove)); + values.clear(); + //printErr('potentials: ' + JSON.stringify(potentials)); + // We can now proceed through the function. In each list of statements, we try to eliminate + struct Tracking { + bool usesGlobals, usesMemory, hasDeps; + Ref defNode; + bool doesCall; + }; + class Tracked : public std::unordered_map<IString, Tracking> { + public: + HASES + }; + Tracked tracked; + #define dumpTracked() { errv("tracking %d", tracked.size()); for (auto t : tracked) errv("... %s", t.first.c_str()); } + // Although a set would be more appropriate, it would also be slower + std::unordered_map<IString, StringVec> depMap; + + bool globalsInvalidated = false; // do not repeat invalidations, until we track something new + bool memoryInvalidated = false; + bool callsInvalidated = false; + auto track = [&](IString name, Ref value, Ref defNode) { // add a potential that has just been defined to the tracked list, we hope to eliminate it + Tracking& track = tracked[name]; + track.usesGlobals = false; + track.usesMemory = false; + track.hasDeps = false; + track.defNode = defNode; + track.doesCall = false; + bool ignoreName = false; // one-time ignorings of names, as first op in sub and call + traversePre(value, [&](Ref node) { + Ref type = node[0]; + if (type == NAME) { + if (!ignoreName) { + IString depName = node[1]->getIString(); + if (!asmData.isLocal(depName)) { + track.usesGlobals = true; + } + if (!potentials.has(depName)) { // deps do not matter for potentials - they are defined once, so no complexity + depMap[depName].push_back(name); + track.hasDeps = true; + } + } else { + ignoreName = false; + } + } else if (type == SUB) { + track.usesMemory = true; + ignoreName = true; + } else if (type == CALL) { + track.usesGlobals = true; + track.usesMemory = true; + track.doesCall = true; + ignoreName = true; + } else { + ignoreName = false; + } + }); + if (track.usesGlobals) globalsInvalidated = false; + if (track.usesMemory) memoryInvalidated = false; + if (track.doesCall) callsInvalidated = false; + }; + + // TODO: invalidate using a sequence number for each type (if you were tracked before the last invalidation, you are cancelled). remove for.in loops + #define INVALIDATE(what, check) \ + auto invalidate##what = [&]() { \ + std::vector<IString> temp; \ + for (auto t : tracked) { \ + IString name = t.first; \ + Tracking& info = tracked[name]; \ + if (check) { \ + temp.push_back(name); \ + } \ + } \ + for (size_t i = 0; i < temp.size(); i++) { \ + tracked.erase(temp[i]); \ + } \ + }; + INVALIDATE(Globals, info.usesGlobals); + INVALIDATE(Memory, info.usesMemory); + INVALIDATE(Calls, info.doesCall); + + auto invalidateByDep = [&](IString dep) { + for (auto name : depMap[dep]) { + tracked.erase(name); + } + depMap.erase(dep); + }; + + std::function<void (IString name, Ref node)> doEliminate; + + // Generate the sequence of execution. This determines what is executed before what, so we know what can be reordered. Using + // that, performs invalidations and eliminations + auto scan = [&](Ref node) { + bool abort = false; + bool allowTracking = true; // false inside an if; also prevents recursing in an if + std::function<void (Ref, bool)> traverseInOrder = [&](Ref node, bool ignoreSub) { + if (abort) return; + Ref type = node[0]; + if (type == ASSIGN) { + Ref target = node[2]; + Ref value = node[3]; + bool nameTarget = target[0] == NAME; + // If this is an assign to a name, handle it below rather than + // traversing and treating as a read + if (!nameTarget) { + traverseInOrder(target, true); // evaluate left + } + traverseInOrder(value, false); // evaluate right + // do the actual assignment + if (nameTarget) { + IString name = target[1]->getIString(); + if (potentials.has(name) && allowTracking) { + track(name, node[3], node); + } else if (varsToTryToRemove.has(name)) { + // replace it in-place + safeCopy(node, value); + varsToRemove[name] = 2; + } else { + // expensive check for invalidating specific tracked vars. This list is generally quite short though, because of + // how we just eliminate in short spans and abort when control flow happens TODO: history numbers instead + invalidateByDep(name); // can happen more than once per dep.. + if (!asmData.isLocal(name) && !globalsInvalidated) { + invalidateGlobals(); + globalsInvalidated = true; + } + // if we can track this name (that we assign into), and it has 0 uses and we want to remove its VAR + // definition - then remove it right now, there is no later chance + if (allowTracking && varsToRemove.has(name) && uses[name] == 0) { + track(name, node[3], node); + doEliminate(name, node); + } + } + } else if (target[0] == SUB) { + if (isTempDoublePtrAccess(target)) { + if (!globalsInvalidated) { + invalidateGlobals(); + globalsInvalidated = true; + } + } else if (!memoryInvalidated) { + invalidateMemory(); + memoryInvalidated = true; + } + } + } else if (type == SUB) { + // Only keep track of the global array names in memsafe mode i.e. + // when they may change underneath us due to resizing + if (node[1][0] != NAME || memSafe) { + traverseInOrder(node[1], false); // evaluate inner + } + traverseInOrder(node[2], false); // evaluate outer + // ignoreSub means we are a write (happening later), not a read + if (!ignoreSub && !isTempDoublePtrAccess(node)) { + // do the memory access + if (!callsInvalidated) { + invalidateCalls(); + callsInvalidated = true; + } + } + } else if (type == BINARY) { + bool flipped = false; + if (ASSOCIATIVE_BINARIES.has(node[1]) && !NAME_OR_NUM.has(node[2][0]) && NAME_OR_NUM.has(node[3][0])) { // TODO recurse here? + // associatives like + and * can be reordered in the simple case of one of the sides being a name, since we assume they are all just numbers + Ref temp = node[2]; + node[2] = node[3]; + node[3] = temp; + flipped = true; + } + traverseInOrder(node[2], false); + traverseInOrder(node[3], false); + if (flipped && NAME_OR_NUM.has(node[2][0])) { // dunno if we optimized, but safe to flip back - and keeps the code closer to the original and more readable + Ref temp = node[2]; + node[2] = node[3]; + node[3] = temp; + } + } else if (type == NAME) { + IString name = node[1]->getIString(); + if (tracked.has(name)) { + doEliminate(name, node); + } else if (!asmData.isLocal(name) && !callsInvalidated && (memSafe || !HEAP_NAMES.has(name))) { // ignore HEAP8 etc when not memory safe, these are ok to + // access, e.g. SIMD_Int32x4_load(HEAP8, ...) + invalidateCalls(); + callsInvalidated = true; + } + } else if (type == UNARY_PREFIX || type == UNARY_POSTFIX) { + traverseInOrder(node[2], false); + } else if (IGNORABLE_ELIMINATOR_SCAN_NODES.has(type)) { + } else if (type == CALL) { + // Named functions never change and are therefore safe to not track + if (node[1][0] != NAME) { + traverseInOrder(node[1], false); + } + Ref args = node[2]; + for (size_t i = 0; i < args->size(); i++) { + traverseInOrder(args[i], false); + } + if (callHasSideEffects(node)) { + // these two invalidations will also invalidate calls + if (!globalsInvalidated) { + invalidateGlobals(); + globalsInvalidated = true; + } + if (!memoryInvalidated) { + invalidateMemory(); + memoryInvalidated = true; + } + } + } else if (type == IF) { + if (allowTracking) { + traverseInOrder(node[1], false); // can eliminate into condition, but nowhere else + if (!callsInvalidated) { // invalidate calls, since we cannot eliminate them into an if that may not execute! + invalidateCalls(); + callsInvalidated = true; + } + allowTracking = false; + traverseInOrder(node[2], false); // 2 and 3 could be 'parallel', really.. + if (!!node[3]) traverseInOrder(node[3], false); + allowTracking = true; + } else { + tracked.clear(); + } + } else if (type == BLOCK) { + Ref stats = getStatements(node); + if (!!stats) { + for (size_t i = 0; i < stats->size(); i++) { + traverseInOrder(stats[i], false); + } + } + } else if (type == STAT) { + traverseInOrder(node[1], false); + } else if (type == LABEL) { + traverseInOrder(node[2], false); + } else if (type == SEQ) { + traverseInOrder(node[1], false); + traverseInOrder(node[2], false); + } else if (type == DO) { + if (node[1][0] == NUM && node[1][1]->getNumber() == 0) { // one-time loop + traverseInOrder(node[2], false); + } else { + tracked.clear(); + } + } else if (type == RETURN) { + if (!!node[1]) traverseInOrder(node[1], false); + } else if (type == CONDITIONAL) { + if (!callsInvalidated) { // invalidate calls, since we cannot eliminate them into a branch of an LLVM select/JS conditional that does not execute + invalidateCalls(); + callsInvalidated = true; + } + traverseInOrder(node[1], false); + traverseInOrder(node[2], false); + traverseInOrder(node[3], false); + } else if (type == SWITCH) { + traverseInOrder(node[1], false); + Tracked originalTracked = tracked; + Ref cases = node[2]; + for (size_t i = 0; i < cases->size(); i++) { + Ref c = cases[i]; + assert(c[0]->isNull() || c[0][0] == NUM || (c[0][0] == UNARY_PREFIX && c[0][2][0] == NUM)); + Ref stats = c[1]; + for (size_t j = 0; j < stats->size(); j++) { + traverseInOrder(stats[j], false); + } + // We cannot track from one switch case into another if there are external dependencies, undo all new trackings + // Otherwise we can track, e.g. a var used in a case before assignment in another case is UB in asm.js, so no need for the assignment + // TODO: general framework here, use in if-else as well + std::vector<IString> toDelete; + for (auto t : tracked) { + if (!originalTracked.has(t.first)) { + Tracking& info = tracked[t.first]; + if (info.usesGlobals || info.usesMemory || info.hasDeps) { + toDelete.push_back(t.first); + } + } + } + for (auto t : toDelete) { + tracked.erase(t); + } + } + tracked.clear(); // do not track from inside the switch to outside + } else { + assert(ABORTING_ELIMINATOR_SCAN_NODES.has(type)); + tracked.clear(); + abort = true; + } + }; + traverseInOrder(node, false); + }; + //var eliminationLimit = 0; // used to debugging purposes + doEliminate = [&](IString name, Ref node) { + //if (eliminationLimit == 0) return; + //eliminationLimit--; + //printErr('elim!!!!! ' + name); + // yes, eliminate! + varsToRemove[name] = 2; // both assign and var definitions can have other vars we must clean up + assert(tracked.has(name)); + Tracking& info = tracked[name]; + Ref defNode = info.defNode; + assert(!!defNode); + if (!sideEffectFree.has(name)) { + assert(defNode[0] != VAR); + // assign + Ref value = defNode[3]; + // wipe out the assign + safeCopy(defNode, makeEmpty()); + // replace this node in-place + safeCopy(node, value); + } else { + // This has no side effects and no uses, empty it out in-place + safeCopy(node, makeEmpty()); + } + tracked.erase(name); + }; + traversePre(func, [&](Ref block) { + // Look for statements, including while-switch pattern + Ref stats = getStatements(block); + if (!stats && (block[0] == WHILE && block[2][0] == SWITCH)) { + stats = &(makeArray(1)->push_back(block[2])); + } + if (!stats) return; + tracked.clear(); + for (size_t i = 0; i < stats->size(); i++) { + Ref node = deStat(stats[i]); + Ref type = node[0]; + if (type == RETURN && i+1 < stats->size()) { + stats->setSize(i+1); // remove any code after a return + } + // Check for things that affect elimination + if (ELIMINATION_SAFE_NODES.has(type)) { +#ifdef PROFILING + tstmtelim += clock() - start; + start = clock(); +#endif + scan(node); +#ifdef PROFILING + tstmtscan += clock() - start; + start = clock(); +#endif + } else if (type == VAR) { + continue; // asm normalisation has reduced 'var' to just the names + } else { + tracked.clear(); // not a var or assign, break all potential elimination so far + } + } + }); + +#ifdef PROFILING + tstmtelim += clock() - start; + start = clock(); +#endif + + StringIntMap seenUses; + StringStringMap helperReplacements; // for looper-helper optimization + + // clean up vars, and loop variable elimination + traversePrePost(func, [&](Ref node) { + // pre + Ref type = node[0]; + /*if (type == VAR) { + node[1] = node[1].filter(function(pair) { return !varsToRemove[pair[0]] }); + if (node[1]->size() == 0) { + // wipe out an empty |var;| + node[0] = TOPLEVEL; + node[1] = []; + } + } else */ + if (type == ASSIGN && node[1]->isBool(true) && node[2][0] == NAME && node[3][0] == NAME && node[2][1] == node[3][1]) { + // elimination led to X = X, which we can just remove + safeCopy(node, makeEmpty()); + } + }, [&](Ref node) { + // post + Ref type = node[0]; + if (type == NAME) { + IString name = node[1]->getIString(); + if (helperReplacements.has(name)) { + node[1]->setString(helperReplacements[name]); + return; // no need to track this anymore, we can't loop-optimize more than once + } + // track how many uses we saw. we need to know when a variable is no longer used (hence we run this in the post) + seenUses[name]++; + } else if (type == WHILE) { + // try to remove loop helper variables specifically + Ref stats = node[2][1]; + Ref last = stats->back(); + if (!!last && last[0] == IF && last[2][0] == BLOCK && !!last[3] && last[3][0] == BLOCK) { + Ref ifTrue = last[2]; + Ref ifFalse = last[3]; + clearEmptyNodes(ifTrue[1]); + clearEmptyNodes(ifFalse[1]); + bool flip = false; + if (ifFalse[1]->size() > 0 && !!ifFalse[1][0] && !!ifFalse[1]->back() && ifFalse[1]->back()[0] == BREAK) { // canonicalize break in the if-true + Ref temp = ifFalse; + ifFalse = ifTrue; + ifTrue = temp; + flip = true; + } + if (ifTrue[1]->size() > 0 && !!ifTrue[1][0] && !!ifTrue[1]->back() && ifTrue[1]->back()[0] == BREAK) { + Ref assigns = ifFalse[1]; + clearEmptyNodes(assigns); + std::vector<IString> loopers, helpers; + for (size_t i = 0; i < assigns->size(); i++) { + if (assigns[i][0] == STAT && assigns[i][1][0] == ASSIGN) { + Ref assign = assigns[i][1]; + if (assign[1]->isBool(true) && assign[2][0] == NAME && assign[3][0] == NAME) { + IString looper = assign[2][1]->getIString(); + IString helper = assign[3][1]->getIString(); + if (definitions[helper] == 1 && seenUses[looper] == namings[looper] && + !helperReplacements.has(helper) && !helperReplacements.has(looper)) { + loopers.push_back(looper); + helpers.push_back(helper); + } + } + } + } + // remove loop vars that are used in the rest of the else + for (size_t i = 0; i < assigns->size(); i++) { + if (assigns[i][0] == STAT && assigns[i][1][0] == ASSIGN) { + Ref assign = assigns[i][1]; + if (!