summaryrefslogtreecommitdiff
path: root/src/passes/Precompute.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Revert "Stop propagating/inlining string constants (#6234)" (#6258)Alon Zakai2024-01-311-4/+2
| | | | | | | | | | This reverts commit 9090ce56fcc67e15005aeedc59c6bc6773220f11. This has the effect of once more propagating string constants from globals to other places (and from non-globals too), which is useful for various optimizations even if it isn't useful in the final output. To fix the final output problem, #6257 added a pass that is run at the end to collect string.const to globals, which allows us to once more propagate strings in the optimizer, now without a downside.
* Stop propagating/inlining string constants (#6234)Alon Zakai2024-01-231-2/+4
| | | | | This causes overhead atm since in VMs executing a string.const will actually allocate a string, and more copies means more allocations. For now, just do not add more. This required changes to two passes: SimplifyGlobals and Precompute.
* Precompute into select arms (#6212)Alon Zakai2024-01-101-12/+318
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | E.g. (i32.add (select (i32.const 100) (i32.const 200) (..condition..) ) (i32.const 50) ) ;; => (select (i32.const 150) (i32.const 250) (..condition..) ) We cannot fully precompute the select, but we can "partially precompute" it, by precomputing its arms using the parent. This may require looking several steps up the parent chain, which is an awkward operation in our simple walkers, so to do it we capture stacks of parents and operate directly on them. This is a little slower than a normal walk, so only do it when we see a promising select, and only in -O2 and above (this makes the pass 7% or so slower; not a large cost, but best to avoid it in -O1).
* Precompute: Check defaultability, not nullability (#6052)Alon Zakai2023-10-251-2/+2
| | | Followup to #6048, we did not handle nondefaultable tuples because of this.
* Fix unreachable code in LocalGraph by making it imprecise there (#6048)Alon Zakai2023-10-241-3/+11
| | | | | | | | | | Followup to #6046 - the fuzzer found we missed handling the case of the entry itself being unreachable, or of an unreachable loop later. Properly identifying unreachable code requires a flow analysis, unfortunately, so this PR gives up on that and instead allows LocalGraph to be imprecise in unreachable code. That avoids adding any overhead, but does mean the IR may be slightly confusing when debugging. It does not have any optimization downsides, however, as it only affects unreachable code. Also add a dump() impl in that file which helps debugging.
* End the current basic block on a Call (#5823)Alon Zakai2023-07-261-1/+1
| | | | | | | | | | | | | Before this PR, if a call had no paths to a catch in the same function then we skipped creating a new basic block right after it. As a result, we could have a call in the middle of a basic block. If EH is enabled that means we might transfer control flow out of the function from the middle of a block. But it is better to have the property that any transfer of control flow - to another basic block, or outside of the function - can only happen at the end of a basic block. This causes some overhead, but a subsequent PR (#5838) will remove that as a followup, and this PR adds a little code to pass the module and check if EH is enabled, and avoid the overhead if not, which at least avoids regressing the non-EH case until that followup lands.
* [NFC] Internally rename `ArrayInit` to `ArrayNewFixed` (#5526)Thomas Lively2023-02-281-2/+2
| | | | | | | | To match the standard instruction name, rename the expression class without changing any parsing or printing behavior. A follow-on PR will take care of the functional side of this change while keeping support for parsing the old name. This change will allow `ArrayInit` to be used as the expression class for the upcoming `array.init_data` and `array.init_elem` instructions.
* [Strings] Initial string execution support (#5491)Alon Zakai2023-02-151-0/+4
| | | | | | | | | | Store string data as GC data. Inefficient (one Const per char), but ok for now. Implement string.new_wtf16 and string.const, enough for basic testing. Create strings in makeConstantExpression, which enables ctor-eval support. Print strings in fuzz-exec which makes testing easier.
