summaryrefslogtreecommitdiff
path: root/src/parser/lexer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/parser/lexer.cpp')
-rw-r--r--src/parser/lexer.cpp1038
1 files changed, 1038 insertions, 0 deletions
diff --git a/src/parser/lexer.cpp b/src/parser/lexer.cpp
new file mode 100644
index 000000000..0796013fe
--- /dev/null
+++ b/src/parser/lexer.cpp
@@ -0,0 +1,1038 @@
+/*
+ * Copyright 2023 WebAssembly Community Group participants
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <cassert>
+#include <cctype>
+#include <cmath>
+#include <iostream>
+#include <optional>
+#include <sstream>
+#include <variant>
+
+#include "lexer.h"
+
+using namespace std::string_view_literals;
+
+namespace wasm::WATParser {
+
+namespace {
+
+// ================
+// Lexical Analysis
+// ================
+
+// The result of lexing a token fragment.
+struct LexResult {
+ std::string_view span;
+};
+
+// Lexing context that accumulates lexed input to produce a token fragment.
+struct LexCtx {
+private:
+ // The input we are lexing.
+ std::string_view input;
+
+ // How much of the input we have already lexed.
+ size_t lexedSize = 0;
+
+public:
+ explicit LexCtx(std::string_view in) : input(in) {}
+
+ // Return the fragment that has been lexed so far.
+ std::optional<LexResult> lexed() const {
+ if (lexedSize > 0) {
+ return {LexResult{input.substr(0, lexedSize)}};
+ }
+ return {};
+ }
+
+ // The next input that has not already been lexed.
+ std::string_view next() const { return input.substr(lexedSize); }
+
+ // Get the next character without consuming it.
+ uint8_t peek() const { return next()[0]; }
+
+ // The size of the unlexed input.
+ size_t size() const { return input.size() - lexedSize; }
+
+ // Whether there is no more input.
+ bool empty() const { return size() == 0; }
+
+ // Tokens must be separated by spaces or parentheses.
+ bool canFinish() const;
+
+ // Whether the unlexed input starts with prefix `sv`.
+ size_t startsWith(std::string_view sv) const {
+ return next().substr(0, sv.size()) == sv;
+ }
+
+ // Consume the next `n` characters.
+ void take(size_t n) { lexedSize += n; }
+
+ // Consume an additional lexed fragment.
+ void take(const LexResult& res) { lexedSize += res.span.size(); }
+
+ // Consume the prefix and return true if possible.
+ bool takePrefix(std::string_view sv) {
+ if (startsWith(sv)) {
+ take(sv.size());
+ return true;
+ }
+ return false;
+ }
+
+ // Consume the rest of the input.
+ void takeAll() { lexedSize = input.size(); }
+};
+
+enum OverflowBehavior { DisallowOverflow, IgnoreOverflow };
+
+std::optional<int> getDigit(char c) {
+ if ('0' <= c && c <= '9') {
+ return c - '0';
+ }
+ return {};
+}
+
+std::optional<int> getHexDigit(char c) {
+ if ('0' <= c && c <= '9') {
+ return c - '0';
+ }
+ if ('A' <= c && c <= 'F') {
+ return 10 + c - 'A';
+ }
+ if ('a' <= c && c <= 'f') {
+ return 10 + c - 'a';
+ }
+ return {};
+}
+
+// The result of lexing an integer token fragment.
+struct LexIntResult : LexResult {
+ uint64_t n;
+ Sign sign;
+};
+
+// Lexing context that accumulates lexed input to produce an integer token
+// fragment.
+struct LexIntCtx : LexCtx {
+ using LexCtx::take;
+
+private:
+ uint64_t n = 0;
+ Sign sign = NoSign;
+ bool overflow = false;
+
+public:
+ explicit LexIntCtx(std::string_view in) : LexCtx(in) {}
+
+ // Lex only the underlying span, ignoring the overflow and value.
