| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
| |
This allows 64-bit bounds checking to work properly.
|
|
|
|
|
|
|
| |
The old code manually managed it for no good reason that I can see.
After this, there is no difference between callFunction and callFunctionInternal,
so fold them together.
|
|
|
|
|
|
|
|
| |
Two trivial places did not handle that case, and assumed an exported function
was actually defined (and not imported).
Also add some const stuff to fix compilation after this change.
This was discovered by #6026
|
|
|
| |
Replacing Fatal() call sites in src/shell-interface.h & src/tools/wasm-ctor-eval.cpp that were added in the Multi-Memories PR with assert()
|
|
|
|
|
|
|
| |
This PR removes the single memory restriction in IR, adding support for a single module to reference multiple memories. To support this change, a new memory name field was added to 13 memory instructions in order to identify the memory for the instruction.
It is a goal of this PR to maintain backwards compatibility with existing text and binary wasm modules, so memory indexes remain optional for memory instructions. Similarly, the JS API makes assumptions about which memory is intended when only one memory is present in the module. Another goal of this PR is that existing tests behavior be unaffected. That said, tests must now explicitly define a memory before invoking memory instructions or exporting a memory, and memory names are now printed for each memory instruction in the text format.
There remain quite a few places where a hardcoded reference to the first memory persist (memory flattening, for example, will return early if more than one memory is present in the module). Many of these call-sites, particularly within passes, will require us to rethink how the optimization works in a multi-memories world. Other call-sites may necessitate more invasive code restructuring to fully convert away from relying on a globally available, single memory pointer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
class (#4479)
As recently discussed, the interpreter code is way too complex. Trying to add
ctor-eval stuff I need, I got stuck and ended up spending some time to get rid
of some of the complexity.
We had a ModuleInstanceBase class which was basically an instance of a
module, that is, an execution of it. And internally we have RuntimeExpressionRunner
which is a runner that integrates with the ModuleInstanceBase - basically, it uses
the runtime info to execute code. For example, the MIB has globals info, and the
RER would read it from there.
But these two classes are really just one functionality - an execution of a module.
We get rid of some complexity by removing the separation between them, ending
up with a class that can run a module.
One set of problems we avoid is that we can now extend the single class in a
simple way. Before, we would need to extend both - and inform each other of
those changes. That gets "fun" with CRTP which we use everywhere. In other
words, each of the two classes depended on the other / would need to be
templated on the other. Specifically, MIB.callFunction would need to be given
the RER to run with, and so that would need to be templated on it. This ends up
leading to a bunch more templating all around - all complexity that we just
don't need. See the simplification to the wasm-ctor-eval for some of that (and
even worse complexity would have been needed without this PR in the next
steps for that tool to eval GC stuff).
The final single class is now called ModuleRunner.
Also fixes a pre-existing issue uncovered by this PR. We had the delegate
target on the runner, but it should be tied to a function scope. This happened
to not be a problem if one always created a new runner for each scope, but
this PR makes the runner longer-lived, so the stale data ended up mattering.
The PR moves that data to the proper place.
Note: Diff without whitespace is far, far smaller.
|
|
|
|
|
|
|
| |
LiteralList overlaps with Literals, but is less efficient as it is not a
SmallVector.
Add reserve/capacity methods to SmallVector which are now
necessary to compile.
|
|
|
|
|
|
|
|
|
|
|
|
| |
With nominal function types, this change makes it so that we preserve the
identity of the function type used with call_indirect instructions rather than
recreating a function heap type, which may or may not be the same as the
originally parsed heap type, from the function signature during module writing.
This will simplify the type system implementation by removing the need to store
a "canonical" nominal heap type for each unique signature. We previously
depended on those canonical types to avoid creating multiple duplicate function
types during module writing, but now we aren't creating any new function types
at all.
|
| |
|
| |
|
|
|
|
| |
Adds the part of the spec test suite that this passes (without table.set we
can't do it all).
|
|
|
|
|
|
|
|
|
| |
When using nominal types, func.ref of two functions with identical signatures
but different HeapTypes will yield different types. To preserve these semantics,
Functions need to track their HeapTypes, not just their Signatures.
This PR replaces the Signature field in Function with a HeapType field and adds
new utility methods to make it almost as simple to update and query the function
HeapType as it was to update and query the Function Signature.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a rewrite of the wasm-shell tool, with the goal of improved
compatibility with the reference interpreter and the spec test suite.
To facilitate that, module instances are provided with a list of linked
instances, and imported objects are looked up in the correct instance.
The new shell can:
- register and link modules using the (register ...) command.
- parse binary modules with the syntax (module binary ...).
