summaryrefslogtreecommitdiff
path: root/src/support/learning.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/support/learning.h')
-rw-r--r--src/support/learning.h39
1 files changed, 20 insertions, 19 deletions
diff --git a/src/support/learning.h b/src/support/learning.h
index 8427a2362..0cdd4e929 100644
--- a/src/support/learning.h
+++ b/src/support/learning.h
@@ -33,7 +33,8 @@ namespace wasm {
// The Generator must implement the following:
//
// * Genome* makeRandom(); - make a random element
-// * Genome* makeMixture(Genome* one, Genome* two); - make a new element by mixing two
+// * Genome* makeMixture(Genome* one, Genome* two); - make a new element by
+// mixing two
//
// Fitness is the type of the fitness values, e.g. uint32_t. More is better.
//
@@ -51,19 +52,20 @@ class GeneticLearner {
std::vector<unique_ptr> population;
void sort() {
- std::sort(population.begin(), population.end(), [](const unique_ptr& left, const unique_ptr& right) {
- return left->getFitness() > right->getFitness();
- });
+ std::sort(population.begin(),
+ population.end(),
+ [](const unique_ptr& left, const unique_ptr& right) {
+ return left->getFitness() > right->getFitness();
+ });
}
std::mt19937 noise;
- size_t randomIndex() {
- return noise() % population.size();
- }
+ size_t randomIndex() { return noise() % population.size(); }
public:
- GeneticLearner(Generator& generator, size_t size) : generator(generator), noise(1337) {
+ GeneticLearner(Generator& generator, size_t size)
+ : generator(generator), noise(1337) {
population.resize(size);
for (size_t i = 0; i < size; i++) {
population[i] = unique_ptr(generator.makeRandom());
@@ -71,27 +73,26 @@ public:
sort();
}
- Genome* getBest() {
- return population[0].get();
- }
+ Genome* getBest() { return population[0].get(); }
- unique_ptr acquireBest() {
- return population[0];
- }
+ unique_ptr acquireBest() { return population[0]; }
void runGeneration() {
size_t size = population.size();
- // we have a mix of promoted from the last generation, mixed from the last generation, and random
+ // we have a mix of promoted from the last generation, mixed from the last
+ // generation, and random
const size_t promoted = (25 * size) / 100;
const size_t mixed = (50 * size) / 100;
// promoted just stay in place
- // mixtures are computed, then added back in (as we still need them as we work)
+ // mixtures are computed, then added back in (as we still need them as we
+ // work)
std::vector<unique_ptr> mixtures;
mixtures.resize(mixed);
for (size_t i = 0; i < mixed; i++) {
- mixtures[i] = unique_ptr(generator.makeMixture(population[randomIndex()].get(), population[randomIndex()].get()));
+ mixtures[i] = unique_ptr(generator.makeMixture(
+ population[randomIndex()].get(), population[randomIndex()].get()));
}
for (size_t i = 0; i < mixed; i++) {
population[promoted + i].swap(mixtures[i]);
@@ -106,6 +107,6 @@ public:
}
};
-} // namespace wasm
+} // namespace wasm
-#endif // wasm_learning_h
+#endif // wasm_learning_h