+ std::optional<LexIntResult> lexedRaw() {
+ if (auto basic = LexCtx::lexed()) {
+ return LexIntResult{*basic, 0, NoSign};
+ }
+ return {};
+ }
+
+ std::optional<LexIntResult> lexed() {
+ if (overflow) {
+ return {};
+ }
+ if (auto basic = LexCtx::lexed()) {
+ return LexIntResult{*basic, sign == Neg ? -n : n, sign};
+ }
+ return {};
+ }
+
+ void takeSign() {
+ if (takePrefix("+"sv)) {
+ sign = Pos;
+ } else if (takePrefix("-"sv)) {
+ sign = Neg;
+ } else {
+ sign = NoSign;
+ }
+ }
+
+ bool takeDigit() {
+ if (!empty()) {
+ if (auto d = getDigit(peek())) {
+ take(1);
+ uint64_t newN = n * 10 + *d;
+ if (newN < n) {
+ overflow = true;
+ }
+ n = newN;
+ return true;
+ }
+ }
+ return false;
+ }
+
+ bool takeHexdigit() {
+ if (!empty()) {
+ if (auto h = getHexDigit(peek())) {
+ take(1);
+ uint64_t newN = n * 16 + *h;
+ if (newN < n) {
+ overflow = true;
+ }
+ n = newN;
+ return true;
+ }
+ }
+ return false;
+ }
+
+ void take(const LexIntResult& res) {
+ LexCtx::take(res);
+ n = res.n;
+ }
+};
+
+struct LexFloatResult : LexResult {
+ // The payload if we lexed a nan with payload. We cannot store the payload
+ // directly in `d` because we do not know at this point whether we are parsing
+ // an f32 or f64 and therefore we do not know what the allowable payloads are.
+ // No payload with NaN means to use the default payload for the expected float
+ // width.
+ std::optional<uint64_t> nanPayload;
+ double d;
+};
+
+struct LexFloatCtx : LexCtx {
+ std::optional<uint64_t> nanPayload;
+
+ LexFloatCtx(std::string_view in) : LexCtx(in) {}
+
+ std::optional<LexFloatResult> lexed() {
+ const double posNan = std::copysign(NAN, 1.0);
+ const double negNan = std::copysign(NAN, -1.0);
+ assert(!std::signbit(posNan) && "expected positive NaN to be positive");
+ assert(std::signbit(negNan) && "expected negative NaN to be negative");
+ auto basic = LexCtx::lexed();
+ if (!basic) {
+ return {};
+ }
+ // strtod does not return NaNs with the expected signs on all platforms.
+ // TODO: use starts_with once we have C++20.
+ if (basic->span.substr(0, 3) == "nan"sv ||
+ basic->span.substr(0, 4) == "+nan"sv) {
+ return LexFloatResult{*basic, nanPayload, posNan};
+ }
+ if (basic->span.substr(0, 4) == "-nan"sv) {
+ return LexFloatResult{*basic, nanPayload, negNan};
+ }
+ // Do not try to implement fully general and precise float parsing
+ // ourselves. Instead, call out to std::strtod to do our parsing. This means
+ // we need to strip any underscores since `std::strtod` does not understand
+ // them.
+ std::stringstream ss;
+ for (const char *curr = basic->span.data(),
+ *end = curr + basic->span.size();
+ curr != end;
+ ++curr) {
+ if (*curr != '_') {
+ ss << *curr;
+ }
+ }
+ std::string str = ss.str();
+ char* last;
+ double d = std::strtod(str.data(), &last);
+ assert(last == str.data() + str.size() && "could not parse float");
+ return LexFloatResult{*basic, {}, d};
+ }
+};
+
+struct LexStrResult : LexResult {
+ // Allocate a string only if there are escape sequences, otherwise just use
+ // the original string_view.
+ std::optional<std::string> str;
+};
+
+struct LexStrCtx : LexCtx {
+private:
+ // Used to build a string with resolved escape sequences. Only used when the
+ // parsed string contains escape sequences, otherwise we can just use the
+ // parsed string directly.
+ std::optional<std::stringstream> escapeBuilder;
+
+public:
+ LexStrCtx(std::string_view in) : LexCtx(in) {}
+
+ std::optional<LexStrResult> lexed() {
+ if (auto basic = LexCtx::lexed()) {
+ if (escapeBuilder) {
+ return LexStrResult{*basic, {escapeBuilder->str()}};
+ } else {
+ return LexStrResult{*basic, {}};
+ }
+ }
+ return {};
+ }
+
+ void takeChar() {
+ if (escapeBuilder) {
+ *escapeBuilder << peek();
+ }
+ LexCtx::take(1);
+ }
+
+ void ensureBuildingEscaped() {
+ if (escapeBuilder) {
+ return;
+ }
+ // Drop the opening '"'.