(assign[1]->isBool(true) && assign[2][0] == NAME && assign[3][0] == NAME) || indexOf(loopers, assign[2][1]->getIString()) < 0) { + // this is not one of the loop assigns + traversePre(assign, [&](Ref node) { + if (node[0] == NAME) { + int index = indexOf(loopers, node[1]->getIString()); + if (index < 0) index = indexOf(helpers, node[1]->getIString()); + if (index >= 0) { + loopers.erase(loopers.begin() + index); + helpers.erase(helpers.begin() + index); + } + } + }); + } + } + } + // remove loop vars that are used in the if + traversePre(ifTrue, [&](Ref node) { + if (node[0] == NAME) { + int index = indexOf(loopers, node[1]->getIString()); + if (index < 0) index = indexOf(helpers, node[1]->getIString()); + if (index >= 0) { + loopers.erase(loopers.begin() + index); + helpers.erase(helpers.begin() + index); + } + } + }); + if (loopers.size() == 0) return; + for (size_t l = 0; l < loopers.size(); l++) { + IString looper = loopers[l]; + IString helper = helpers[l]; + // the remaining issue is whether loopers are used after the assignment to helper and before the last line (where we assign to it) + int found = -1; + for (int i = (int)stats->size()-2; i >= 0; i--) { + Ref curr = stats[i]; + if (curr[0] == STAT && curr[1][0] == ASSIGN) { + Ref currAssign = curr[1]; + if (currAssign[1]->isBool(true) && currAssign[2][0] == NAME) { + IString to = currAssign[2][1]->getIString(); + if (to == helper) { + found = i; + break; + } + } + } + } + if (found < 0) return; + // if a loop variable is used after we assigned to the helper, we must save its value and use that. + // (note that this can happen due to elimination, if we eliminate an expression containing the + // loop var far down, past the assignment!) + // first, see if the looper and helpers overlap. Note that we check for this looper, compared to + // *ALL* the helpers. Helpers will be replaced by loopers as we eliminate them, potentially + // causing conflicts, so any helper is a concern. + int firstLooperUsage = -1; + int lastLooperUsage = -1; + int firstHelperUsage = -1; + for (int i = found+1; i < (int)stats->size(); i++) { + Ref curr = i < (int)stats->size()-1 ? stats[i] : last[1]; // on the last line, just look in the condition + traversePre(curr, [&](Ref node) { + if (node[0] == NAME) { + if (node[1] == looper) { + if (firstLooperUsage < 0) firstLooperUsage = i; + lastLooperUsage = i; + } else if (indexOf(helpers, node[1]->getIString()) >= 0) { + if (firstHelperUsage < 0) firstHelperUsage = i; + } + } + }); + } + if (firstLooperUsage >= 0) { + // the looper is used, we cannot simply merge the two variables + if ((firstHelperUsage < 0 || firstHelperUsage > lastLooperUsage) && lastLooperUsage+1 < (int)stats->size() && triviallySafeToMove(stats[found], asmData) && + seenUses[helper] == namings[helper]) { + // the helper is not used, or it is used after the last use of the looper, so they do not overlap, + // and the last looper usage is not on the last line (where we could not append after it), and the + // helper is not used outside of the loop. + // just move the looper definition to after the looper's last use + stats->insert(lastLooperUsage+1, stats[found]); + stats->splice(found, 1); + } else { + // they overlap, we can still proceed with the loop optimization, but we must introduce a + // loop temp helper variable + IString temp(strdupe((std::string(looper.c_str()) + "$looptemp").c_str())); + assert(!asmData.isLocal(temp)); + for (int i = firstLooperUsage; i <= lastLooperUsage; i++) { + Ref curr = i < (int)stats->size()-1 ? stats[i] : last[1]; // on the last line, just look in the condition + + std::function<bool (Ref)> looperToLooptemp = [&](Ref node) { + if (node[0] == NAME) { + if (node[1] == looper) { + node[1]->setString(temp); + } + } else if (node[0] == ASSIGN && node[2][0] == NAME) { + // do not traverse the assignment target, phi assignments to the loop variable must remain + traversePrePostConditional(node[3], looperToLooptemp, [](Ref node){}); + return false; + } + return true; + }; + traversePrePostConditional(curr, looperToLooptemp, [](Ref node){}); + } + asmData.addVar(temp, asmData.getType(looper)); + stats->insert(found, make1(STAT, make3(ASSIGN, makeBool(true), makeName(temp), makeName(looper)))); + } + } + } + for (size_t l = 0; l < helpers.size(); l++) { + for (size_t k = 0; k < helpers.size(); k++) { + if (l != k && helpers[l] == helpers[k]) return; // it is complicated to handle a shared helper, abort + } + } + // hurrah! this is safe to do + for (size_t l = 0; l < loopers.size(); l++) { + IString looper = loopers[l]; + IString helper = helpers[l]; + varsToRemove[helper] = 2; + traversePre(node, [&](Ref node) { // replace all appearances of helper with looper + if (node[0] == NAME && node[1] == helper) node[1]->setString(looper); + }); + helperReplacements[helper] = looper; // replace all future appearances of helper with looper + helperReplacements[looper] = looper; // avoid any further attempts to optimize looper in this manner (seenUses is wrong anyhow, too) + } + // simplify the if. we remove the if branch, leaving only the else + if (flip) { + last[1] = simplifyNotCompsDirect(make2(UNARY_PREFIX, L_NOT, last[1])); + Ref temp = last[2]; + last[2] = last[3]; + last[3] = temp; + } + if (loopers.size() == assigns->size()) { + last->pop_back(); + } else { + Ref elseStats = getStatements(last[3]); + for (size_t i = 0; i < elseStats->size(); i++) { + Ref stat = deStat(elseStats[i]); + if (stat[0] == ASSIGN && stat[2][0] == NAME) { + if (indexOf(loopers, stat[2][1]->getIString()) >= 0) { + elseStats[i] = makeEmpty(); + } + } + } + } + } + } + } + }); + +#ifdef PROFILING + tcleanvars += clock() - start; + start = clock(); +#endif + + for (auto v : varsToRemove) { + if (v.second == 2 && asmData.isVar(v.first)) asmData.deleteVar(v.first); + } + + asmData.denormalize(); + +#ifdef PROFILING + treconstruct += clock() - start; + start = clock(); +#endif + + }); + + removeAllEmptySubNodes(ast); + +#ifdef PROFILING + errv(" EL stages: a:%li fe:%li vc:%li se:%li (ss:%li) cv:%li r:%li", + tasmdata, tfnexamine, tvarcheck, tstmtelim, tstmtscan, tcleanvars, treconstruct); +#endif +} + +void eliminateMemSafe(Ref ast) { + eliminate(ast, true); +} + +void simplifyExpressions(Ref ast) { + // Simplify common expressions used to perform integer conversion operations + // in cases where no conversion is needed. + auto simplifyIntegerConversions = [](Ref ast) { + traversePre(ast, [](Ref node) { + Ref type = node[0]; + if (type == BINARY && node[1] == RSHIFT && node[3][0] == NUM && + node[2][0] == BINARY && node[2][1] == LSHIFT && node[2][3][0] == NUM && node[3][1]->getNumber() == node[2][3][1]->getNumber()) { + // Transform (x&A)<<B>>B to X&A. + Ref innerNode = node[2][2]; + double shifts = node[3][1]->getNumber(); + if (innerNode[0] == BINARY && innerNode[1] == AND && innerNode[3][0] == NUM) { + double mask = innerNode[3][1]->getNumber(); + if (isInteger32(mask) && isInteger32(shifts) && ((jsD2I(mask) << jsD2I(shifts)) >> jsD2I(shifts)) == jsD2I(mask)) { + safeCopy(node, innerNode); + return; + } + } + } else if (type == BINARY && BITWISE.has(node[1])) { + for (int i = 2; i <= 3; i++) { + Ref subNode = node[i]; + if (subNode[0] == BINARY && subNode[1] == AND && subNode[3][0] == NUM && subNode[3][1]->getNumber() == 1) { + // Rewrite (X < Y) & 1 to X < Y , when it is going into a bitwise operator. We could + // remove even more (just replace &1 with |0, then subsequent passes could remove the |0) + // but v8 issue #2513 means the code would then run very slowly in chrome. + Ref input = subNode[2]; + if (input[0] == BINARY && COMPARE_OPS.has(input[1])) { + safeCopy(node[i], input); + } + } + } + } + }); + }; + + // When there is a bunch of math like (((8+5)|0)+12)|0, only the external |0 is needed, one correction is enough. + // At each node, ((X|0)+Y)|0 can be transformed into (X+Y): The inner corrections are not needed + // TODO: Is the same is true for 0xff, 0xffff? + // Likewise, if we have |0 inside a block that will be >>'d, then the |0 is unnecessary because some + // 'useful' mathops already |0 anyhow. + + auto simplifyOps = [](Ref ast) { + auto removeMultipleOrZero = [&ast] { + bool rerun = true; + while (rerun) { + rerun = false; + std::vector<int> stack; + std::function<void (Ref)> process = [&stack, &rerun, &process, &ast](Ref node) { + Ref type = node[0]; + if (type == BINARY && node[1] == OR) { + if (node[2][0] == NUM && node[3][0] == NUM) { + node[2][1]->setNumber(jsD2I(node[2][1]->getNumber()) | jsD2I(node[3][1]->getNumber())); + stack.push_back(0); + safeCopy(node, node[2]); + return; + } + bool go = false; + if (node[2][0] == NUM && node[2][1]->getNumber() == 0) { + // canonicalize order + Ref temp = node[3]; + node[3] = node[2]; + node[2] = temp; + go = true; + } else if (node[3][0] == NUM && node[3][1]->getNumber() == 0) { + go = true; + } + if (!go) { + stack.push_back(1); + return; + } + // We might be able to remove this correction + for (int i = stack.size()-1; i >= 0; i--) { + if (stack[i] >= 1) { + if (stack.back() < 2 && node[2][0] == CALL) break; // we can only remove multiple |0s on these + if (stack.back() < 1 && (COERCION_REQUIRING_OPS.has(node[2][0]) || + (node[2][0] == BINARY && COERCION_REQUIRING_BINARIES.has(node[2][1])))) break; // we can remove |0 or >>2 + // we will replace ourselves with the non-zero side. Recursively process that node. + Ref result = node[2][0] == NUM && node[2][1]->getNumber() == 0 ? node[3] : node[2], other; + // replace node in-place + safeCopy(node, result); + rerun = true; + process(result); + return; + } else if (stack[i] == -1) { + break; // Too bad, we can't + } + } + stack.push_back(2); // From here on up, no need for this kind of correction, it's done at the top + // (Add this at the end, so it is only added if we did not remove it) + } else if (type == BINARY && USEFUL_BINARY_OPS.has(node[1])) { + stack.push_back(1); + } else if ((type == BINARY && SAFE_BINARY_OPS.has(node[1])) || type == NUM || type == NAME) { + stack.push_back(0); // This node is safe in that it does not interfere with this optimization + } else if (type == UNARY_PREFIX && node[1] == B_NOT) { + stack.push_back(1); + } else { + stack.push_back(-1); // This node is dangerous! Give up if you see this before you see '1' + } + }; + + traversePrePost(ast, process, [&stack](Ref node) { + assert(!stack.empty()); + stack.pop_back(); + }); + } + }; + + removeMultipleOrZero(); + + // & and heap-related optimizations + + bool hasTempDoublePtr = false, rerunOrZeroPass = false; + + traversePrePostConditional(ast, [](Ref node) { + // Detect trees which should not + // be simplified. + if (node[0] == SUB && node[1][0] == NAME && isFunctionTable(node[1][1])) { + return false; // do not traverse subchildren here, we should not collapse 55 & 126. + } + return true; + }, [&hasTempDoublePtr, &rerunOrZeroPass](Ref node) { + // Simplifications are done now so + // that we simplify a node's operands before the node itself. This allows + // optimizations to cascade. + Ref type = node[0]; + if (type == NAME) { + if (node[1] == TEMP_DOUBLE_PTR) hasTempDoublePtr = true; + } else if (type == BINARY && node[1] == AND && node[3][0] == NUM) { + if (node[2][0] == NUM) { + safeCopy(node, makeNum(jsD2I(node[2][1]->getNumber()) & jsD2I(node[3][1]->getNumber()))); + return; + } + Ref input = node[2]; + double amount = node[3][1]->getNumber(); + if (input[0] == BINARY && input[1] == AND && input[3][0] == NUM) { + // Collapse X & 255 & 1 + node[3][1]->setNumber(jsD2I(amount) & jsD2I(input[3][1]->getNumber())); + node[2] = input[2]; + } else if (input[0] == SUB && input[1][0] == NAME) { + // HEAP8[..] & 255 => HEAPU8[..] + HeapInfo hi = parseHeap(input[1][1]->getCString()); + if (hi.valid) { + if (isInteger32(amount) && amount == powl(2, hi.bits)-1) { + if (!hi.unsign) { + input[1][1]->setString(getHeapStr(hi.bits, true)); // make unsigned + } + // we cannot return HEAPU8 without a coercion, but at least we do HEAP8 & 255 => HEAPU8 | 0 + node[1]->setString(OR); + node[3][1]->setNumber(0); + return; + } + } + } else if (input[0] == BINARY && input[1] == RSHIFT && + input[2][0] == BINARY && input[2][1] == LSHIFT && + input[2][3][0] == NUM && input[3][0] == NUM && + input[2][3][1]->getInteger() == input[3][1]->getInteger() && + (~(0xFFFFFFFFu >> input[3][1]->getInteger()) & jsD2I(amount)) == 0) { + // x << 24 >> 24 & 255 => x & 255 + return safeCopy(node, make3(BINARY, AND, input[2][2], node[3])); + } + } else if (type == BINARY && node[1] == XOR) { + // LLVM represents bitwise not as xor with -1. Translate it back to an actual bitwise not. + if (node[3][0] == UNARY_PREFIX && node[3][1] == MINUS && node[3][2][0] == NUM && + node[3][2][1]->getNumber() == 1 && + !