diff options
Diffstat (limited to 'src/support/learning.h')
-rw-r--r-- | src/support/learning.h | 39 |
1 files changed, 20 insertions, 19 deletions
diff --git a/src/support/learning.h b/src/support/learning.h index 8427a2362..0cdd4e929 100644 --- a/src/support/learning.h +++ b/src/support/learning.h @@ -33,7 +33,8 @@ namespace wasm { // The Generator must implement the following: // // * Genome* makeRandom(); - make a random element -// * Genome* makeMixture(Genome* one, Genome* two); - make a new element by mixing two +// * Genome* makeMixture(Genome* one, Genome* two); - make a new element by +// mixing two // // Fitness is the type of the fitness values, e.g. uint32_t. More is better. // @@ -51,19 +52,20 @@ class GeneticLearner { std::vector<unique_ptr> population; void sort() { - std::sort(population.begin(), population.end(), [](const unique_ptr& left, const unique_ptr& right) { - return left->getFitness() > right->getFitness(); - }); + std::sort(population.begin(), + population.end(), + [](const unique_ptr& left, const unique_ptr& right) { + return left->getFitness() > right->getFitness(); + }); } std::mt19937 noise; - size_t randomIndex() { - return noise() % population.size(); - } + size_t randomIndex() { return noise() % population.size(); } public: - GeneticLearner(Generator& generator, size_t size) : generator(generator), noise(1337) { + GeneticLearner(Generator& generator, size_t size) + : generator(generator), noise(1337) { population.resize(size); for (size_t i = 0; i < size; i++) { population[i] = unique_ptr(generator.makeRandom()); @@ -71,27 +73,26 @@ public: sort(); } - Genome* getBest() { - return population[0].get(); - } + Genome* getBest() { return population[0].get(); } - unique_ptr acquireBest() { - return population[0]; - } + unique_ptr acquireBest() { return population[0]; } void runGeneration() { size_t size = population.size(); - // we have a mix of promoted from the last generation, mixed from the last generation, and random + // we have a mix of promoted from the last generation, mixed from the last + // generation, and random const size_t promoted = (25 * size) / 100; const size_t mixed = (50 * size) / 100; // promoted just stay in place - // mixtures are computed, then added back in (as we still need them as we work) + // mixtures are computed, then added back in (as we still need them as we + // work) std::vector<unique_ptr> mixtures; mixtures.resize(mixed); for (size_t i = 0; i < mixed; i++) { - mixtures[i] = unique_ptr(generator.makeMixture(population[randomIndex()].get(), population[randomIndex()].get())); + mixtures[i] = unique_ptr(generator.makeMixture( + population[randomIndex()].get(), population[randomIndex()].get())); } for (size_t i = 0; i < mixed; i++) { population[promoted + i].swap(mixtures[i]); @@ -106,6 +107,6 @@ public: } }; -} // namespace wasm +} // namespace wasm -#endif // wasm_learning_h +#endif // wasm_learning_h |