+ escapeBuilder = std::stringstream{};
+ *escapeBuilder << LexCtx::lexed()->span.substr(1);
+ }
+
+ void appendEscaped(char c) { *escapeBuilder << c; }
+
+ bool appendUnicode(uint64_t u) {
+ if ((0xd800 <= u && u < 0xe000) || 0x110000 <= u) {
+ return false;
+ }
+ if (u < 0x80) {
+ // 0xxxxxxx
+ *escapeBuilder << uint8_t(u);
+ } else if (u < 0x800) {
+ // 110xxxxx 10xxxxxx
+ *escapeBuilder << uint8_t(0b11000000 | ((u >> 6) & 0b00011111));
+ *escapeBuilder << uint8_t(0b10000000 | ((u >> 0) & 0b00111111));
+ } else if (u < 0x10000) {
+ // 1110xxxx 10xxxxxx 10xxxxxx
+ *escapeBuilder << uint8_t(0b11100000 | ((u >> 12) & 0b00001111));
+ *escapeBuilder << uint8_t(0b10000000 | ((u >> 6) & 0b00111111));
+ *escapeBuilder << uint8_t(0b10000000 | ((u >> 0) & 0b00111111));
+ } else {
+ // 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
+ *escapeBuilder << uint8_t(0b11110000 | ((u >> 18) & 0b00000111));
+ *escapeBuilder << uint8_t(0b10000000 | ((u >> 12) & 0b00111111));
+ *escapeBuilder << uint8_t(0b10000000 | ((u >> 6) & 0b00111111));
+ *escapeBuilder << uint8_t(0b10000000 | ((u >> 0) & 0b00111111));
+ }
+ return true;
+ }
+};
+
+std::optional<LexResult> lparen(std::string_view in) {
+ LexCtx ctx(in);
+ ctx.takePrefix("("sv);
+ return ctx.lexed();
+}
+
+std::optional<LexResult> rparen(std::string_view in) {
+ LexCtx ctx(in);
+ ctx.takePrefix(")"sv);
+ return ctx.lexed();
+}
+
+// comment ::= linecomment | blockcomment
+// linecomment ::= ';;' linechar* ('\n' | eof)
+// linechar ::= c:char (if c != '\n')
+// blockcomment ::= '(;' blockchar* ';)'
+// blockchar ::= c:char (if c != ';' and c != '(')
+// | ';' (if the next char is not ')')
+// | '(' (if the next char is not ';')
+// | blockcomment
+std::optional<LexResult> comment(std::string_view in) {
+ LexCtx ctx(in);
+ if (ctx.size() < 2) {
+ return {};
+ }
+
+ // Line comment
+ if (ctx.takePrefix(";;"sv)) {
+ if (auto size = ctx.next().find('\n'); size != ""sv.npos) {
+ ctx.take(size);
+ } else {
+ ctx.takeAll();
+ }
+ return ctx.lexed();
+ }
+
+ // Block comment (possibly nested!)
+ if (ctx.takePrefix("(;"sv)) {
+ size_t depth = 1;
+ while (depth > 0 && ctx.size() >= 2) {
+ if (ctx.takePrefix("(;"sv)) {
+ ++depth;
+ } else if (ctx.takePrefix(";)"sv)) {
+ --depth;
+ } else {
+ ctx.take(1);
+ }
+ }
+ if (depth > 0) {
+ // TODO: Add error production for non-terminated block comment.
+ return {};
+ }
+ return ctx.lexed();
+ }
+
+ return {};
+}
+
+std::optional<LexResult> spacechar(std::string_view in) {
+ LexCtx ctx(in);
+ ctx.takePrefix(" "sv) || ctx.takePrefix("\n"sv) || ctx.takePrefix("\r"sv) ||
+ ctx.takePrefix("\t"sv);
+ return ctx.lexed();
+}
+
+// space ::= (' ' | format | comment)*
+// format ::= '\t' | '\n' | '\r'
+std::optional<LexResult> space(std::string_view in) {
+ LexCtx ctx(in);
+ while (ctx.size()) {
+ if (auto lexed = spacechar(ctx.next())) {
+ ctx.take(*lexed);
+ } else if (auto lexed = comment(ctx.next())) {
+ ctx.take(*lexed);
+ } else {
+ break;
+ }
+ }
+ return ctx.lexed();
+}
+
+bool LexCtx::canFinish() const {
+ // Logically we want to check for eof, parens, and space. But we don't
+ // actually want to parse more than a couple characters of space, so check for
+ // individual space chars or comment starts instead.