* Implement bottom heap types (#5115)Thomas Lively2022-10-071-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to them can only possibly be null. To simplify the IR and increase type precision, introduce new invariants that all `ref.null` instructions must be typed with one of these new bottom types and that `Literals` have a bottom type iff they represent null values. These new invariants requires several additional changes. First, it is now possible that the `ref` or `target` child of a `StructGet`, `StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom reference type, so it is not possible to determine what heap type annotation to emit in the binary or text formats. (The bottom types are not valid type annotations since they do not have indices in the type section.) To fix that problem, update the printer and binary emitter to emit unreachables instead of the instruction with undetermined type annotation. This is a valid transformation because the only possible value that could flow into those instructions in that case is null, and all of those instructions trap on nulls. That fix uncovered a latent bug in the binary parser in which new unreachables within unreachable code were handled incorrectly. This bug was not previously found by the fuzzer because we generally stop emitting code once we encounter an instruction with type `unreachable`. Now, however, it is possible to emit an `unreachable` for instructions that do not have type `unreachable` (but are known to trap at runtime), so we will continue emitting code. See the new test/lit/parse-double-unreachable.wast for details. Update other miscellaneous code that creates `RefNull` expressions and null `Literals` to maintain the new invariants as well.
* Refactor interaction between Pass and PassRunner (#5093)Thomas Lively2022-09-301-1/+3
| | | | | | | | | | | | | | Previously only WalkerPasses had access to the `getPassRunner` and `getPassOptions` methods. Move those methods to `Pass` so all passes can use them. As a result, the `PassRunner` passed to `Pass::run` and `Pass::runOnFunction` is no longer necessary, so remove it. Also update `Pass::create` to return a unique_ptr, which is more efficient than having it return a raw pointer only to have the `PassRunner` wrap that raw pointer in a `unique_ptr`. Delete the unused template `PassRunner::getLast()`, which looks like it was intended to enable retrieving previous analyses and has been in the code base since 2015 but is not implemented anywhere.
* Remove RTTs (#4848)Thomas Lively2022-08-051-3/+2
| | | | | | | RTTs were removed from the GC spec and if they are added back in in the future, they will be heap types rather than value types as in our implementation. Updating our implementation to have RTTs be heap types would have been more work than deleting them for questionable benefit since we don't know how long it will be before they are specced again.
* Update reference type Literal constructors to use HeapType (#4857)Thomas Lively2022-08-011-1/+1
| | | | | | We already require non-null literals to have non-null types, but with this change we can enforce that constraint by construction. Also remove the default behavior of creating a function reference literal with heap type `func`, since there is always a more specific function type to use.
* Remove basic reference types (#4802)Thomas Lively2022-07-201-1/+2
| | | | | | | | | Basic reference types like `Type::funcref`, `Type::anyref`, etc. made it easy to accidentally forget to handle reference types with the same basic HeapTypes but the opposite nullability. In principle there is nothing special about the types with shorthands except in the binary and text formats. Removing these shorthands from the internal type representation by removing all basic reference types makes some code more complicated locally, but simplifies code globally and encourages properly handling both nullable and non-nullable reference types.
* [Precompute][SIMD] Enable constant folding for simd (#4381)Max Graey2021-12-131-9/+0
|
* Modernize code to C++17 (#3104)Max Graey2021-11-221-2/+1
|
* [Wasm GC] Propagate immutable fields (#4251)Alon Zakai2021-10-151-2/+31
| | | | Very simple with the work so far, just add StructGet/ArrayGet code to check if the field is immutable, and allow the get to go through in that case.
* Precompute: Track reference identity (#4243)Alon Zakai2021-10-141-15/+78
| | | | | | | | | | | | | | Precompute will run the interpreter on struct.new etc. repeatedly, as it keeps doing so while it propagates constant values around (if one of the operands to the struct.new becomes constant, that could have a noticeable effect). But creating new GC data means we lose track of their identity, and so ref.eq would not work, and we disabled basically all struct operations. This implements identity tracking so we can start to optimize there, which is a step towards using it for immutable field propagation. To track identity, always store the data representing each struct.new in the source using the same GCData structure. That keeps identity consistent no matter how many times we execute.