(node[2][0] == UNARY_PREFIX && node[2][1] == B_NOT)) { // avoid creating ~~~ which is confusing for asm given the role of ~~ + safeCopy(node, make2(UNARY_PREFIX, B_NOT, node[2])); + return; + } + } else if (type == BINARY && node[1] == RSHIFT && node[3][0] == NUM && + node[2][0] == BINARY && node[2][1] == LSHIFT && node[2][3][0] == NUM && + node[2][2][0] == SUB && node[2][2][1][0] == NAME) { + // collapse HEAPU?8[..] << 24 >> 24 etc. into HEAP8[..] | 0 + double amount = node[3][1]->getNumber(); + if (amount == node[2][3][1]->getNumber()) { + HeapInfo hi = parseHeap(node[2][2][1][1]->getCString()); + if (hi.valid && hi.bits == 32 - amount) { + node[2][2][1][1]->setString(getHeapStr(hi.bits, false)); + node[1]->setString(OR); + node[2] = node[2][2]; + node[3][1]->setNumber(0); + rerunOrZeroPass = true; + return; + } + } + } else if (type == ASSIGN) { + // optimizations for assigning into HEAP32 specifically + if (node[1]->isBool(true) && node[2][0] == SUB && node[2][1][0] == NAME) { + if (node[2][1][1] == HEAP32) { + // HEAP32[..] = x | 0 does not need the | 0 (unless it is a mandatory |0 of a call) + if (node[3][0] == BINARY && node[3][1] == OR) { + if (node[3][2][0] == NUM && node[3][2][1]->getNumber() == 0 && node[3][3][0] != CALL) { + node[3] = node[3][3]; + } else if (node[3][3][0] == NUM && node[3][3][1]->getNumber() == 0 && node[3][2][0] != CALL) { + node[3] = node[3][2]; + } + } + } else if (node[2][1][1] == HEAP8) { + // HEAP8[..] = x & 0xff does not need the & 0xff + if (node[3][0] == BINARY && node[3][1] == AND && node[3][3][0] == NUM && node[3][3][1]->getNumber() == 0xff) { + node[3] = node[3][2]; + } + } else if (node[2][1][1] == HEAP16) { + // HEAP16[..] = x & 0xffff does not need the & 0xffff + if (node[3][0] == BINARY && node[3][1] == AND && node[3][3][0] == NUM && node[3][3][1]->getNumber() == 0xffff) { + node[3] = node[3][2]; + } + } + } + Ref value = node[3]; + if (value[0] == BINARY && value[1] == OR) { + // canonicalize order of |0 to end + if (value[2][0] == NUM && value[2][1]->getNumber() == 0) { + Ref temp = value[2]; + value[2] = value[3]; + value[3] = temp; + } + // if a seq ends in an |0, remove an external |0 + // note that it is only safe to do this in assigns, like we are doing here (return (x, y|0); is not valid) + if (value[2][0] == SEQ && value[2][2][0] == BINARY && USEFUL_BINARY_OPS.has(value[2][2][1])) { + node[3] = value[2]; + } + } + } else if (type == BINARY && node[1] == RSHIFT && node[2][0] == NUM && node[3][0] == NUM) { + // optimize num >> num, in asm we need this since we do not optimize shifts in asm.js + node[0]->setString(NUM); + node[1]->setNumber(jsD2I(node[2][1]->getNumber()) >> jsD2I(node[3][1]->getNumber())); + node->setSize(2); + return; + } else if (type == BINARY && node[1] == PLUS) { + // The most common mathop is addition, e.g. in getelementptr done repeatedly. We can join all of those, + // by doing (num+num) ==> newnum. + if (node[2][0] == NUM && node[3][0] == NUM) { + node[2][1]->setNumber(jsD2I(node[2][1]->getNumber()) + jsD2I(node[3][1]->getNumber())); + safeCopy(node, node[2]); + return; + } + } + }); + + if (rerunOrZeroPass) removeMultipleOrZero(); + + if (hasTempDoublePtr) { + AsmData asmData(ast); + traversePre(ast, [](Ref node) { + Ref type = node[0]; + if (type == ASSIGN) { + if (node[1]->isBool(true) && node[2][0] == SUB && node[2][1][0] == NAME && node[2][1][1] == HEAP32) { + // remove bitcasts that are now obviously pointless, e.g. + // HEAP32[$45 >> 2] = HEAPF32[tempDoublePtr >> 2] = ($14 < $28 ? $14 : $28) - $42, HEAP32[tempDoublePtr >> 2] | 0; + Ref value = node[3]; + if (value[0] == SEQ && value[1][0] == ASSIGN && value[1][2][0] == SUB && value[1][2][1][0] == NAME && value[1][2][1][1] == HEAPF32 && + value[1][2][2][0] == BINARY && value[1][2][2][2][0] == NAME && value[1][2][2][2][1] == TEMP_DOUBLE_PTR) { + // transform to HEAPF32[$45 >> 2] = ($14 < $28 ? $14 : $28) - $42; + node[2][1][1]->setString(HEAPF32); + node[3] = value[1][3]; + } + } + } else if (type == SEQ) { + // (HEAP32[tempDoublePtr >> 2] = HEAP32[$37 >> 2], +HEAPF32[tempDoublePtr >> 2]) + // ==> + // +HEAPF32[$37 >> 2] + if (node[0] == SEQ && node[1][0] == ASSIGN && node[1][2][0] == SUB && node[1][2][1][0] == NAME && + (node[1][2][1][1] == HEAP32 || node[1][2][1][1] == HEAPF32) && + node[1][2][2][0] == BINARY && node[1][2][2][2][0] == NAME && node[1][2][2][2][1] == TEMP_DOUBLE_PTR && + node[1][3][0] == SUB && node[1][3][1][0] == NAME && (node[1][3][1][1] == HEAP32 || node[1][3][1][1] == HEAPF32) && + node[2][0] != SEQ) { // avoid (x, y, z) which can be used for tempDoublePtr on doubles for alignment fixes + if (node[1][2][1][1] == HEAP32) { + node[1][3][1][1]->setString(HEAPF32); + safeCopy(node, makeAsmCoercion(node[1][3], detectType(node[2]))); + return; + } else { + node[1][3][1][1]->setString(HEAP32); + safeCopy(node, make3(BINARY, OR, node[1][3], makeNum(0))); + return; + } + } + } + }); + + // finally, wipe out remaining ones by finding cases where all assignments to X are bitcasts, and all uses are writes to + // the other heap type, then eliminate the bitcast + struct BitcastData { + int define_HEAP32, define_HEAPF32, use_HEAP32, use_HEAPF32, namings; + bool ok; + std::vector<Ref> defines, uses; + + BitcastData() : define_HEAP32(0), define_HEAPF32(0), use_HEAP32(0), use_HEAPF32(0), namings(0), ok(false) {} + }; + std::unordered_map<IString, BitcastData> bitcastVars; + traversePre(ast, [&bitcastVars](Ref node) { + if (node[0] == ASSIGN && node[1]->isBool(true) && node[2][0] == NAME) { + Ref value = node[3]; + if (value[0] == SEQ && value[1][0] == ASSIGN && value[1][2][0] == SUB && value[1][2][1][0] == NAME && + (value[1][2][1][1] == HEAP32 || value[1][2][1][1] == HEAPF32) && + value[1][2][2][0] == BINARY && value[1][2][2][2][0] == NAME && value[1][2][2][2][1] == TEMP_DOUBLE_PTR) { + IString name = node[2][1]->getIString(); + IString heap = value[1][2][1][1]->getIString(); + if (heap == HEAP32) { + bitcastVars[name].define_HEAP32++; + } else { + assert(heap == HEAPF32); + bitcastVars[name].define_HEAPF32++; + } + bitcastVars[name].defines.push_back(node); + bitcastVars[name].ok = true; + } + } + }); + traversePre(ast, [&bitcastVars](Ref node) { + Ref type = node[0]; + if (type == NAME && bitcastVars[node[1]->getCString()].ok) { + bitcastVars[node[1]->getCString()].namings++; + } else if (type == ASSIGN && node[1]->isBool(true)) { + Ref value = node[3]; + if (value[0] == NAME) { + IString name = value[1]->getIString(); + if (bitcastVars[name].ok) { + Ref target = node[2]; + if (target[0] == SUB && target[1][0] == NAME && (target[1][1] == HEAP32 || target[1][1] == HEAPF32)) { + if (target[1][1] == HEAP32) { + bitcastVars[name].use_HEAP32++; + } else { + bitcastVars[name].use_HEAPF32++; + } + bitcastVars[name].uses.push_back(node); + } + } + } + } + }); + for (auto iter : bitcastVars) { + const IString& v = iter.first; + BitcastData& info = iter.second; + // good variables define only one type, use only one type, have definitions and uses, and define as a different type than they use + if (info.define_HEAP32*info.define_HEAPF32 == 0 && info.use_HEAP32*info.use_HEAPF32 == 0 && + info.define_HEAP32+info.define_HEAPF32 > 0 && info.use_HEAP32+info.use_HEAPF32 > 0 && + info.define_HEAP32*info.use_HEAP32 == 0 && info.define_HEAPF32*info.use_HEAPF32 == 0 && + asmData.isLocal(v.c_str()) && info.namings == info.define_HEAP32+info.define_HEAPF32+info.use_HEAP32+info.use_HEAPF32) { + IString& correct = info.use_HEAP32 ? HEAPF32 : HEAP32; + for (auto define : info.defines) { + define[3] = define[3][1][3]; + if (correct == HEAP32) { + define[3] = make3(BINARY, OR, define[3], makeNum(0)); + } else { + assert(correct == HEAPF32); + define[3] = makeAsmCoercion(define[3], preciseF32 ? ASM_FLOAT : ASM_DOUBLE); + } + // do we want a simplifybitops on the new values here? + } + for (auto use : info.uses) { + use[2][1][1]->setString(correct.c_str()); + } + AsmType correctType; + switch(asmData.getType(v.c_str())) { + case ASM_INT: correctType = preciseF32 ? ASM_FLOAT : ASM_DOUBLE; break; + case ASM_FLOAT: case ASM_DOUBLE: correctType = ASM_INT; break; + default: assert(0); + } + asmData.setType(v.c_str(), correctType); + } + } + asmData.denormalize(); + } + }; + + std::function<bool (Ref)> emitsBoolean = [&emitsBoolean](Ref node) { + Ref type = node[0]; + if (type == NUM) { + return node[1]->getNumber() == 0 || node[1]->getNumber() == 1; + } + if (type == BINARY) return COMPARE_OPS.has(node[1]); + if (type == UNARY_PREFIX) return node[1] == L_NOT; + if (type == CONDITIONAL) return emitsBoolean(node[2]) && emitsBoolean(node[3]); + return false; + }; + + // expensive | expensive can be turned into expensive ? 1 : expensive, and + // expensive | cheap can be turned into cheap ? 1 : expensive, + // so that we can avoid the expensive computation, if it has no side effects. + auto conditionalize = [&emitsBoolean](Ref ast) { + traversePre(ast, [&emitsBoolean](Ref node) { + const int MIN_COST = 7; + if (node[0] == BINARY && (node[1] == OR || node[1] == AND) && node[3][0] != NUM && node[2][0] != NUM) { + // logical operator on two non-numerical values + Ref left = node[2]; + Ref right = node[3]; + if (!emitsBoolean(left) || !emitsBoolean(right)) return; + bool leftEffects = hasSideEffects(left); + bool rightEffects = hasSideEffects(right); + if (leftEffects && rightEffects) return; // both must execute + // canonicalize with side effects, if any, happening on the left + if (rightEffects) { + if (measureCost(left) < MIN_COST) return; // avoidable code is too cheap + Ref temp = left; + left = right; + right = temp; + } else if (leftEffects) { + if (measureCost(right) < MIN_COST) return; // avoidable code is too cheap + } else { + // no side effects, reorder based on cost estimation + int leftCost = measureCost(left); + int rightCost = measureCost(right); + if (std::max(leftCost, rightCost) < MIN_COST) return; // avoidable code is too cheap + // canonicalize with expensive code on the right + if (leftCost > rightCost) { + Ref temp = left; + left = right; + right = temp; + } + } + // worth it, perform conditionalization + Ref ret; + if (node[1] == OR) { + ret = make3(CONDITIONAL, left, makeNum(1), right); + } else { // & + ret = make3(CONDITIONAL, left, right, makeNum(0)); + } + if (left[0] == UNARY_PREFIX && left[1] == L_NOT) { + ret[1] = flipCondition(left); + Ref temp = ret[2]; + ret[2] = ret[3]; + ret[3] = temp; + } + safeCopy(node, ret); + return; + } + }); + }; + + traverseFunctions(ast, [&](Ref func) { + simplifyIntegerConversions(func); + simplifyOps(func); + traversePre(func, [](Ref node) { + Ref ret = simplifyNotCompsDirect(node); + if (ret.get() != node.get()) { // if we received a different pointer in return, then we need to copy the new value + safeCopy(node, ret); + } + }); + conditionalize(func); + }); +} + +void simplifyIfs(Ref ast) { + traverseFunctions(ast, [](Ref func) { + bool simplifiedAnElse = false; + + traversePre(func, [&simplifiedAnElse](Ref node) { + // simplify if (x) { if (y) { .. } } to if (x ? y : 0) { .. } + if (node[0] == IF) { + Ref body = node[2]; + // recurse to handle chains + while (body[0] == BLOCK) { + Ref stats = body[1]; + if (stats->size() == 0) break; + Ref other = stats->back(); + if (other[0] != IF) { + // our if block does not end with an if. perhaps if have an else we can flip + if (node->size() > 3 && !!node[3] && node[3][0] == BLOCK) { + stats = node[3][1]; + if (stats->size() == 0) break; + other = stats->back(); + if (other[0] == IF) { + // flip node + node[1] = flipCondition(node[1]); + node[2] = node[3]; + node[3] = body; + body = node[2]; + } else break; + } else break; + } + // we can handle elses, but must be fully identical + if (!!node[3] || !!other[3]) { + if (!node[3]) break; + if (!node[3]->deepCompare(other[3])) { + // the elses are different, but perhaps if we flipped a condition we can do better + if (node[3]->deepCompare(other[2])) { + // flip other. note that other may not have had an else! add one if so; we will eliminate such things later + if (!other[3]) other[3] = makeBlock(); + other[1] = flipCondition(other[1]); + Ref temp = other[2]; + other[2] = other[3]; + other[3] = temp; + } else break; + } + } + if (stats->size() > 1) { + // try to commaify - turn everything between the ifs into a comma operator inside the second if + bool ok = true; + for (size_t i = 0; i+1 < stats->size(); i++) { + Ref curr = deStat(stats[i]); + if (!commable(curr)) ok = false; + } + if (!ok) break; + for (int i = stats->size()-2; i >= 0; i--) { + Ref curr = deStat(stats[i]); + other[1] = make2(SEQ, curr, other[1]); + } + Ref temp = makeArray(1); + temp->push_back(other); + stats = body[1] = temp; + } + if (stats->size() != 1) break; + if (!!node[3]) simplifiedAnElse = true; + node[1] = make3(CONDITIONAL, node[1], other[1], makeNum(0)); + body = node[2] = other[2]; + } + } + }); + + if (simplifiedAnElse) { + // there may be fusing opportunities + + // we can only fuse if we remove all uses of the label. if there are + // other ones - if the label check can be reached from elsewhere - + // we must leave it + bool abort = false; + + std::unordered_map<int, int> labelAssigns; + + traversePre(func, [&labelAssigns, &abort](Ref node) { + if (node[0] == ASSIGN && node[2][0] == NAME && node[2][1] == LABEL) { + if (node[3][0] == NUM) { + int value = node[3][1]->getInteger(); + labelAssigns[value] = labelAssigns[value] + 1; + } else { + // label is assigned a dynamic value (like from indirectbr), we cannot do anything + abort = true; + } + } + }); + if (abort) return; + + std::unordered_map<int, int> labelChecks; + + traversePre(func, [&labelChecks, &abort](Ref node) { + if (node[0] == BINARY && node[1] == EQ && node[2][0] == BINARY && node[2][1] == OR && + node[2][2][0] == NAME && node[2][2][1] == LABEL) { + if (node[3][0] == NUM) { + int value = node[3][1]->getInteger(); + labelChecks[value] = labelChecks[value] + 1; + } else { + // label is checked vs a dynamic value (like from indirectbr), we cannot do anything + abort = true; + } + } + }); + if (abort) return; + + int inLoop = 0; // when in a loop, we do not emit label = 0; in the relooper as there is no need + traversePrePost(func, [&inLoop, &labelAssigns, &labelChecks](Ref node) { + if (node[0] == WHILE) inLoop++; + Ref stats = getStatements(node); + if (!!stats && stats->size() > 0) { + for (int i = 0; i < (int)stats->size()-1; i++) { + Ref pre = stats[i]; + Ref post = stats[i+1]; + if (pre[0] == IF && pre->size() > 3 && !!pre[3] && post[0] == IF && (post->size() <= 3 || !post[3])) { + Ref postCond = post[1]; + if (postCond[0] == BINARY && postCond[1] == EQ && + postCond[2][0] == BINARY && postCond[2][1] == OR && + postCond[2][2][0] == NAME && postCond[2][2][1] == LABEL && + postCond[2][3][0] == NUM && postCond[2][3][1]->getNumber() == 0 && + postCond[3][0] == NUM) { + int postValue = postCond[3][1]->getInteger(); + Ref preElse = pre[3]; + if (labelAssigns[postValue] == 1 && labelChecks[postValue] == 1 && preElse[0] == BLOCK && preElse->size() >= 2 && preElse[1]->size() == 1) { + Ref preStat = preElse[1][0]; + if (preStat[0] == STAT && preStat[1][0] == ASSIGN && + preStat[1][1]->isBool(true) && preStat[1][2][0] == NAME && preStat[1][2][1] == LABEL && + preStat[1][3][0] == NUM && preStat[1][3][1]->getNumber() == postValue) { + // Conditions match, just need to make sure the post clears label + if (post[2][0] == BLOCK && post[2]->size() >= 2 && post[2][1]->size() > 0) { + Ref postStat = post[2][1][0]; + bool haveClear = + postStat[0] == STAT && postStat[1][0] == ASSIGN && + postStat[1][1]->isBool(true) && postStat[1][2][0] == NAME && postStat[1][2][1] == LABEL && + postStat[1][3][0] == NUM && postStat[1][3][1]->getNumber() == 0; + if (!inLoop || haveClear) { + // Everything lines up, do it + pre[3] = post[2]; + if (haveClear) pre[3][1]->splice(0, 1); // remove the label clearing + stats->splice(i+1, 1); // remove the post entirely + } + } + } + } + } + } + } + } + }, [&inLoop](Ref node) { + if (node[0] == WHILE) inLoop--; + }); + assert(inLoop == 0); + } + }); +} + +void optimizeFrounds(Ref ast) { + // collapse fround(fround(..)), which can happen due to elimination + // also emit f0 instead of fround(0) (except in returns) + int inReturn = 0; + traversePrePost(ast, [&](Ref node) { + if (node[0] == RETURN) { + inReturn++; + } + }, [&](Ref node) { + if (node[0] == RETURN) { + inReturn--; + } + if (node[0] == CALL && node[1][0] == NAME && node[1][1] == MATH_FROUND) { + Ref arg = node[2][0]; + if (arg[0] == NUM) { + if (!inReturn && arg[1]->getInteger() == 0) { + safeCopy(node, makeName(F0)); + } + } else if (arg[0] == CALL && arg[1][0] == NAME && arg[1][1] == MATH_FROUND) { + safeCopy(node, arg); + } + } + }); +} + +// Very simple 'registerization', coalescing of variables into a smaller number. + +const char* getRegPrefix(AsmType type) { + switch (type) { + case ASM_INT: return "i"; break; + case ASM_DOUBLE: return "d"; break; + case ASM_FLOAT: return "f"; break; + case ASM_FLOAT32X4: return "F4"; break; + case ASM_FLOAT64X2: return "F2"; break; + case ASM_INT8X16: return "I16"; break; + case ASM_INT16X8: return "I8"; break; + case ASM_INT32X4: return "I4"; break; + case ASM_NONE: return "Z"; break; + default: assert(0); // type doesn't have a name yet + } + return nullptr; +} + +IString getRegName(AsmType type, int num) { + const char* str = getRegPrefix(type); + const int size = 256; + char temp[size]; + int written = sprintf(temp, "%s%d", str, num); + assert(written < size); + temp[written] = 0; + IString ret; + ret.set(temp, false); + return ret; +} + +void registerize(Ref ast) { + traverseFunctions(ast, [](Ref fun) { + AsmData asmData(fun); + // Add parameters as a first (fake) var (with assignment), so they get taken into consideration + // note: params are special, they can never share a register between them (see later) + Ref fake; + if (!!fun[2] && fun[2]->size()) { + Ref assign = makeNum(0); + // TODO: will be an isEmpty here, can reuse it. + fun[3]->insert(0, make1(VAR, fun[2]->map([&assign](Ref param) { + return &(makeArray(2)->push_back(param).push_back(assign)); + }))); + } + // Replace all var definitions with assignments; we will add var definitions at the top after we registerize + StringSet allVars; + traversePre(fun, [&](Ref node) { + Ref type = node[0]; + if (type == VAR) { + Ref vars = node[1]->filter([](Ref varr) { return varr->size() > 1; }); + if (vars->size() >= 1) { + safeCopy(node, unVarify(vars)); + } else { + safeCopy(node, makeEmpty()); + } + } else if (type == NAME) { + allVars.insert(node[1]->getIString()); + } + }); + removeAllUselessSubNodes(fun); // vacuum? + StringTypeMap regTypes; // reg name -> type + auto getNewRegName = [&](int num, IString name) { + AsmType type = asmData.getType(name); + IString ret = getRegName(type, num); + assert(!allVars.has(ret) || asmData.isLocal(ret)); // register must not shadow non-local name + regTypes[ret] = type; + return ret; + }; + // Find the # of uses of each variable. + // While doing so, check if all a variable's uses are dominated in a simple + // way by a simple assign, if so, then we can assign its register to it + // just for its definition to its last use, and not to the entire toplevel loop, + // we call such variables "optimizable" + StringIntMap varUses; + int level = 1; + std::unordered_map<int, StringSet> levelDominations; // level => set of dominated variables XXX vector? + StringIntMap varLevels; + StringSet possibles; + StringSet unoptimizables; + auto purgeLevel = [&]() { + // Invalidate all dominating on this level, further users make it unoptimizable + for (auto name : levelDominations[level]) { + varLevels[name] = 0; + } + levelDominations[level].clear(); + level--; + }; + std::function<bool (Ref node)> possibilifier = [&](Ref node) { + Ref type = node[0]; + if (type == NAME) { + IString name = node[1]->getIString(); + if (asmData.isLocal(name)) { + varUses[name]++; + if (possibles.has(name) && !varLevels[name]) unoptimizables.insert(name); // used outside of simple domination + } + } else if (type == ASSIGN && node[1]->isBool(true)) { + if (!!node[2] && node[2][0] == NAME) { + IString name = node[2][1]->getIString(); + // if local and not yet used, this might be optimizable if we dominate + // all other uses + if (asmData.isLocal(name) && !varUses[name] && !varLevels[name]) { + possibles.insert(name); + varLevels[name] = level; + levelDominations[level].insert(name); + } + } + } else if (CONTROL_FLOW.has(type)) { + // recurse children, in the context of a loop + if (type == WHILE || type == DO) { + traversePrePostConditional(node[1], possibilifier, [](Ref node){}); + level++; + traversePrePostConditional(node[2], possibilifier, [](Ref node){}); + purgeLevel(); + } else if (type == FOR) { + traversePrePostConditional(node[1], possibilifier, [](Ref node){}); + for (int i = 2; i <= 4; i++) { + level++; + traversePrePostConditional(node[i], possibilifier, [](Ref node){}); + purgeLevel(); + } + } else if (type == IF) { + traversePrePostConditional(node[1], possibilifier, [](Ref node){}); + level++; + traversePrePostConditional(node[2], possibilifier, [](Ref node){}); + purgeLevel(); + if (node->size() > 3 && !!node[3]) { + level++; + traversePrePostConditional(node[3], possibilifier, [](Ref node){}); + purgeLevel(); + } + } else if (type == SWITCH) { + traversePrePostConditional(node[1], possibilifier, [](Ref node){}); + Ref cases = node[2]; + for (size_t i = 0; i < cases->size(); i++) { + level++; + traversePrePostConditional(cases[i][1], possibilifier, [](Ref node){}); + purgeLevel(); + } + } else assert(0);; + return false; // prevent recursion into children, which we already did + } + return true; + }; + traversePrePostConditional(fun, possibilifier, [](Ref node){}); + + StringSet optimizables; + for (auto possible : possibles) { + if (!unoptimizables.has(possible)) optimizables.insert(possible); + } + + // Go through the function's code, assigning 'registers'. + // The only tricky bit is to keep variables locked on a register through loops, + // since they can potentially be returned to. Optimizable variables lock onto + // loops that they enter, unoptimizable variables lock in a conservative way + // into the topmost loop. + // Note that we cannot lock onto a variable in a loop if it was used and free'd + // before! (then they could overwrite us in the early part of the loop). For now + // we just use a fresh register to make sure we avoid this, but it could be + // optimized to check for safe registers (free, and not used in this loop level). + StringStringMap varRegs; // maps variables to the register they will use all their life + std::vector<StringVec> freeRegsClasses; + freeRegsClasses.resize(ASM_NONE); + int nextReg = 1; + StringVec fullNames; + fullNames.push_back(EMPTY); // names start at 1 + std::vector<StringVec> loopRegs; // for each loop nesting level, the list of bound variables + int loops = 0; // 0 is toplevel, 1 is first loop, etc + StringSet activeOptimizables; + StringIntMap optimizableLoops; + StringSet paramRegs; // true if the register is used by a parameter (and so needs no def at start of function; also cannot + // be shared with another param, each needs its own) + auto decUse = [&](IString name) { + if (!varUses[name]) return false; // no uses left, or not a relevant variable + if (optimizables.has(name)) activeOptimizables.insert(name); + IString reg = varRegs[name]; + assert(asmData.isLocal(name)); + StringVec& freeRegs = freeRegsClasses[asmData.getType(name)]; + if (!reg) { + // acquire register + if (optimizables.has(name) && freeRegs.size() > 0 && + !