+ return empty() || lparen(next()) || rparen(next()) || spacechar(next()) ||
+ startsWith(";;"sv);
+}
+
+// num ::= d:digit => d
+// | n:num '_'? d:digit => 10*n + d
+// digit ::= '0' => 0 | ... | '9' => 9
+std::optional<LexIntResult> num(std::string_view in,
+ OverflowBehavior overflow = DisallowOverflow) {
+ LexIntCtx ctx(in);
+ if (ctx.empty()) {
+ return {};
+ }
+ if (!ctx.takeDigit()) {
+ return {};
+ }
+ while (true) {
+ bool under = ctx.takePrefix("_"sv);
+ if (!ctx.takeDigit()) {
+ if (!under) {
+ return overflow == DisallowOverflow ? ctx.lexed() : ctx.lexedRaw();
+ }
+ // TODO: Add error production for trailing underscore.
+ return {};
+ }
+ }
+}
+
+// hexnum ::= h:hexdigit => h
+// | n:hexnum '_'? h:hexdigit => 16*n + h
+// hexdigit ::= d:digit => d
+// | 'A' => 10 | ... | 'F' => 15
+// | 'a' => 10 | ... | 'f' => 15
+std::optional<LexIntResult>
+hexnum(std::string_view in, OverflowBehavior overflow = DisallowOverflow) {
+ LexIntCtx ctx(in);
+ if (!ctx.takeHexdigit()) {
+ return {};
+ }
+ while (true) {
+ bool under = ctx.takePrefix("_"sv);
+ if (!ctx.takeHexdigit()) {
+ if (!under) {
+ return overflow == DisallowOverflow ? ctx.lexed() : ctx.lexedRaw();
+ }
+ // TODO: Add error production for trailing underscore.
+ return {};
+ }
+ }
+}
+
+// uN ::= n:num => n (if n < 2^N)
+// | '0x' n:hexnum => n (if n < 2^N)
+// sN ::= s:sign n:num => [s]n (if -2^(N-1) <= [s]n < 2^(N-1))
+// | s:sign '0x' n:hexnum => [s]n (if -2^(N-1) <= [s]n < 2^(N-1))
+// sign ::= {} => + | '+' => + | '-' => -
+//
+// Note: Defer bounds and sign checking until we know what kind of integer we
+// expect.
+std::optional<LexIntResult> integer(std::string_view in) {
+ LexIntCtx ctx(in);
+ ctx.takeSign();
+ if (ctx.takePrefix("0x"sv)) {
+ if (auto lexed = hexnum(ctx.next())) {
+ ctx.take(*lexed);
+ if (ctx.canFinish()) {
+ return ctx.lexed();
+ }
+ }
+ // TODO: Add error production for unrecognized hexnum.
+ return {};
+ }
+ if (auto lexed = num(ctx.next())) {
+ ctx.take(*lexed);
+ if (ctx.canFinish()) {
+ return ctx.lexed();
+ }
+ }
+ return {};
+}
+
+// float ::= p:num '.'? => p
+// | p:num '.' q:frac => p + q
+// | p:num '.'? ('E'|'e') s:sign e:num => p * 10^([s]e)
+// | p:num '.' q:frac ('E'|'e') s:sign e:num => (p + q) * 10^([s]e)
+// frac ::= d:digit => d/10
+// | d:digit '_'? p:frac => (d + p/10) / 10
+std::optional<LexResult> decfloat(std::string_view in) {
+ LexCtx ctx(in);
+ if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
+ ctx.take(*lexed);
+ } else {
+ return {};
+ }
+ // Optional '.' followed by optional frac
+ if (ctx.takePrefix("."sv)) {
+ if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
+ ctx.take(*lexed);
+ }
+ }
+ if (ctx.takePrefix("E"sv) || ctx.takePrefix("e"sv)) {
+ // Optional sign
+ ctx.takePrefix("+"sv) || ctx.takePrefix("-"sv);
+ if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
+ ctx.take(*lexed);
+ } else {
+ // TODO: Add error production for missing exponent.