* Precompute: Only run a single LocalGraph iteration (#4184)Alon Zakai2021-09-231-19/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | Precompute has a mode in which it propagates results from local.sets to local.gets. That constructs a LocalGraph which is a non-trivial amount of work. We used to run multiple iterations of this, but investigation shows that such opportunities are extremely rare, as doing just a single propagation iteration has no effect on the entire emscripten benchmark suite, nor on j2cl output. Furthermore, we run this pass twice in the normal pipeline (once early, once late) so even if there are such opportunities they may be optimized already. And, --converge is a way to get additional iterations of all passes if a user wants that, so it makes sense not to costly work for more iterations automatically. In effect, 99.99% of the time before this pass we would create the LocalGraph twice: once the first time, then a second time only to see that we can't actually optimize anything further. This PR makes us only create it once, which makes precompute-propagate 10% faster on j2cl and even faster on other things like poppler (33%) and LLVM (29%). See the change in the test suite for an example of a case that does require more than one iteration to be optimized. Note that even there, we only manage to get benefit from a second iteration by doing something that overlaps with another pass (optimizing out an if with condition 0), which shows even more how unnecessary the extra work was. See #4165
* Use UniqueDeferringQueue in Precompute (#4179)Alon Zakai2021-09-221-7/+6
|
* Remove unneeded work in Precompute (#4176)Alon Zakai2021-09-221-1/+0
| | | | | isSSA is not called anywhere. See #4165
* [Wasm GC] ArrayInit support (#4138)Alon Zakai2021-09-101-0/+1
| | | | | | | array.init is like array.new_with_rtt except that it takes as arguments the values to initialize the array with (as opposed to a size and an optional initial value). Spec: https://docs.google.com/document/d/1afthjsL_B9UaMqCA5ekgVmOm75BVFu6duHNsN9-gnXw/edit#
* Rename isIntrinsicallyNondeterministic() to isGenerative() (#4092)Alon Zakai2021-09-091-2/+2
|
* Use the new module version of EffectAnalyzer (#4116)Alon Zakai2021-08-311-1/+1
| | | | | | | | | | | This finishes the refactoring started in #4115 by doing the same change to pass a Module into EffectAnalyzer instead of features. To do so this refactors the fallthrough API and a few other small things. After those changes, this PR removes the old feature constructor of EffectAnalyzer entirely. This requires a small breaking change in the C API, changing BinaryenExpressionGetSideEffects's feature param to a module. That makes this change not NFC, but otherwise it is.
* LocalCSE rewrite (#4079)Alon Zakai2021-08-171-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Technically this is not a new pass, but it is a rewrite almost from scratch. Local Common Subexpression Elimination looks for repeated patterns, stuff like this: x = (a + b) + c y = a + b => temp = a + b x = temp + c y = temp The old pass worked on flat IR, which is inefficient, and was overly complicated because of that. The new pass uses a new algorithm that I think is pretty simple, see the detailed comment at the top. This keeps the pass enabled only in -O4, like before - right after flattening the IR. That is to make this as minimal a change as possible. Followups will enable the pass in the main pipeline, that is, we will finally be able to run it by default. (Note that to make the pass work well after flatten, an extra simplify-locals is added - the old pass used to do part of simplify-locals internally, which was one source of complexity. Even so, some of the -O4 tests have changes, due to minor factors - they are just minor orderings etc., which can be seen by inspecting the outputs before and after using e.g. --metrics) This plus some followup work leads to large wins on wasm GC output. On j2cl there is a common pattern of repeated struct.gets, so common that this pass removes 85% of all struct.gets, which makes the total binary 15% smaller. However, on LLVM-emitted code the benefit is minor, less than 1%.
* [Wasm GC] Handle uses of default values in LocalSubtyping (#4024)Alon Zakai2021-07-281-2/+4
| | | | | | It is ok to use the default value of a reference even if we refine the type, as it would be a more specifically-typed null, and all nulls compare the same. However, if the default is used then we *cannot* alter the type to be non-nullable, as then we'd use a null where that is not allowed.
* [Wasm GC] Fix Heap2Local + non-nullable locals (#4017)Alon Zakai2021-07-231-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | Given (local $x (ref $foo)) (local.set $x ..) (.. (local.get $x)) If we remove the local.set but not the get, then we end up with (local $x (ref $foo)) (.. (local.get $x)) It looks like the local.get reads the initial value of a non-nullable local, which is not allowed. In practice, this would crash in precompute-propagate which would try to propagate the initial value to the get. Add an assertion there with a clear message, as until we have full validation of non-nullable locals (and the spec for that is in flux), that pass is where bugs will end up being noticed. To fix this, replace the get as well. We can replace it with a null for simplicity; it will never be used anyhow. This also uncovered a small bug with reached not containing all the things we reached - it was missing local.gets.