(asmData.isParam(name) && paramRegs.has(freeRegs.back()))) { // do not share registers between parameters + reg = freeRegs.back(); + freeRegs.pop_back(); + } else { + assert(fullNames.size() == nextReg); + reg = getNewRegName(nextReg++, name); + fullNames.push_back(reg); + if (asmData.isParam(name)) paramRegs.insert(reg); + } + varRegs[name] = reg; + } + varUses[name]--; + assert(varUses[name] >= 0); + if (varUses[name] == 0) { + if (optimizables.has(name)) activeOptimizables.erase(name); + // If we are not in a loop, or we are optimizable and not bound to a loop + // (we might have been in one but left it), we can free the register now. + if (loops == 0 || (optimizables.has(name) && !optimizableLoops.has(name))) { + // free register + freeRegs.push_back(reg); + } else { + // when the relevant loop is exited, we will free the register + int relevantLoop = optimizables.has(name) ? (optimizableLoops[name] ? optimizableLoops[name] : 1) : 1; + if ((int)loopRegs.size() <= relevantLoop+1) loopRegs.resize(relevantLoop+1); + loopRegs[relevantLoop].push_back(reg); + } + } + return true; + }; + traversePrePost(fun, [&](Ref node) { // XXX we rely on traversal order being the same as execution order here + Ref type = node[0]; + if (type == NAME) { + IString name = node[1]->getIString(); + if (decUse(name)) { + node[1]->setString(varRegs[name]); + } + } else if (LOOP.has(type)) { + loops++; + // Active optimizables lock onto this loop, if not locked onto one that encloses this one + for (auto name : activeOptimizables) { + if (!optimizableLoops[name]) { + optimizableLoops[name] = loops; + } + } + } + }, [&](Ref node) { + Ref type = node[0]; + if (LOOP.has(type)) { + // Free registers that were locked to this loop + if ((int)loopRegs.size() > loops && loopRegs[loops].size() > 0) { + for (auto loopReg : loopRegs[loops]) { + freeRegsClasses[regTypes[loopReg]].push_back(loopReg); + } + loopRegs[loops].clear(); + } + loops--; + } + }); + if (!!fun[2] && fun[2]->size()) { + fun[2]->setSize(0); // clear params, we will fill with registers + fun[3]->splice(0, 1); // remove fake initial var + } + + asmData.locals.clear(); + asmData.params.clear(); + asmData.vars.clear(); + for (int i = 1; i < nextReg; i++) { + IString reg = fullNames[i]; + AsmType type = regTypes[reg]; + if (!paramRegs.has(reg)) { + asmData.addVar(reg, type); + } else { + asmData.addParam(reg, type); + fun[2]->push_back(makeString(reg)); + } + } + asmData.denormalize(); + }); +} + +// Assign variables to 'registers', coalescing them onto a smaller number of shared +// variables. +// +// This does the same job as 'registerize' above, but burns a lot more cycles trying +// to reduce the total number of register variables. Key points about the operation: +// +// * we decompose the AST into a flow graph and perform a full liveness +// analysis, to determine which variables are live at each point. +// +// * variables that are live concurrently are assigned to different registers. +// +// * variables that are linked via 'x=y' style statements are assigned the same +// register if possible, so that the redundant assignment can be removed. +// (e.g. assignments used to pass state around through loops). +// +// * any code that cannot be reached through the flow-graph is removed. +// (e.g. redundant break statements like 'break L123; break;'). +// +// * any assignments that we can prove are not subsequently used are removed. +// (e.g. unnecessary assignments to the 'label' variable). +// +void registerizeHarder(Ref ast) { +#ifdef PROFILING + clock_t tasmdata = 0; + clock_t tflowgraph = 0; + clock_t tlabelfix = 0; + clock_t tbackflow = 0; + clock_t tjuncvaruniqassign = 0; + clock_t tjuncvarsort = 0; + clock_t tregassign = 0; + clock_t tblockproc = 0; + clock_t treconstruct = 0; +#endif + + traverseFunctions(ast, [&](Ref fun) { + +#ifdef PROFILING + clock_t start = clock(); +#endif + + // Do not try to process non-validating methods, like the heap replacer + bool abort = false; + traversePre(fun, [&abort](Ref node) { + if (node[0] == NEW) abort = true; + }); + if (abort) return; + + AsmData asmData(fun); + +#ifdef PROFILING + tasmdata += clock() - start; + start = clock(); +#endif + + // Utilities for allocating register variables. + // We need distinct register pools for each type of variable. + + typedef std::map<int, IString> IntStringMap; + std::vector<IntStringMap> allRegsByType; + allRegsByType.resize(ASM_NONE+1); + int nextReg = 1; + + auto createReg = [&](IString forName) { + // Create a new register of type suitable for the given variable name. + AsmType type = asmData.getType(forName); + IntStringMap& allRegs = allRegsByType[type]; + int reg = nextReg++; + allRegs[reg] = getRegName(type, reg); + return reg; + }; + + // Traverse the tree in execution order and synthesize a basic flow-graph. + // It's convenient to build a kind of "dual" graph where the nodes identify + // the junctions between blocks at which control-flow may branch, and each + // basic block is an edge connecting two such junctions. + // For each junction we store: + // * set of blocks that originate at the junction + // * set of blocks that terminate at the junction + // For each block we store: + // * a single entry junction + // * a single exit junction + // * a 'use' and 'kill' set of names for the block + // * full sequence of NAME and ASSIGN nodes in the block + // * whether each such node appears as part of a larger expression + // (and therefore cannot be safely eliminated) + // * set of labels that can be used to jump to this block + + struct Junction { + int id; + std::set<int> inblocks, outblocks; + IOrderedStringSet live; + Junction(int id_) : id(id_) {} + }; + struct Node { + }; + struct Block { + int id, entry, exit; + std::set<int> labels; + std::vector<Ref> nodes; + std::vector<bool> isexpr; + StringIntMap use; + StringSet kill; + StringStringMap link; + StringIntMap lastUseLoc; + StringIntMap firstDeadLoc; + StringIntMap firstKillLoc; + StringIntMap lastKillLoc; + + Block() : id(-1), entry(-1), exit(-1) {} + }; + struct ContinueBreak { + int co, br; + ContinueBreak() : co(-1), br(-1) {} + ContinueBreak(int co_, int br_) : co(co_), br(br_) {} + }; + typedef std::unordered_map<IString, ContinueBreak> LabelState; + + std::vector<Junction> junctions; + std::vector<Block*> blocks; + int currEntryJunction = -1; + Block* nextBasicBlock = nullptr; + int isInExpr = 0; + std::vector<LabelState> activeLabels; + activeLabels.resize(1); + IString nextLoopLabel; + + const int ENTRY_JUNCTION = 0; + const int EXIT_JUNCTION = 1; + const int ENTRY_BLOCK = 0; + + auto addJunction = [&]() { + // Create a new junction, without inserting it into the graph. + // This is useful for e.g. pre-allocating an exit node. + int id = junctions.size(); + junctions.push_back(Junction(id)); + return id; + }; + + std::function<int (int, bool)> joinJunction; + + auto markJunction = [&](int id) { + // Mark current traversal location as a junction. + // This makes a new basic block exiting at this position. + if (id < 0) { + id = addJunction(); + } + joinJunction(id, true); + return id; + }; + + auto setJunction = [&](int id, bool force) { + // Set the next entry junction to the given id. + // This can be used to enter at a previously-declared point. + // You can't return to a junction with no incoming blocks + // unless the 'force' parameter is specified. + assert(nextBasicBlock->nodes.size() == 0); // refusing to abandon an in-progress basic block + if (force || junctions[id].inblocks.size() > 0) { + currEntryJunction = id; + } else { + currEntryJunction = -1; + } + }; + + joinJunction = [&](int id, bool force) { + // Complete the pending basic block by exiting at this position. + // This can be used to exit at a previously-declared point. + if (currEntryJunction >= 0) { + assert(nextBasicBlock); + nextBasicBlock->id = blocks.size(); + nextBasicBlock->entry = currEntryJunction; + nextBasicBlock->exit = id; + junctions[currEntryJunction].outblocks.insert(nextBasicBlock->id); + junctions[id].inblocks.insert(nextBasicBlock->id); + blocks.push_back(nextBasicBlock); + } + nextBasicBlock = new Block(); + setJunction(id, force); + return id; + }; + + auto pushActiveLabels = [&](int onContinue, int onBreak) { + // Push the target junctions for continuing/breaking a loop. + // This should be called before traversing into a loop. + assert(activeLabels.size() > 0); + LabelState& prevLabels = activeLabels.back(); + LabelState newLabels = prevLabels; + newLabels[EMPTY] = ContinueBreak(onContinue, onBreak); + if (!!nextLoopLabel) { + newLabels[nextLoopLabel] = ContinueBreak(onContinue, onBreak); + nextLoopLabel = EMPTY; + } + // An unlabelled CONTINUE should jump to innermost loop, + // ignoring any nested SWITCH statements. + if (onContinue < 0 && prevLabels.count(EMPTY) > 0) { + newLabels[EMPTY].co = prevLabels[EMPTY].co; + } + activeLabels.push_back(newLabels); + }; + + auto popActiveLabels = [&]() { + // Pop the target junctions for continuing/breaking a loop. + // This should be called after traversing into a loop. + activeLabels.pop_back(); + }; + + auto markNonLocalJump = [&](IString type, IString label) { + // Complete a block via RETURN, BREAK or CONTINUE. + // This joins the targetted junction and then sets the current junction to null. + // Any code traversed before we get back to an existing junction is dead code. + if (type == RETURN) { + joinJunction(EXIT_JUNCTION, false); + } else { + assert(activeLabels.size() > 0); + assert(activeLabels.back().count(label) > 0); // 'jump to unknown label'); + auto targets = activeLabels.back()[label]; + if (type == CONTINUE) { + joinJunction(targets.co, false); + } else if (type == BREAK) { + joinJunction(targets.br, false); + } else { + assert(0); // 'unknown jump node type'); + } + } + currEntryJunction = -1; + }; + + auto addUseNode = [&](Ref node) { + // Mark a use of the given name node in the current basic block. + assert(node[0] == NAME); // 'not a use node'); + IString name = node[1]->getIString(); + if (asmData.isLocal(name)) { + nextBasicBlock->nodes.push_back(node); + nextBasicBlock->isexpr.push_back(isInExpr != 0); + if (nextBasicBlock->kill.count(name) == 0) { + nextBasicBlock->use[name] = 1; + } + } + }; + + auto addKillNode = [&](Ref node) { + // Mark an assignment to the given name node in the current basic block. + assert(node[0] == ASSIGN); //, 'not a kill node'); + assert(node[1]->isBool(true)); // 'not a kill node'); + assert(node[2][0] == NAME); //, 'not a kill node'); + IString name = node[2][1]->getIString(); + if (asmData.isLocal(name)) { + nextBasicBlock->nodes.push_back(node); + nextBasicBlock->isexpr.push_back(isInExpr != 0); + nextBasicBlock->kill.insert(name); + } + }; + + std::function<Ref (Ref)> lookThroughCasts = [&](Ref node) { + // Look through value-preserving casts, like "x | 0" => "x" + if (node[0] == BINARY && node[1] == OR) { + if (node[3][0] == NUM && node[3][1]->getNumber() == 0) { + return lookThroughCasts(node[2]); + } + } + return node; + }; + + auto addBlockLabel = [&](Ref node) { + assert(nextBasicBlock->nodes.size() == 0); // 'cant add label to an in-progress basic block') + if (node[0] == NUM) { + nextBasicBlock->labels.insert(node[1]->getInteger()); + } + }; + + auto isTrueNode = [&](Ref node) { + // Check if the given node is statically truthy. + return (node[0] == NUM && node[1]->getNumber() != 0); + }; + + auto isFalseNode = [&](Ref node) { + // Check if the given node is statically falsy. + return (node[0] == NUM && node[1]->getNumber() == 0); + }; + + std::function<void (Ref)> buildFlowGraph = [&](Ref node) { + // Recursive function to build up the flow-graph. + // It walks the tree in execution order, calling the above state-management + // functions at appropriate points in the traversal. + Ref type = node[0]; + + // Any code traversed without an active entry junction must be dead, + // as the resulting block could never be entered. Let's remove it. + if (currEntryJunction < 0 && junctions.size() > 0) { + safeCopy(node, makeEmpty()); + return; + } + + // Traverse each node type according to its particular control-flow semantics. + // TODO: switchify this + if (type == DEFUN) { + int jEntry = markJunction(-1); + assert(jEntry == ENTRY_JUNCTION); + int jExit = addJunction(); + assert(jExit == EXIT_JUNCTION); + for (size_t i = 0; i < node[3]->size(); i++) { + buildFlowGraph(node[3][i]); + } + joinJunction(jExit, false); + } else if (type == IF) { + isInExpr++; + buildFlowGraph(node[1]); + isInExpr--; + int jEnter = markJunction(-1); + int jExit = addJunction(); + if (!!node[2]) { + // Detect and mark "if (label == N) { <labelled block> }". + if (node[1][0] == BINARY && node[1][1] == EQ) { + Ref lhs = lookThroughCasts(node[1][2]); + if (lhs[0] == NAME && lhs[1] == LABEL) { + addBlockLabel(lookThroughCasts(node[1][3])); + } + } + buildFlowGraph(node[2]); + } + joinJunction(jExit, false); + setJunction(jEnter, false); + if (node->size() > 3 && !!node[3]) { + buildFlowGraph(node[3]); + } + joinJunction(jExit, false); + } else if (type == CONDITIONAL) { + isInExpr++; + // If the conditional has no side-effects, we can treat it as a single + // block, which might open up opportunities to remove it entirely. + if (!hasSideEffects(node)) { + buildFlowGraph(node[1]); + if (!!node[2]) { + buildFlowGraph(node[2]); + } + if (!!node[3]) { + buildFlowGraph(node[3]); + } + } else { + buildFlowGraph(node[1]); + int jEnter = markJunction(-1); + int jExit = addJunction(); + if (!!node[2]) { + buildFlowGraph(node[2]); + } + joinJunction(jExit, false); + setJunction(jEnter, false); + if (!!node[3]) { + buildFlowGraph(node[3]); + } + joinJunction(jExit, false); + } + isInExpr--; + } else if (type == WHILE) { + // Special-case "while (1) {}" to use fewer junctions, + // since emscripten generates a lot of these. + if (isTrueNode(node[1])) { + int jLoop = markJunction(-1); + int jExit = addJunction(); + pushActiveLabels(jLoop, jExit); + buildFlowGraph(node[2]); + popActiveLabels(); + joinJunction(jLoop, false); + setJunction(jExit, false); + } else { + int jCond = markJunction(-1); + int jLoop = addJunction(); + int jExit = addJunction(); + isInExpr++; + buildFlowGraph(node[1]); + isInExpr--; + joinJunction(jLoop, false); + pushActiveLabels(jCond, jExit); + buildFlowGraph(node[2]); + popActiveLabels(); + joinJunction(jCond, false); + // An empty basic-block linking condition exit to loop exit. + setJunction(jLoop, false); + joinJunction(jExit, false); + } + } else if (type == DO) { + // Special-case "do {} while (1)" and "do {} while (0)" to use + // fewer junctions, since emscripten generates a lot of these. + if (isFalseNode(node[1])) { + int jExit = addJunction(); + pushActiveLabels(jExit, jExit); + buildFlowGraph(node[2]); + popActiveLabels(); + joinJunction(jExit, false); + } else if (isTrueNode(node[1])) { + int jLoop = markJunction(-1); + int jExit = addJunction(); + pushActiveLabels(jLoop, jExit); + buildFlowGraph(node[2]); + popActiveLabels(); + joinJunction(jLoop, false); + setJunction(jExit, false); + } else { + int jLoop = markJunction(-1); + int jCond = addJunction(); + int jCondExit = addJunction(); + int jExit = addJunction(); + pushActiveLabels(jCond, jExit); + buildFlowGraph(node[2]); + popActiveLabels(); + joinJunction(jCond, false); + isInExpr++; + buildFlowGraph(node[1]); + isInExpr--; + joinJunction(jCondExit, false); + joinJunction(jLoop, false); + setJunction(jCondExit, false); + joinJunction(jExit, false); + } + } else if (type == FOR) { + int jTest = addJunction(); + int jBody = addJunction(); + int jStep = addJunction(); + int jExit = addJunction(); + buildFlowGraph(node[1]); + joinJunction(jTest, false); + isInExpr++; + buildFlowGraph(node[2]); + isInExpr--; + joinJunction(jBody, false); + pushActiveLabels(jStep, jExit); + buildFlowGraph(node[4]); + popActiveLabels(); + joinJunction(jStep, false); + buildFlowGraph(node[3]); + joinJunction(jTest, false); + setJunction(jBody, false); + joinJunction(jExit, false); + } else if (type == LABEL) { + assert(BREAK_CAPTURERS.has(node[2][0])); // 'label on non-loop, non-switch statement') + nextLoopLabel = node[1]->getIString(); + buildFlowGraph(node[2]); + } else if (type == SWITCH) { + // Emscripten generates switch statements of a very limited + // form: all case clauses are numeric literals, and all + // case bodies end with a (maybe implicit) break. So it's + // basically equivalent to a multi-way IF statement. + isInExpr++; + buildFlowGraph(node[1]); + isInExpr--; + Ref condition = lookThroughCasts(node[1]); + int jCheckExit = markJunction(-1); + int jExit = addJunction(); + pushActiveLabels(-1, jExit); + bool hasDefault = false; + for (size_t i = 0; i < node[2]->size(); i++) { + setJunction(jCheckExit, false); + // All case clauses are either 'default' or a numeric literal. + if (!node[2][i][0]) { + hasDefault = true; + } else { + // Detect switches dispatching to labelled blocks. + if (condition[0] == NAME && condition[1] == LABEL) { + addBlockLabel(lookThroughCasts(node[2][i][0])); + } + } + for (size_t j = 0; j < node[2][i][1]->size(); j++) { + buildFlowGraph(node[2][i][1][j]); + } + // Control flow will never actually reach the end of the case body. + // If there's live code here, assume it jumps to case exit. + if (currEntryJunction >= 0 && nextBasicBlock->nodes.size() > 0) { + if (!!node[2][i][0]) { + markNonLocalJump(RETURN, EMPTY); + } else { + joinJunction(jExit, false); + } + } + } + // If there was no default case, we also need an empty block + // linking straight from the test evaluation to the exit. + if (!hasDefault) { + setJunction(jCheckExit, false); + } + joinJunction(jExit, false); + popActiveLabels(); + } else if (type == RETURN) { + if (!!node[1]) { + isInExpr++; + buildFlowGraph(node[1]); + isInExpr--; + } + markNonLocalJump(type->getIString(), EMPTY); + } else if (type == BREAK || type == CONTINUE) { + markNonLocalJump(type->getIString(), !!node[1] ? node[1]->getIString() : EMPTY); + } else if (type == ASSIGN) { + isInExpr++; + buildFlowGraph(node[3]); + isInExpr--; + if (node[1]->isBool(true) && node[2][0] == NAME) { + addKillNode(node); + } else { + buildFlowGraph(node[2]); + } + } else if (type == NAME) { + addUseNode(node); + } else if (type == BLOCK || type == TOPLEVEL) { + if (!!node[1]) { + for (size_t i = 0; i < node[1]->size(); i++) { + buildFlowGraph(node[1][i]); + } + } + } else if (type == STAT) { + buildFlowGraph(node[1]); + } else if (type == UNARY_PREFIX || type == UNARY_POSTFIX) { + isInExpr++; + buildFlowGraph(node[2]); + isInExpr--; + } else if (type == BINARY) { + isInExpr++; + buildFlowGraph(node[2]); + buildFlowGraph(node[3]); + isInExpr--; + } else if (type == CALL) { + isInExpr++; + buildFlowGraph(node[1]); + if (!!node[2]) { + for (size_t i = 0; i < node[2]->size(); i++) { + buildFlowGraph(node[2][i]); + } + } + isInExpr--; + // If the call is statically known to throw, + // treat it as a jump to function exit. + if (!isInExpr && node[1][0] == NAME) { + if (FUNCTIONS_THAT_ALWAYS_THROW.has(node[1][1])) { + markNonLocalJump(RETURN, EMPTY); + } + } + } else if (type == SEQ || type == SUB) { + isInExpr++; + buildFlowGraph(node[1]); + buildFlowGraph(node[2]); + isInExpr--; + } else if (type == DOT || type == THROW) { + isInExpr++; + buildFlowGraph(node[1]); + isInExpr--; + } else if (type == NUM || type == STRING || type == VAR) { + // nada + } else { + assert(0); // 'unsupported node type: ' + type); + } + }; + + buildFlowGraph(fun); + +#ifdef PROFILING + tflowgraph += clock() - start; + start = clock(); +#endif + + assert(junctions[ENTRY_JUNCTION].inblocks.size() == 0); // 'function entry must have no incoming blocks'); + assert(junctions[EXIT_JUNCTION].outblocks.size() == 0); // 'function exit must have no outgoing blocks'); + assert(blocks[ENTRY_BLOCK]->entry == ENTRY_JUNCTION); //, 'block zero must be the initial block'); + + // Fix up implicit jumps done by assigning to the LABEL variable. + // If a block ends with an assignment to LABEL and there's another block + // with that value of LABEL as precondition, we tweak the flow graph so + // that the former jumps straight to the later. + + std::map<int, Block*> labelledBlocks; + typedef std::pair<Ref, Block*> Jump; + std::vector<Jump> labelledJumps; + + for (size_t i = 0; i < blocks.size(); i++) { + Block* block = blocks[i]; + // Does it have any labels as preconditions to its entry? + for (auto labelVal : block->labels) { + // If there are multiple blocks with the same label, all bets are off. + // This seems to happen sometimes for short blocks that end with a return. + // TODO: it should be safe to merge the duplicates if they're identical. + if (labelledBlocks.count(labelVal) > 0) { + labelledBlocks.clear(); + labelledJumps.clear(); + goto AFTER_FINDLABELLEDBLOCKS; + } + labelledBlocks[labelVal] = block; + } + // Does it assign a specific label value at exit? + if (block->kill.has(LABEL)) { + Ref finalNode = block->nodes.back(); + if (finalNode[0] == ASSIGN && finalNode[2][1] == LABEL) { + // If labels are computed dynamically then all bets are off. + // This can happen due to indirect branching in llvm output. + if (finalNode[3][0] != NUM) { + labelledBlocks.clear(); + labelledJumps.clear(); + goto AFTER_FINDLABELLEDBLOCKS; + } + labelledJumps.push_back(Jump(finalNode[3][1], block)); + } else { + // If label is assigned a non-zero value elsewhere in the block + // then all bets are off. This can happen e.g. due to outlining + // saving/restoring label to the stack. + for (size_t j = 0; j < block->nodes.size() - 1; j++) { + if (block->nodes[j][0] == ASSIGN && block->nodes[j][2][1] == LABEL) { + if (block->nodes[j][3][0] != NUM || block->nodes[j][3][1]->getNumber() != 0) { + labelledBlocks.clear(); + labelledJumps.clear(); + goto AFTER_FINDLABELLEDBLOCKS; + } + } + } + } + } + } + + AFTER_FINDLABELLEDBLOCKS: + + for (auto labelVal : labelledBlocks) { + Block* block = labelVal.second; + // Disconnect it from the graph, and create a + // new junction for jumps targetting this label. + junctions[block->entry].outblocks.erase(block->id); + block->entry = addJunction(); + junctions[block->entry].outblocks.insert(block->id); + // Add a fake use of LABEL to keep it alive in predecessor. + block->use[LABEL] = 1; + block->nodes.insert(block->nodes.begin(), makeName(LABEL)); + block->isexpr.insert(block->isexpr.begin(), 1); + } + for (size_t i = 0; i < labelledJumps.size(); i++) { + auto labelVal = labelledJumps[i].first; + auto block = labelledJumps[i].second; + Block* targetBlock = labelledBlocks[labelVal->getInteger()]; + if (targetBlock) { + // Redirect its exit to entry of the target block. + junctions[block->exit].inblocks.erase(block->id); + block->exit = targetBlock->entry; + junctions[block->exit].inblocks.insert(block->id); + } + } + +#ifdef PROFILING + tlabelfix += clock() - start; + start = clock(); +#endif + + // Do a backwards data-flow analysis to determine the set of live + // variables at each junction, and to use this information to eliminate + // any unused assignments. + // We run two nested phases. The inner phase builds the live set for each + // junction. The outer phase uses this to try to eliminate redundant + // stores in each basic block, which might in turn affect liveness info. + + auto analyzeJunction = [&](Junction& junc) { + // Update the live set for this junction. + IOrderedStringSet live; + for (auto b : junc.outblocks) { + Block* block = blocks[b]; + IOrderedStringSet& liveSucc = junctions[block->exit].live; + for (auto name : liveSucc) { + if (!block->kill.has(name)) { + live.insert(name); + } + } + for (auto name : block->use) { + live.insert(name.first); + } + } + junc.live = live; + }; + + auto analyzeBlock = [&](Block* block) { + // Update information about the behaviour of the block. + // This includes the standard 'use' and 'kill' information, + // plus a 'link' set naming values that flow through from entry + // to exit, possibly changing names via simple 'x=y' assignments. + // As we go, we eliminate assignments if the variable is not + // subsequently used. + auto live = junctions[block->exit].live; + StringIntMap use; + StringSet kill; + StringStringMap link; + StringIntMap lastUseLoc; + StringIntMap firstDeadLoc; + StringIntMap firstKillLoc; + StringIntMap lastKillLoc; + for (auto name : live) { + link[name] = name; + lastUseLoc[name] = block->nodes.size(); + firstDeadLoc[name] = block->nodes.size(); + } + for (int j = block->nodes.size() - 1; j >= 0 ; j--) { + Ref node = block->nodes[j]; + if (node[0] == NAME) { + IString name = node[1]->getIString(); + live.insert(name); + use[name] = j; + if (lastUseLoc.count(name) == 0) { + lastUseLoc[name] = j; + firstDeadLoc[name] = j; + } + } else { + IString name = node[2][1]->getIString(); + // We only keep assignments if they will be subsequently used. + if (live.has(name)) { + kill.insert(name); + use.erase(name); + live.erase(name); + firstDeadLoc[name] = j; + firstKillLoc[name] = j; + if (lastUseLoc.count(name) == 0) { + lastUseLoc[name] = j; + } + if (lastKillLoc.count(name) == 0) { + lastKillLoc[name] = j; + } + // If it's an "x=y" and "y" is not live, then we can create a + // flow-through link from "y" to "x". If not then there's no + // flow-through link for "x". + if (link.has(name)) { + IString oldLink = link[name]; + link.erase(name); + if (node[3][0] == NAME) { + if (asmData.isLocal(node[3][1]->getIString())) { + link[node[3][1]->getIString()] = oldLink; + } + } + } + } else { + // The result of this assignment is never used, so delete it. + // We may need to keep the RHS for its value or its side-effects. + auto removeUnusedNodes = [&](int j, int n) { + for (auto pair : lastUseLoc) { + pair.second -= n; + } + for (auto pair : firstKillLoc) { + pair.second -= n; + } + for (auto pair : lastKillLoc) { + pair.second -= n; + } + for (auto pair : firstDeadLoc) { + pair.second -= n; + } + block->nodes.erase(block->nodes.begin() + j, block->nodes.begin() + j + n); + block->isexpr.erase(block->isexpr.begin() + j, block->isexpr.begin() + j + n); + }; + if (block->isexpr[j] || hasSideEffects(node[3])) { + safeCopy(node, node[3]); + removeUnusedNodes(j, 1); + } else { + int numUsesInExpr = 0; + traversePre(node[3], [&](Ref node) { + if (node[0] == NAME && asmData.isLocal(node[1]->getIString())) { + numUsesInExpr++; + } + }); + safeCopy(node, makeEmpty()); + j = j - numUsesInExpr; + removeUnusedNodes(j, 1 + numUsesInExpr); + } + } + } + } + // XXX efficiency + block->use = use; + block->kill = kill; + block->link = link; + block->lastUseLoc = lastUseLoc; + block->firstDeadLoc = firstDeadLoc; + block->firstKillLoc = firstKillLoc; + block->lastKillLoc = lastKillLoc; + }; + + // Ordered map to work in approximate reverse order of junction appearance + std::set<int> jWorkSet; + std::set<int> bWorkSet; + + // Be sure to visit every junction at least once. + // This avoids missing some vars because we disconnected them + // when processing the labelled jumps. + for (size_t i = EXIT_JUNCTION; i < junctions.size(); i++) { + jWorkSet.insert(i); + for (auto b : junctions[i].inblocks) { + bWorkSet.insert(b); + } + } + // Exit junction never has any live variable changes to propagate + jWorkSet.erase(EXIT_JUNCTION); + + do { + // Iterate on just the junctions until we get stable live sets. + // The first run of this loop will grow the live sets to their maximal size. + // Subsequent runs will shrink them based on eliminated in-block uses. + while (jWorkSet.size() > 0) { + auto last = jWorkSet.end(); + --last; + Junction& junc = junctions[*last]; + jWorkSet.erase(last); + IOrderedStringSet oldLive = junc.live; // copy it here, to check for changes later + analyzeJunction(junc); + if (oldLive != junc.live) { + // Live set changed, updated predecessor blocks and junctions. + for (auto b : junc.inblocks) { + bWorkSet.insert(b); + jWorkSet.insert(blocks[b]->entry); + } + } + } + // Now update the blocks based on the calculated live sets. + while (bWorkSet.size() > 0) { + auto last = bWorkSet.end(); + --last; + Block* block = blocks[*last]; + bWorkSet.erase(last); + auto oldUse = block->use; + analyzeBlock(block); + if (oldUse != block->use) { + // The use set changed, re-process the entry junction. + jWorkSet.insert(block->entry); + } + } + } while (jWorkSet.size() > 0); + +#ifdef PROFILING + tbackflow += clock() - start; + start = clock(); +#endif + + // Insist that all function parameters are alive at function entry. + // This ensures they will be assigned independent registers, even + // if they happen to be unused. + + for (auto name : asmData.params) { + junctions[ENTRY_JUNCTION].live.insert(name); + } + + // For variables that are live at one or more junctions, we assign them + // a consistent register for the entire scope of the function. Find pairs + // of variable that cannot use the same register (the "conflicts") as well + // as pairs of variables that we'd like to have share the same register + // (the "links"). + + struct JuncVar { + std::vector<bool> conf; + IOrderedStringSet link; + std::unordered_set<int> excl; + int reg; + bool used; + JuncVar() : reg(-1), used(false) {} + }; + size_t numLocals = asmData.locals.size(); + std::unordered_map<IString, size_t> nameToNum; + std::vector<IString> numToName; + nameToNum.reserve(numLocals); + numToName.reserve(numLocals); + for (auto kv : asmData.locals) { + nameToNum[kv.first] = numToName.size(); + numToName.push_back(kv.first); + } + + std::vector<JuncVar> juncVars(numLocals); + for (Junction& junc : junctions) { + for (IString name : junc.live) { + JuncVar& jVar = juncVars[nameToNum[name]]; + jVar.used = true; + jVar.conf.assign(numLocals, false); + } + } + std::map<IString, std::vector<Block*>> possibleBlockConflictsMap; + std::vector<std::pair<size_t, std::vector<Block*>>> possibleBlockConflicts; + std::unordered_map<IString, std::vector<Block*>> possibleBlockLinks; + possibleBlockConflicts.reserve(numLocals); + possibleBlockLinks.reserve(numLocals); + + for (Junction& junc : junctions) { + // Pre-compute the possible conflicts and links for each block rather + // than checking potentially impossible options for each var + possibleBlockConflictsMap.clear(); + possibleBlockConflicts.clear(); + possibleBlockLinks.clear(); + for (auto b : junc.outblocks) { + Block* block = blocks[b]; + Junction& jSucc = junctions[block->exit]; + for (auto name : jSucc.live) { + possibleBlockConflictsMap[name].push_back(block); + } + for (auto name_linkname : block->link) { + if (name_linkname.first != name_linkname.second) { + possibleBlockLinks[name_linkname.first].push_back(block); + } + } + } + // Find the live variables in this block, mark them as unnecessary to + // check for conflicts (we mark all live vars as conflicting later) + std::vector<size_t> liveJVarNums; + liveJVarNums.reserve(junc.live.size()); + for (auto name : junc.live) { + size_t jVarNum = nameToNum[name]; + liveJVarNums.push_back(jVarNum); + possibleBlockConflictsMap.erase(name); + } + // Extract just the variables we might want to check for conflicts + for (auto kv : possibleBlockConflictsMap) { + possibleBlockConflicts.push_back(std::make_pair(nameToNum[kv.first], kv.second)); + } + + for (size_t jVarNum : liveJVarNums) { + JuncVar& jvar = juncVars[jVarNum]; + IString name = numToName[jVarNum]; + // It conflicts with all other names live at this junction. + for (size_t liveJVarNum : liveJVarNums) { + jvar.conf[liveJVarNum] = true; + } + jvar.conf[jVarNum] = false; // except for itself, of course + + // It conflicts with any output vars of successor blocks, + // if they're assigned before it goes dead in that block. + for (auto jvarnum_blocks : possibleBlockConflicts) { + size_t otherJVarNum = jvarnum_blocks.first; + IString otherName = numToName[otherJVarNum]; + for (auto block : jvarnum_blocks.second) { + if (block->lastKillLoc[otherName] < block->firstDeadLoc[name]) { + jvar.conf[otherJVarNum] = true; + juncVars[otherJVarNum].conf[jVarNum] = true; + break; + } + } + } + + // It links with any linkages in the outgoing blocks. + for (auto block: possibleBlockLinks[name]) { + IString linkName = block->link[name]; + jvar.link.insert(linkName); + juncVars[nameToNum[linkName]].link.insert(name); + } + } + } + +#ifdef PROFILING + tjuncvaruniqassign += clock() - start; + start = clock(); +#endif + + // Attempt to sort the junction variables to heuristically reduce conflicts. + // Simple starting point: handle the most-conflicted variables first. + // This seems to work pretty well. + + std::vector<size_t> sortedJVarNums; + sortedJVarNums.reserve(juncVars.size()); + std::vector<size_t> jVarConfCounts(numLocals); + for (size_t jVarNum = 0; jVarNum < juncVars.size(); jVarNum++) { + JuncVar& jVar = juncVars[jVarNum]; + if (!jVar.used) continue; + jVarConfCounts[jVarNum] = std::count(jVar.conf.begin(), jVar.conf.end(), true); + sortedJVarNums.push_back(jVarNum); + } + std::sort(sortedJVarNums.begin(), sortedJVarNums.end(), [&](const size_t vi1, const size_t vi2) { + // sort by # of conflicts + if (jVarConfCounts[vi1] < jVarConfCounts[vi2]) return true; + if (jVarConfCounts[vi1] == jVarConfCounts[vi2]) return numToName[vi1] < numToName[vi2]; + return false; + }); + +#ifdef PROFILING + tjuncvarsort += clock() - start; + start = clock(); +#endif + + // We can now assign a register to each junction variable. + // Process them in order, trying available registers until we find + // one that works, and propagating the choice to linked/conflicted + // variables as we go. + + std::function<bool (IString, int)> tryAssignRegister = [&](IString name, int reg) { + // Try to assign the given register to the given variable, + // and propagate that choice throughout the graph. + // Returns true if successful, false if there was a conflict. + JuncVar& jv = juncVars[nameToNum[name]]; + if (jv.reg > 0) { + return jv.reg == reg; + } + if (jv.excl.count(reg) > 0) { + return false; + } + jv.reg = reg; + // Exclude use of this register at all conflicting variables. + for (size_t confNameNum = 0; confNameNum < jv.conf.size(); confNameNum++) { + if (jv.conf[confNameNum]) { + juncVars[confNameNum].excl.insert(reg); + } + } + // Try to propagate it into linked variables. + // It's not an error if we can't. + for (auto linkName : jv.link) { + tryAssignRegister(linkName, reg); + } + return true; + }; + for (size_t jVarNum : sortedJVarNums) { + // It may already be assigned due to linked-variable propagation. + if (juncVars[jVarNum].reg > 0) { + continue; + } + IString name = numToName[jVarNum]; + // Try to use existing registers first. + auto& allRegs = allRegsByType[asmData.getType(name)]; + bool moar = false; + for (auto reg : allRegs) { + if (tryAssignRegister(name, reg.first)) { + moar = true; + break; + } + } + if (moar) continue; + // They're all taken, create a new one. + tryAssignRegister(name, createReg(name)); + } + +#ifdef PROFILING + tregassign += clock() - start; + start = clock(); +#endif + + // Each basic block can now be processed in turn. + // There may be internal-use-only variables that still need a register + // assigned, but they can be treated just for this block. We know + // that all inter-block variables are in a good state thanks to + // junction variable consistency. + + for (size_t i = 0; i < blocks.size(); i++) { + Block* block = blocks[i]; + if (block->nodes.size() == 0) continue; + Junction& jEnter = junctions[block->entry]; + Junction& jExit = junctions[block->exit]; + // Mark the point at which each input reg becomes dead. + // Variables alive before this point must not be assigned + // to that register. + StringSet inputVars; + std::unordered_map<int, int> inputDeadLoc; + std::unordered_map<int, IString> inputVarsByReg; + for (auto name : jExit.live) { + if (!block->kill.has(name)) { + inputVars.insert(name); + int reg = juncVars[nameToNum[name]].reg; + assert(reg > 0); // 'input variable doesnt have a register'); + inputDeadLoc[reg] = block->firstDeadLoc[name]; + inputVarsByReg[reg] = name; + } + } + for (auto pair : block->use) { + IString name = pair.first; + if (!inputVars.has(name)) { + inputVars.insert(name); + int reg = juncVars[nameToNum[name]].reg; + assert(reg > 0); // 'input variable doesnt have a register'); + inputDeadLoc[reg] = block->firstDeadLoc[name]; + inputVarsByReg[reg] = name; + } + } + // TODO assert(setSize(setSub(inputVars, jEnter.live)) == 0); + // Scan through backwards, allocating registers on demand. + // Be careful to avoid conflicts with the input registers. + // We consume free registers in last-used order, which helps to + // eliminate "x=y" assignments that are the last use of "y". + StringIntMap assignedRegs; + auto freeRegsByTypePre = allRegsByType; // XXX copy + // Begin with all live vars assigned per the exit junction. + for (auto name : jExit.live) { + int reg = juncVars[nameToNum[name]].reg; + assert(reg > 0); // 'output variable doesnt have a register'); + assignedRegs[name] = reg; + freeRegsByTypePre[asmData.getType(name)].erase(reg); // XXX assert? + } + std::vector<std::vector<int>> freeRegsByType; + freeRegsByType.resize(freeRegsByTypePre.size()); + for (size_t j = 0; j < freeRegsByTypePre.size(); j++) { + for (auto pair : freeRegsByTypePre[j]) { + freeRegsByType[j].push_back(pair.first); + } + } + // Scan through the nodes in sequence, modifying each node in-place + // and grabbing/freeing registers as needed. + std::vector<std::pair<int, Ref>> maybeRemoveNodes; + for (int j = block->nodes.size() - 1; j >= 0; j--) { + Ref node = block->nodes[j]; + IString name = (node[0] == ASSIGN ? node[2][1] : node[1])->getIString(); + IntStringMap& allRegs = allRegsByType[asmData.getType(name)]; + std::vector<int>& freeRegs = freeRegsByType[asmData.getType(name)]; + int reg = assignedRegs[name]; // XXX may insert a zero + if (node[0] == NAME) { + // A use. Grab a register if it doesn't have one. + if (reg <= 0) { + if (inputVars.has(name) && j <= block->firstDeadLoc[name]) { + // Assignment to an input variable, must use pre-assigned reg. + reg = juncVars[nameToNum[name]].reg; + assignedRegs[name] = reg; + for (int k = freeRegs.size() - 1; k >= 0; k--) { + if (freeRegs[k] == reg) { + freeRegs.erase(freeRegs.begin() + k); + break; + } + } + } else { + // Try to use one of the existing free registers. + // It must not conflict with an input register. + for (int k = freeRegs.size() - 1; k >= 0; k--) { + reg = freeRegs[k]; + // Check