+ return {};
+ }
+ }
+ return ctx.lexed();
+}
+
+// hexfloat ::= '0x' p:hexnum '.'? => p
+// | '0x' p:hexnum '.' q:hexfrac => p + q
+// | '0x' p:hexnum '.'? ('P'|'p') s:sign e:num => p * 2^([s]e)
+// | '0x' p:hexnum '.' q:hexfrac ('P'|'p') s:sign e:num
+// => (p + q) * 2^([s]e)
+// hexfrac ::= h:hexdigit => h/16
+// | h:hexdigit '_'? p:hexfrac => (h + p/16) / 16
+std::optional<LexResult> hexfloat(std::string_view in) {
+ LexCtx ctx(in);
+ if (!ctx.takePrefix("0x"sv)) {
+ return {};
+ }
+ if (auto lexed = hexnum(ctx.next(), IgnoreOverflow)) {
+ ctx.take(*lexed);
+ } else {
+ return {};
+ }
+ // Optional '.' followed by optional hexfrac
+ if (ctx.takePrefix("."sv)) {
+ if (auto lexed = hexnum(ctx.next(), IgnoreOverflow)) {
+ ctx.take(*lexed);
+ }
+ }
+ if (ctx.takePrefix("P"sv) || ctx.takePrefix("p"sv)) {
+ // Optional sign
+ ctx.takePrefix("+"sv) || ctx.takePrefix("-"sv);
+ if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
+ ctx.take(*lexed);
+ } else {
+ // TODO: Add error production for missing exponent.
+ return {};
+ }
+ }
+ return ctx.lexed();
+}
+
+// fN ::= s:sign z:fNmag => [s]z
+// fNmag ::= z:float => float_N(z) (if float_N(z) != +/-infinity)
+// | z:hexfloat => float_N(z) (if float_N(z) != +/-infinity)
+// | 'inf' => infinity
+// | 'nan' => nan(2^(signif(N)-1))
+// | 'nan:0x' n:hexnum => nan(n) (if 1 <= n < 2^signif(N))
+std::optional<LexFloatResult> float_(std::string_view in) {
+ LexFloatCtx ctx(in);
+ // Optional sign
+ ctx.takePrefix("+"sv) || ctx.takePrefix("-"sv);
+ if (auto lexed = hexfloat(ctx.next())) {
+ ctx.take(*lexed);
+ } else if (auto lexed = decfloat(ctx.next())) {
+ ctx.take(*lexed);
+ } else if (ctx.takePrefix("inf"sv)) {
+ // nop
+ } else if (ctx.takePrefix("nan"sv)) {
+ if (ctx.takePrefix(":0x"sv)) {
+ if (auto lexed = hexnum(ctx.next())) {
+ ctx.take(*lexed);
+ ctx.nanPayload = lexed->n;
+ } else {
+ // TODO: Add error production for malformed NaN payload.
+ return {};
+ }
+ } else {
+ // No explicit payload necessary; we will inject the default payload
+ // later.
+ }
+ } else {
+ return {};
+ }
+ if (ctx.canFinish()) {
+ return ctx.lexed();
+ }
+ return {};
+}
+
+// idchar ::= '0' | ... | '9'
+// | 'A' | ... | 'Z'
+// | 'a' | ... | 'z'
+// | '!' | '#' | '$' | '%' | '&' | ''' | '*' | '+'
+// | '-' | '.' | '/' | ':' | '<' | '=' | '>' | '?'