* Revert "Partially fix Precompute on SIMD (#3983)" (#4002)Alon Zakai2021-07-191-9/+9
| | | | | | | | | | | | | This reverts commit b68691e826a46d1b03b27c552b1f5b7f51f92665. Instead of applying the workaround to avoid precomputing SIMD in more places, which prevents things we could optimize before, we should probably focus on making the workaround not needed - that is, implement full SIMD support in the intepreter (the reason for that PR), and the other TODO in the comment here, // Until engines implement v128.const and we have SIMD-aware optimizations // that can break large v128.const instructions into smaller consts and // splats, do not try to precompute v128 expressions.
* Partially fix Precompute on SIMD (#3983)Alon Zakai2021-07-131-9/+9
| | | We had the logic in only one place.
* [Wasm GC] Add experimental array.copy (#3911)Alon Zakai2021-05-271-0/+1
| | | | | | | | Spec for it is here: https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit# Also reorder some things in wasm.h that were not in the canonical order (that has no effect, but it is confusing to read).
* [Wasm GC] Fix precomputing of incompatible fallthrough values (#3875)Alon Zakai2021-05-101-3/+21
| | | | | | | | | | | | | | | | | | | | | | Precompute not only computes values, but looks at the fallthrough, (local.set 0 (block ..stuff we can ignore.. ;; the fallthrough we care about - if a value is set to local 0, it is this (i32.const 10) ) ) Normally that is fine, but the fuzzer found a case where it is not: RefCast may return a different type than the fallthrough, even an incompatible type if we try to do something bad like cast a function to a struct. As we may then propagate the value to a place that expects the proper type, this can cause an error. To fix this, check if the precomputed value is a proper subtype. If it is not, then do not look through into the fallthrough, but compute the entire thing. (In the case of a bad RefCast of a func to a struct, it would then indicate a trap happens, and we would not precompute the value.)
* [Wasm GC] Fix precompute on GC data (#3810)Alon Zakai2021-04-151-13/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes precomputation on GC after #3803 was too optimistic. The issue is subtle. Precompute will repeatedly evaluate expressions and propagate their values, flowing them around, and it ignores side effects when doing so. For example: (block ..side effect.. (i32.const 1) ) When we evaluate that we see there are side effects, but regardless of them we know the value flowing out is 1. So we can propagate that value, if it is assigned to a local and read elsewhere. This is not valid for GC because struct.new and array.new have a "side effect" that is noticeable in the result. Each time we call struct.new we get a new struct with a new address, which ref.eq can distinguish. So when this pass evaluates the same thing multiple times it will get a different result. Also, we can't precompute a struct.get even if we know the struct, not unless we know the reference has not escaped (where a call could modify it). To avoid all that, do not precompute references, aside from the trivially safe ones like nulls and function references (simple constants that are the same each time we evaluate the expression emitting them). precomputeExpression() had a minor bug which this fixes. It checked the type of the expression to see if we can create a constant for it, but really it should check the value - since (separate from this PR) we have no way to emit a "constant" for a struct etc. Also that only matters if replaceExpression is true, that is, if we are replacing with a constant; if we just want the value internally, we have no limit on that. Also add Literal support for comparing GC refs, which is used by ref.eq. Without that tiny fix the tests here crash. This adds a bunch of tests, many for corner cases that we don't handle (since the PR makes us not propagate GC references). But they should be helpful if/when we do, to avoid the mistakes in #3803
* [Wasm GC] Full precompute support for GC (#3803)Alon Zakai2021-04-131-6/+8
| | | | | | | | | | | | The precompute pass ignored all reference types, but that was overly pessimistic: we can precompute some of them, namely a null and a reference to a function are fully precomputable, etc. To allow that to work, add missing integration in getFallthrough as well. With this, we can precompute quite a lot of field accesses in the existing -Oz testcase, as can be seen from the output. That testcase runs --fuzz-exec so it prints out all those logged values, proving they have not changed.
* [GC] Add br_on_cast (#3451)Alon Zakai2020-12-171-8/+35
| | | | | | | | | | | | | | | | The tricky part here, as pointed out by aheejin in my previous attempt, is that we need to know the type of the value we send if the branch is taken. We can normally calculate that from the rtt parameter's type - we are casting to that RTT, so we know what type that is - but if the rtt is unreachable, that's a problem. To fix that, store the cast type on BrOnCast instructions. This includes a test with a br_on_cast that succeeds and sends the cast value, one that fails and passes through the uncast value, and also of one with an unreachable RTT. This includes a fix for Precompute, as noticed by that new test. If a break is taken, with a ref as a value, we can't precompute it - for the same reasons we can't precompute a ref in general, that it is a pointer to possibly shared data.