for conflict with input registers. + if (inputDeadLoc.count(reg) > 0) { + if (block->firstKillLoc[name] <= inputDeadLoc[reg]) { + if (name != inputVarsByReg[reg]) { + continue; + } + } + } + // Found one! + assignedRegs[name] = reg; + assert(reg > 0); + freeRegs.erase(freeRegs.begin() + k); + break; + } + // If we didn't find a suitable register, create a new one. + if (assignedRegs[name] <= 0) { + reg = createReg(name); + assignedRegs[name] = reg; + } + } + } + node[1]->setString(allRegs[reg]); + } else { + // A kill. This frees the assigned register. + assert(reg > 0); //, 'live variable doesnt have a reg?') + node[2][1]->setString(allRegs[reg]); + freeRegs.push_back(reg); + assignedRegs.erase(name); + if (node[3][0] == NAME && asmData.isLocal(node[3][1]->getIString())) { + maybeRemoveNodes.push_back(std::pair<int, Ref>(j, node)); + } + } + } + // If we managed to create any "x=x" assignments, remove them. + for (size_t j = 0; j < maybeRemoveNodes.size(); j++) { + Ref node = maybeRemoveNodes[j].second; + if (node[2][1] == node[3][1]) { + if (block->isexpr[maybeRemoveNodes[j].first]) { + safeCopy(node, node[2]); + } else { + safeCopy(node, makeEmpty()); + } + } + } + } + +#ifdef PROFILING + tblockproc += clock() - start; + start = clock(); +#endif + + // Assign registers to function params based on entry junction + + StringSet paramRegs; + if (!!fun[2]) { + for (size_t i = 0; i < fun[2]->size(); i++) { + auto& allRegs = allRegsByType[asmData.getType(fun[2][i]->getIString())]; + fun[2][i]->setString(allRegs[juncVars[nameToNum[fun[2][i]->getIString()]].reg]); + paramRegs.insert(fun[2][i]->getIString()); + } + } + + // That's it! + // Re-construct the function with appropriate variable definitions. + + asmData.locals.clear(); + asmData.params.clear(); + asmData.vars.clear(); + for (int i = 1; i < nextReg; i++) { + for (size_t type = 0; type < allRegsByType.size(); type++) { + if (allRegsByType[type].count(i) > 0) { + IString reg = allRegsByType[type][i]; + if (!paramRegs.has(reg)) { + asmData.addVar(reg, intToAsmType(type)); + } else { + asmData.addParam(reg, intToAsmType(type)); + } + break; + } + } + } + asmData.denormalize(); + + removeAllUselessSubNodes(fun); // XXX vacuum? vacuum(fun); + +#ifdef PROFILING + treconstruct += clock() - start; + start = clock(); +#endif + + }); +#ifdef PROFILING + errv(" RH stages: a:%li fl:%li lf:%li bf:%li jvua:%li jvs:%li jra:%li bp:%li r:%li", + tasmdata, tflowgraph, tlabelfix, tbackflow, tjuncvaruniqassign, tjuncvarsort, tregassign, tblockproc, treconstruct); +#endif +} +// end registerizeHarder + +// minified names generation +StringSet RESERVED("do if in for new try var env let"); +const char *VALID_MIN_INITS = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_$"; +const char *VALID_MIN_LATERS = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_$0123456789"; + +StringVec minifiedNames; +std::vector<int> minifiedState; + +void ensureMinifiedNames(int n) { // make sure the nth index in minifiedNames exists. done 100% deterministically + static int VALID_MIN_INITS_LEN = strlen(VALID_MIN_INITS); + static int VALID_MIN_LATERS_LEN = strlen(VALID_MIN_LATERS); + + while ((int)minifiedNames.size() < n+1) { + // generate the current name + std::string name; + name += VALID_MIN_INITS[minifiedState[0]]; + for (size_t i = 1; i < minifiedState.size(); i++) { + name += VALID_MIN_LATERS[minifiedState[i]]; + } + IString str(strdupe(name.c_str())); // leaked! + if (!RESERVED.has(str)) minifiedNames.push_back(str); + // increment the state + size_t i = 0; + while (1) { + minifiedState[i]++; + if (minifiedState[i] < (i == 0 ? VALID_MIN_INITS_LEN : VALID_MIN_LATERS_LEN)) break; + // overflow + minifiedState[i] = 0; + i++; + if (i == minifiedState.size()) minifiedState.push_back(-1); // will become 0 after increment in next loop head + } + } +} + +void minifyLocals(Ref ast) { + assert(!!extraInfo); + IString GLOBALS("globals"); + assert(extraInfo->has(GLOBALS)); + Ref globals = extraInfo[GLOBALS]; + + if (minifiedState.size() == 0) minifiedState.push_back(0); + + traverseFunctions(ast, [&globals](Ref fun) { + // Analyse the asmjs to figure out local variable names, + // but operate on the original source tree so that we don't + // miss any global names in e.g. variable initializers. + AsmData asmData(fun); + asmData.denormalize(); // TODO: we can avoid modifying at all here - we just need a list of local vars+params + + StringStringMap newNames; + StringSet usedNames; + + // Find all the globals that we need to minify using + // pre-assigned names. Don't actually minify them yet + // as that might interfere with local variable names. + traversePre(fun, [&](Ref node) { + if (node[0] == NAME) { + IString name = node[1]->getIString(); + if (!asmData.isLocal(name)) { + if (globals->has(name)) { + IString minified = globals[name]->getIString(); + assert(!!minified); + newNames[name] = minified; + usedNames.insert(minified); + } + } + } + }); + + // The first time we encounter a local name, we assign it a + // minified name that's not currently in use. Allocating on + // demand means they're processed in a predictable order, + // which is very handy for testing/debugging purposes. + int nextMinifiedName = 0; + auto getNextMinifiedName = [&]() { + IString minified; + while (1) { + ensureMinifiedNames(nextMinifiedName); + minified = minifiedNames[nextMinifiedName++]; + // TODO: we can probably remove !isLocalName here + if (!usedNames.has(minified) && !asmData.isLocal(minified)) { + return minified; + } + } + }; + + // We can also minify loop labels, using a separate namespace + // to the variable declarations. + StringStringMap newLabels; + int nextMinifiedLabel = 0; + auto getNextMinifiedLabel = [&]() { + ensureMinifiedNames(nextMinifiedLabel); + return minifiedNames[nextMinifiedLabel++]; + }; + + // Traverse and minify all names. + if (globals->has(fun[1]->getIString())) { + fun[1]->setString(globals[fun[1]->getIString()]->getIString()); + assert(!!fun[1]); + } + if (!!fun[2]) { + for (size_t i = 0; i < fun[2]->size(); i++) { + IString minified = getNextMinifiedName(); + newNames[fun[2][i]->getIString()] = minified; + fun[2][i]->setString(minified); + } + } + traversePre(fun[3], [&](Ref node) { + Ref type = node[0]; + if (type == NAME) { + IString name = node[1]->getIString(); + IString minified = newNames[name]; + if (!!minified) { + node[1]->setString(minified); + } else if (asmData.isLocal(name)) { + minified = getNextMinifiedName(); + newNames[name] = minified; + node[1]->setString(minified); + } + } else if (type == VAR) { + for (size_t i = 0; i < node[1]->size(); i++) { + Ref defn = node[1][i]; + IString name = defn[0]->getIString(); + if (!(newNames.has(name))) { + newNames[name] = getNextMinifiedName(); + } + defn[0]->setString(newNames[name]); + } + } else if (type == LABEL) { + IString name = node[1]->getIString(); + if (!newLabels.has(name)) { + newLabels[name] = getNextMinifiedLabel(); + } + node[1]->setString(newLabels[name]); + } else if (type == BREAK || type == CONTINUE) { + if (node->size() > 1 && !!node[1]) { + node[1]->setString(newLabels[node[1]->getIString()]); + } + } + }); + }); +} + +void asmLastOpts(Ref ast) { + std::vector<Ref> statsStack; + traverseFunctions(ast, [&](Ref fun) { + traversePrePost(fun, [&](Ref node) { + Ref type = node[0]; + Ref stats = getStatements(node); + if (!!stats) statsStack.push_back(stats); + if (CONDITION_CHECKERS.has(type)) { + node[1] = simplifyCondition(node[1]); + } + if (type == WHILE && node[1][0] == NUM && node[1][1]->getNumber() == 1 && node[2][0] == BLOCK && node[2]->size() == 2) { + // This is at the end of the pipeline, we can assume all other optimizations are done, and we modify loops + // into shapes that might confuse other passes + + // while (1) { .. if (..) { break } } ==> do { .. } while(..) + Ref stats = node[2][1]; + Ref last = stats->back(); + if (!!last && last[0] == IF && (last->size() < 4 || !last[3]) && last[2][0] == BLOCK && !!last[2][1][0]) { + Ref lastStats = last[2][1]; + int lastNum = lastStats->size(); + Ref lastLast = lastStats[lastNum-1]; + if (!(lastLast[0] == BREAK && !lastLast[1])) return;// if not a simple break, dangerous + for (int i = 0; i < lastNum; i++) { + if (lastStats[i][0] != STAT && lastStats[i][0] != BREAK) return; // something dangerous + } + // ok, a bunch of statements ending in a break + bool abort = false; + int stack = 0; + int breaks = 0; + traversePrePost(stats, [&](Ref node) { + Ref type = node[0]; + if (type == CONTINUE) { + if (stack == 0 || !!node[1]) { // abort if labeled (we do not analyze labels here yet), or a continue directly on us + abort = true; + } + } else if (type == BREAK) { + if (stack == 0 || !!node[1]) { // relevant if labeled (we do not analyze labels here yet), or a break directly on us + breaks++; + } + } else if (LOOP.has(type)) { + stack++; + } + }, [&](Ref node) { + if (LOOP.has(node[0])) { + stack--; + } + }); + if (abort) return; + assert(breaks > 0); + if (lastStats->size() > 1 && breaks != 1) return; // if we have code aside from the break, we can only move it out if there is just one break + if (statsStack.size() < 1) return; // no chance we have this stats on hand + // start to optimize + if (lastStats->size() > 1) { + Ref parent = statsStack.back(); + int me = parent->indexOf(node); + if (me < 0) return; // not always directly on a stats, could be in a label for example + parent->insert(me+1, lastStats->size()-1); + for (size_t i = 0; i+1 < lastStats->size(); i++) { + parent[me+1+i] = lastStats[i]; + } + } + Ref conditionToBreak = last[1]; + stats->pop_back(); + node[0]->setString(DO); + node[1] = simplifyNotCompsDirect(make2(UNARY_PREFIX, L_NOT, conditionToBreak)); + } + } else if (type == BINARY) { + if (node[1] == AND) { + if (node[3][0] == UNARY_PREFIX && node[3][1] == MINUS && node[3][2][0] == NUM && node[3][2][1]->getNumber() == 1) { + // Change &-1 into |0, at this point the hint is no longer needed + node[1]->setString(OR); + node[3] = node[3][2]; + node[3][1]->setNumber(0); + } + } else if (node[1] == MINUS && node[3][0] == UNARY_PREFIX) { + // avoid X - (-Y) because some minifiers buggily emit X--Y which is invalid as -- can be a unary. Transform to + // X + Y + if (node[3][1] == MINUS) { // integer + node[1]->setString(PLUS); + node[3] = node[3][2]; + } else if (node[3][1] == PLUS) { // float + if (node[3][2][0] == UNARY_PREFIX && node[3][2][1] == MINUS) { + node[1]->setString(PLUS); + node[3][2] = node[3][2][2]; + } + } + } + } + }, [&](Ref node) { + if (statsStack.size() > 0) { + Ref stats = getStatements(node); + if (!!stats) statsStack.pop_back(); + } + }); + // convert { singleton } into singleton + traversePre(fun, [](Ref node) { + if (node[0] == BLOCK && !!getStatements(node) && node[1]->size() == 1) { + safeCopy(node, node[1][0]); + } + }); + // convert L: do { .. } while(0) into L: { .. } + traversePre(fun, [](Ref node) { + if (node[0] == LABEL && node[1]->isString() /* careful of var label = 5 */ && + node[2][0] == DO && node[2][1][0] == NUM && node[2][1][1]->getNumber() == 0 && node[2][2][0] == BLOCK) { + // there shouldn't be any continues on this, not direct break or continue + IString label = node[1]->getIString(); + bool abort = false; + int breakCaptured = 0, continueCaptured = 0; + traversePrePost(node[2][2], [&](Ref node) { + if (node[0] == CONTINUE) { + if (!node[1] && !continueCaptured) { + abort = true; + } else if (node[1]->isString() && node[1]->getIString() == label) { + abort = true; + } + } + if (node[0] == BREAK && !node[1] && !breakCaptured) { + abort = true; + } + if (BREAK_CAPTURERS.has(node[0])) { + breakCaptured++; + } + if (CONTINUE_CAPTURERS.has(node[0])) { + continueCaptured++; + } + }, [&](Ref node) { + if (BREAK_CAPTURERS.has(node[0])) { + breakCaptured--; + } + if (CONTINUE_CAPTURERS.has(node[0])) { + continueCaptured--; + } + }); + if (abort) return; + safeCopy(node[2], node[2][2]); + } + }); + }); +} + +// Contrary to the name this does not eliminate actual dead functions, only +// those marked as such with DEAD_FUNCTIONS +void eliminateDeadFuncs(Ref ast) { + assert(!!extraInfo); + IString DEAD_FUNCTIONS("dead_functions"); + IString ABORT("abort"); + assert(extraInfo->has(DEAD_FUNCTIONS)); + StringSet deadFunctions; + for (size_t i = 0; i < extraInfo[DEAD_FUNCTIONS]->size(); i++) { + deadFunctions.insert(extraInfo[DEAD_FUNCTIONS][i]->getIString()); + } + traverseFunctions(ast, [&](Ref fun) { + if (!deadFunctions.has(fun[1].get()->getIString())) { + return; + } + AsmData asmData(fun); + fun[3]->setSize(1); + fun[3][0] = make1(STAT, make2(CALL, makeName(ABORT), &(makeArray(1))->push_back(makeNum(-1)))); + asmData.vars.clear(); + asmData.denormalize(); + }); +} + |