+// | '@' | '\' | '^' | '_' | '`' | '|' | '~'
+std::optional<LexResult> idchar(std::string_view in) {
+ LexCtx ctx(in);
+ if (ctx.empty()) {
+ return {};
+ }
+ uint8_t c = ctx.peek();
+ if (('0' <= c && c <= '9') || ('A' <= c && c <= 'Z') ||
+ ('a' <= c && c <= 'z')) {
+ ctx.take(1);
+ } else {
+ switch (c) {
+ case '!':
+ case '#':
+ case '$':
+ case '%':
+ case '&':
+ case '\'':
+ case '*':
+ case '+':
+ case '-':
+ case '.':
+ case '/':
+ case ':':
+ case '<':
+ case '=':
+ case '>':
+ case '?':
+ case '@':
+ case '\\':
+ case '^':
+ case '_':
+ case '`':
+ case '|':
+ case '~':
+ ctx.take(1);
+ }
+ }
+ return ctx.lexed();
+}
+
+// id ::= '$' idchar+
+std::optional<LexResult> ident(std::string_view in) {
+ LexCtx ctx(in);
+ if (!ctx.takePrefix("$"sv)) {
+ return {};
+ }
+ if (auto lexed = idchar(ctx.next())) {
+ ctx.take(*lexed);
+ } else {
+ return {};
+ }
+ while (auto lexed = idchar(ctx.next())) {
+ ctx.take(*lexed);
+ }
+ if (ctx.canFinish()) {
+ return ctx.lexed();
+ }
+ return {};
+}
+
+// string ::= '"' (b*:stringelem)* '"' => concat((b*)*)
+// (if |concat((b*)*)| < 2^32)
+// stringelem ::= c:stringchar => utf8(c)
+// | '\' n:hexdigit m:hexdigit => 16*n + m
+// stringchar ::= c:char => c
+// (if c >= U+20 && c != U+7f && c != '"' && c != '\')
+// | '\t' => \t | '\n' => \n | '\r' => \r
+// | '\\' => \ | '\"' => " | '\'' => '
+// | '\u{' n:hexnum '}' => U+(n)
+// (if n < 0xD800 and 0xE000 <= n <= 0x110000)
+std::optional<LexStrResult> str(std::string_view in) {
+ LexStrCtx ctx(in);
+ if (!ctx.takePrefix("\""sv)) {
+ return {};
+ }
+ while (!ctx.takePrefix("\""sv)) {
+ if (ctx.empty()) {
+ // TODO: Add error production for unterminated string.
+ return {};
+ }
+ if (ctx.startsWith("\\"sv)) {
+ // Escape sequences
+ ctx.ensureBuildingEscaped();
+ ctx.take(1);
+ if (ctx.takePrefix("t"sv)) {
+ ctx.appendEscaped('\t');
+ } else if (ctx.takePrefix("n"sv)) {
+ ctx.appendEscaped('\n');
+ } else if (ctx.takePrefix("r"sv)) {
+ ctx.appendEscaped('\r');
+ } else if (ctx.takePrefix("\\"sv)) {
+ ctx.appendEscaped('\\');
+ } else if (ctx.takePrefix("\""sv)) {
+ ctx.appendEscaped('"');
+ } else if (ctx.takePrefix("'"sv)) {
+ ctx.appendEscaped('\'');
+ } else if (ctx.takePrefix("u{"sv)) {
+ auto lexed = hexnum(ctx.next());
+ if (!lexed) {
+ // TODO: Add error production for malformed unicode escapes.
+ return {};
+ }
+ ctx.take(*lexed);
+ if (!ctx.takePrefix("}"sv)) {
+ // TODO: Add error production for malformed unicode escapes.
+ return {};
+ }
+ if (!ctx.appendUnicode(lexed->n)) {
+ // TODO: Add error production for invalid unicode values.
+ return {};
+ }
+ } else {
+ LexIntCtx ictx(ctx.next());
+ if (!ictx.takeHexdigit() || !ictx.takeHexdigit()) {
+ // TODO: Add error production for unrecognized escape sequence.
+ return {};
+ }
+ auto lexed = *ictx.lexed();
+ ctx.take(lexed);
+ ctx.appendEscaped(char(lexed.n));
+ }
+ } else {
+ // Normal characters
+ if (uint8_t c = ctx.peek(); c >= 0x20 && c != 0x7F) {
+ ctx.takeChar();
+ } else {
+ // TODO: Add error production for unescaped control characters.
+ return {};
+ }
+ }
+ }
+ return ctx.lexed();
+}
+
+// keyword ::= ( 'a' | ... | 'z' ) idchar* (if literal terminal in grammar)
+// reserved ::= idchar+
+//
+// The "keyword" token we lex here covers both keywords as well as any reserved
+// tokens that match the keyword format. This saves us from having to enumerate
+// all the valid keywords here. These invalid keywords will still produce
+// errors, just at a higher level of the parser.
+std::optional<LexResult> keyword(std::string_view in) {
+ LexCtx ctx(in);
+ if (ctx.empty()) {
+ return {};
+ }
+ uint8_t start = ctx.peek();
+ if ('a' <= start && start <= 'z') {
+ ctx.take(1);
+ } else {
+ return {};
+ }
+ while (auto lexed = idchar(ctx.next())) {
+ ctx.take(*lexed);
+ }
+ return ctx.lexed();
+}
+
+} // anonymous namespace
+
+std::optional<uint64_t> Token::getU64() const {
+ if (auto* tok = std::get_if<IntTok>(&data)) {
+ if (tok->sign == NoSign) {
+ return tok->n;
+ }
+ }
+ return {};
+}
+
+std::optional<int64_t> Token::getS64() const {
+ if (auto* tok = std::get_if<IntTok>(&data)) {
+ if (tok->sign == Neg) {
+ if (uint64_t(INT64_MIN) <= tok->n || tok->n == 0) {
+ return int64_t(tok->n);
+ }
+ // TODO: Add error production for signed underflow.