* [GC] Fully implement RTT semantics (#3441)Alon Zakai2020-12-151-0/+4
| | | | | | | | | | | | | | This adds info to RTT literals so that they can represent the chain of rtt.canon/sub commands that generated them, and it adds an internal RTT for each GC allocation (array or struct). The approach taken is to simply store the full chain of rtt.sub types that led to each literal. This is not efficient, but it is simple and seems sufficient for the semantics described in the GC MVP doc - specifically, only the types matter, in that repeated executions of rtt.canon/sub on the same inputs yield equal outputs. This PR fixes a bunch of minor issues regarding that, enough to allow testing of the optimization and execution of ref.test/cast.
* [GC] Fix Array optimization issues (#3438)Alon Zakai2020-12-111-5/+6
| | | | | | | | | | | Precompute still tried to precompute a reference because the check was not in the topmost place. Also we truncated i8/i16 values, but did not extend them properly. That was also an issue with structs. The new test replaces the old one by moving from -O1 to -Oz (which runs more opts, and would have noticed this earlier), and adds array operations too, including sign extends.
* [GC] Add struct.new and start to test interesting execution (#3433)Alon Zakai2020-12-091-0/+5
| | | | | | | | | | | | | | With struct.new read/write support, we can start to do interesting things! This adds a test of creating a struct and seeing that references behave like references, that is, if we write to the value X refers to, and if Y refers to the same thing, when reading from Y's value we see the change as well. The test is run through all of -O1, which uncovered a minor issue in Precompute: We can't try to precompute a reference type, as we can't replace a reference with a value. Note btw that the test shows the optimizer properly running CoalesceLocals on reference types, merging two locals.
* Refactor naming convention for functions handling tuples (#3196)Max Graey2020-10-091-1/+2
| | | When there are two versions of a function, one handling tuples and the other handling non-tuple values, the previous naming convention was to have "Single" in the name of the non-tuple handling function. This PR simplifies the convention and shortens function names by making the names plural for the tuple-handling version and singular for the non-tuple-handling version.
* Fix RefNull issues (#3123)Daniel Wirtz2020-09-131-3/+6
| | | | | | | | | * ExpressionAnalyzer: Fix `ref.null ht` equality check to include `ht`. * Precompute: Fix `ref.null ht` expression reuse to also update `ht`. * Fuzzing: Fix `ref.null func` becoming canonicalized to `ref.func $funcref` when evaluating execution results, by adding a check for `isNull`. * Fuzzing: Print actual and expected execution results when aborting. * Tests: Update `if-arms-subtype` test in `optimize-instructions` to check that identical `if` arms become folded while not identical arms are kept.
* Update reference types (#3084)Daniel Wirtz2020-09-091-1/+1
| | | | | | | Align with the current state of the reference types proposal: * Remove `nullref` * Remove `externref` and `funcref` subtyping * A `Literal` of a nullable reference type can now represent `null` (previously was type `nullref`) * Update the tests and temporarily comment out those tests relying on subtyping
* Refactor ExpressionRunner (#2804)Daniel Wirtz2020-04-271-6/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Tackles the concerns raised in https://github.com/WebAssembly/binaryen/issues/2797 directly related to https://github.com/WebAssembly/binaryen/pull/2702 by reverting merging all of `PrecomputeExpressionRunner` into the base `ExpressionRunner`, instead adding a common base for both the precompute pass and the new C-API to inherit. No functional changes. --- ### Current hierarchy after https://github.com/WebAssembly/binaryen/pull/2702 is ``` ExpressionRunner ├ [PrecomputeExpressionRunner] ├ [CExpressionRunner] ├ ConstantExpressionRunner └ RuntimeExpressionRunner ``` where `ExpressionRunner` contains functionality not utilized by `ConstantExpressionRunner` and `RuntimeExpressionRunner`. ### New hierarchy will be: ``` ExpressionRunner ├ ConstantExpressionRunner │ ├ [PrecomputeExpressionRunner] │ └ [CExpressionRunner] ├ InitializerExpressionRunner └ RuntimeExpressionRunner ``` with the precompute pass's and the C-API's shared functionality now moved out of `ExpressionRunner` into a new `ConstantExpressionRunner`. Also renames the previous `ConstantExpressionRunner` to `InitializerExpressionRunner` to [better represent its uses](https://webassembly.org/docs/modules/#initializer-expression) and to make its previous name usable for the new intermediate template, where it fits perfectly. Also adds a few comments answering some of the questions that came up recently. ### Old hierarchy before https://github.com/WebAssembly/binaryen/pull/2702 for comparison: ``` ExpressionRunner ├ [PrecomputeExpressionRunner] ├ ConstantExpressionRunner └ RuntimeExpressionRunner ```
* Fix ExpressionRunner issues found by the fuzzer (#2790)Daniel Wirtz2020-04-231-1/+1
| | | | | | | Fixes #2788 found by the fuzzer, introduced in #2702, which turned out to be incorrect usage of std::move, by removing any std::moves introduced in that PR to be better safe than sorry. Also fixes problems with WASM_INTERPRETER_DEBUG spotted during debugging.