+ } else {
+ if (tok->n <= uint64_t(INT64_MAX)) {
+ return int64_t(tok->n);
+ }
+ // TODO: Add error production for signed overflow.
+ }
+ }
+ return {};
+}
+
+std::optional<uint64_t> Token::getI64() const {
+ if (auto n = getU64()) {
+ return *n;
+ }
+ if (auto n = getS64()) {
+ return *n;
+ }
+ return {};
+}
+
+std::optional<uint32_t> Token::getU32() const {
+ if (auto* tok = std::get_if<IntTok>(&data)) {
+ if (tok->sign == NoSign && tok->n <= UINT32_MAX) {
+ return int32_t(tok->n);
+ }
+ // TODO: Add error production for unsigned overflow.
+ }
+ return {};
+}
+
+std::optional<int32_t> Token::getS32() const {
+ if (auto* tok = std::get_if<IntTok>(&data)) {
+ if (tok->sign == Neg) {
+ if (uint64_t(INT32_MIN) <= tok->n || tok->n == 0) {
+ return int32_t(tok->n);
+ }
+ } else {
+ if (tok->n <= uint64_t(INT32_MAX)) {
+ return int32_t(tok->n);
+ }
+ }
+ }
+ return {};
+}
+
+std::optional<uint32_t> Token::getI32() const {
+ if (auto n = getU32()) {
+ return *n;
+ }
+ if (auto n = getS32()) {
+ return uint32_t(*n);
+ }
+ return {};
+}
+
+std::optional<double> Token::getF64() const {
+ constexpr int signif = 52;
+ constexpr uint64_t payloadMask = (1ull << signif) - 1;
+ constexpr uint64_t nanDefault = 1ull << (signif - 1);
+ if (auto* tok = std::get_if<FloatTok>(&data)) {
+ double d = tok->d;
+ if (std::isnan(d)) {
+ // Inject payload.
+ uint64_t payload = tok->nanPayload ? *tok->nanPayload : nanDefault;
+ if (payload == 0 || payload > payloadMask) {
+ // TODO: Add error production for out-of-bounds payload.
+ return {};
+ }
+ uint64_t bits;
+ static_assert(sizeof(bits) == sizeof(d));
+ memcpy(&bits, &d, sizeof(bits));
+ bits = (bits & ~payloadMask) | payload;
+ memcpy(&d, &bits, sizeof(bits));
+ }
+ return d;
+ }
+ if (auto* tok = std::get_if<IntTok>(&data)) {
+ if (tok->sign == Neg) {
+ if (tok->n == 0) {
+ return -0.0;
+ }
+ return double(int64_t(tok->n));
+ }
+ return double(tok->n);
+ }
+ return {};
+}
+
+std::optional<float> Token::getF32() const {
+ constexpr int signif = 23;
+ constexpr uint32_t payloadMask = (1u << signif) - 1;
+ constexpr uint64_t nanDefault = 1ull << (signif - 1);
+ if (auto* tok = std::get_if<FloatTok>(&data)) {
+ float f = tok->d;
+ if (std::isnan(f)) {
+ // Validate and inject payload.
+ uint64_t payload = tok->nanPayload ? *tok->nanPayload : nanDefault;
+ if (payload == 0 || payload > payloadMask) {
+ // TODO: Add error production for out-of-bounds payload.
+ return {};
+ }
+ uint32_t bits;
+ static_assert(sizeof(bits) == sizeof(f));
+ memcpy(&bits, &f, sizeof(bits));
+ bits = (bits & ~payloadMask) | payload;
+ memcpy(&f, &bits, sizeof(bits));
+ }
+ return f;
+ }
+ if (auto* tok = std::get_if<IntTok>(&data)) {
+ if (tok->sign == Neg) {
+ if (tok->n == 0) {
+ return -0.0f;
+ }
+ return float(int64_t(tok->n));
+ }
+ return float(tok->n);
+ }
+ return {};
+}
+
+std::optional<std::string_view> Token::getString() const {
+ if (auto* tok = std::get_if<StringTok>(&data)) {
+ if (tok->str) {
+ return std::string_view(*tok->str);
+ }
+ return span.substr(1, span.size() - 2);
+ }
+ return {};
+}
+
+void Lexer::skipSpace() {
+ if (auto ctx = space(next())) {
+ index += ctx->span.size();
+ }
+}
+
+void Lexer::lexToken() {
+ // TODO: Ensure we're getting the longest possible match.
+ Token tok;
+ if (auto t = lparen(next())) {
+ tok = Token{t->span, LParenTok{}};
+ } else if (auto t = rparen(next())) {
+ tok = Token{t->span, RParenTok{}};
+ } else if (auto t = ident(next())) {
+ tok = Token{t->span, IdTok{}};
+ } else if (auto t = integer(next())) {
+ tok = Token{t->span, IntTok{t->n, t->sign}};
+ } else if (auto t = float_(next())) {
+ tok = Token{t->span, FloatTok{t->nanPayload, t->d}};
+ } else if (auto t = str(next())) {
+ tok = Token{t->span, StringTok{t->str}};
+ } else if (auto t = keyword(next())) {
+ tok = Token{t->span, KeywordTok{}};
+ } else {
+ // TODO: Do something about lexing errors.
+ curr = std::nullopt;
+ return;
+ }
+ index += tok.span.size();
+ curr = {tok};
+}
+
+TextPos Lexer::position(const char* c) const {
+ assert(size_t(c - buffer.data()) <= buffer.size());
+ TextPos pos{1, 0};
+ for (const char* p = buffer.data(); p != c; ++p) {
+ if (*p == '\n') {
+ pos.line++;
+ pos.col = 0;
+ } else {
+ pos.col++;
+ }
+ }
+ return pos;
+}
+
+bool TextPos::operator==(const TextPos& other) const {
+ return line == other.line && col == other.col;
+}
+
+bool IntTok::operator==(const IntTok& other) const {
+ return n == other.n && sign == other.sign;
+}
+
+bool FloatTok::operator==(const FloatTok& other) const {
+ return std::signbit(d) == std::signbit(other.d) &&
+ (d == other.d || (std::isnan(d) && std::isnan(other.d) &&
+ nanPayload == other.nanPayload));
+}
+
+bool Token::operator==(const Token& other) const {
+ return span == other.span &&
+ std::visit(
+ [](auto& t1, auto& t2) {
+ if constexpr (std::is_same_v<decltype(t1), decltype(t2)>) {
+ return t1 == t2;
+ } else {
+ return false;
+ }
+ },
+ data,
+ other.data);
+}
+
+std::ostream& operator<<(std::ostream& os, const TextPos& pos) {
+ return os << pos.line << ":" << pos.col;
+}
+
+std::ostream& operator<<(std::ostream& os, const LParenTok&) {
+ return os << "'('";
+}
+
+std::ostream& operator<<(std::ostream& os, const RParenTok&) {
+ return os << "')'";
+}
+
+std::ostream& operator<<(std::ostream& os, const IdTok&) { return os << "id"; }
+
+std::ostream& operator<<(std::ostream& os, const IntTok& tok) {
+ return os << (tok.sign == Pos ? "+" : tok.sign == Neg ? "-" : "") << tok.n;
+}
+
+std::ostream& operator<<(std::ostream& os, const FloatTok& tok) {
+ if (std::isnan(tok.d)) {
+ os << (std::signbit(tok.d) ? "+" : "-");
+ if (tok.nanPayload) {
+ return os << "nan:0x" << std::hex << *tok.nanPayload << std::dec;
+ }
+ return os << "nan";
+ }
+ return os << tok.d;
+}
+
+std::ostream& operator<<(std::ostream& os, const StringTok& tok) {
+ if (tok.str) {
+ os << '"' << *tok.str << '"';
+ } else {
+ os << "(raw string)";
+ }
+ return os;
+}
+
+std::ostream& operator<<(std::ostream& os, const KeywordTok&) {
+ return os << "keyword";
+}
+
+std::ostream& operator<<(std::ostream& os, const Token& tok) {
+ std::visit([&](const auto& t) { os << t; }, tok.data);
+ return os << " \"" << tok.span << "\"";
+}
+
+} // namespace wasm::WATParser