* Refactor expression runner so it can be used via the C and JS APIs (#2702)Daniel Wirtz2020-04-201-78/+25
| | | | | | | Refactors most of the precompute pass's expression runner into its base class so it can also be used via the C and JS APIs. Also adds the option to populate the runner with known constant local and global values upfront, and remembers assigned intermediate values as well as traversing into functions if requested.
* Fix reuse of constant nodes in Precompute (#2764)Heejin Ahn2020-04-141-28/+33
| | | | | | | | | | Previously we tried to reuse `Const` node if a precomputed value is a constant node. But now we have two more kinds of constant node (`RefNull` and `RefFunc`), so we shouldn't reuse them interchangeably, meaning we shouldn't try to reuse a `Const` node when the value at hand is a `RefNull`. This correctly checks the type of node and tries to reuse only if the types of nodes match. Fixes #2759.
* Update Precompute to handle tuples (#2687)Thomas Lively2020-03-101-31/+27
| | | | | | This involves replacing `Literal::makeZero` with `Literal::makeZeroes` and `Literal::makeSingleZero` and updating `isConstantExpression` to handle constant tuples as well. Also makes `Literals` its own struct and adds convenience methods on it.
* Handle multivalue returns in the interpreter (#2684)Thomas Lively2020-03-101-18/+13
| | | | Updates the interpreter to properly flow vectors of values, including at function boundaries. Adds a small spec test for multivalue return.
* Initial multivalue support (#2675)Thomas Lively2020-03-051-19/+26
| | | | | | | | | Implements parsing and emitting of tuple creation and extraction and tuple-typed control flow for both the text and binary formats. TODO: - Extend Precompute/interpreter to handle tuple values - C and JS API support/testing - Figure out how to lower in stack IR - Fuzzing
* Add EH support for OptimizeInstructions (#2608)Heejin Ahn2020-02-051-1/+2
| | | | | | - Adds support for `Try` in `optimizeBoolean` function - Adds support for `Try` in `getFallThrough` function - Adds approximate cost values for instructions in EH and reference types proposals.
* [NFC] Enforce use of `Type::` on type names (#2434)Thomas Lively2020-01-071-6/+7
|
* Add support for reference types proposal (#2451)Heejin Ahn2019-12-301-8/+11
| | | | | | | | | | | | This adds support for the reference type proposal. This includes support for all reference types (`anyref`, `funcref`(=`anyfunc`), and `nullref`) and four new instructions: `ref.null`, `ref.is_null`, `ref.func`, and new typed `select`. This also adds subtype relationship support between reference types. This does not include table instructions yet. This also does not include wasm2js support. Fixes #2444 and fixes #2447.
* Multivalue type creation and inspection (#2459)Thomas Lively2019-11-221-4/+4
| | | | | | | | | | | | | Adds the ability to create multivalue types from vectors of concrete value types. All types are transparently interned, so their representation is still a single uint32_t. Types can be extracted into vectors of their component parts, and all the single value types expand into vectors containing themselves. Multivalue types are not yet used in the IR, but their creation and inspection functionality is exposed and tested in the C and JS APIs. Also makes common type predicates methods of Type and improves the ergonomics of type printing.