- provide the "spectest" module defined in the reference interpreter
- assert instantiation traps with assert_trap
- better check linkability by looking up the linked instances in
- assert_unlinkable
It cannot call external function references that are not direct imports.
That would require bigger changes.
|
|
|
|
|
|
|
|
|
| |
Host limitations are arbitrary and can be modified by optimizations, so
ignore them. For example, if the optimizer removes allocations then a
host limit on an allocation error may vanish. Or, an optimization that
removes recursion and replaces it with a loop may avoid a host limit
on call depth (that is not done currently, but might some day).
This removes a class of annoying false positives in the fuzzer.
|
| |
|
|
|
|
|
|
| |
This PR adds support for `ref.null t` as a valid element segment
item. The abbreviated format of `(elem ... func $f $g...)` is kept in
both printing and binary emitting if all items are `ref.func`s. Public
APIs aren't updated in this PR.
|
| |
|
|
|
| |
Adds support for modules with multiple tables. Adds a field for the table name to `CallIndirect` and updates the C/JS APIs accordingly.
|
|
|
| |
This removes `exnref` type and `br_on_exn` instruction.
|
|
|
|
|
| |
This is not 100% of everything, but is enough to get tests passing, which
includes full binary and text format support, getting all switches to compile
without error, and some additions to InstrumentLocals.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates the interpreter for the EH instructions (modulo `delegate`)
to match the new spec. Before we had an `exnref` type so threw a
`Literal` of `exnref` type which contained `ExceptionPackage`. But now
that we don't have `exnref` anymore, so we add the contents of
`ExceptionPackage` to `WasmException`, which is used only for the
`ExpressionRunner` class hierarchy. `exnref` and `ExceptionPackage` will
be removed in a followup CL.
This allows nonzero depths for `rethrow` for now for testing; we
disallowed that for safety measure, but given that there are no passes
that modifies that field, I think the risk is low.
|
|
|
| |
Specifically try to cleanup use of asm_v_wasm.h and asmjs constants.
|
|
|
|
|
| |
growMemory() now also returns whether we succeeded.
Without this it could eventually start to swap etc., which is annoying.
|
|
|
| |
Adds the `eqref` and `i31ref` types to their respective code locations. Implements what can be implemented trivially and otherwise traps with a TODO for now. Integration of `eqref` is mostly complete due to it being nullable, just like `anyref`, but `i31ref` needs to remain disabled in the fuzzer because we are lacking the functionality to create trivial `i31ref` values, i.e. `(i31.new (i32.const 0))`, which is left for follow-ups to implement.
|
|
|
| |
Adds `anyref` type, which is enabled by a new feature `--enable-anyref`. This type is primarily used for testing that passes correctly handle subtype relationships so that the codebase will continue to be prepared for future subtyping. Since `--enable-anyref` is meaningless without also using `--enable-reference-types`, this PR also makes it a validation error to pass only the former (and similarly makes it a validation error to enable exception handling without enabling reference types).
|
|
|
|
|
|
|
| |
Align with the current state of the reference types proposal:
* Remove `nullref`
* Remove `externref` and `funcref` subtyping
* A `Literal` of a nullable reference type can now represent `null` (previously was type `nullref`)
* Update the tests and temporarily comment out those tests relying on subtyping
|
|
|
| |
Since they make the code clearer and more self-documenting.
|
|
|
| |
This leads to simpler code and is a prerequisite for #3012, which makes it so that not all `Type`s are backed by vectors that `expand` could return.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As a follow-up to https://github.com/WebAssembly/binaryen/pull/3012#pullrequestreview-459686171 this PR prepares for the new compound Signature, Struct and Array types that are single but not basic.
This includes:
* Renames `Type::getSingle` to `Type::getBasic` (NFC). Previously, its name was not representing its implementation (`isSingle` excluded `none` and `unreachable` while `getSingle` didn't, i.e. `getSingle` really was `getBasic`). Note that a hypothetical `Type::getSingle` cannot return `ValueType` anyway (new compound types are single but don't map to `ValueType`), so I figured it's best to skip implementing it until we actually need it.
* Marks locations where we are (still) assuming that all single types are basic types, as suggested in https://github.com/WebAssembly/binaryen/pull/3012#discussion_r465356708, but using a macro, so we get useful errors once we start implementing the new types and can quickly traverse the affected locations.
The macro is added where
* there used to be a `switch (type.getSingle())` or similar that handled any basic type (NFC), but in the future will also have to handle single types that are not basic types.
* we are not dealing with `Unary`, `Binary`, `Load`, `Store` or `AtomicXY` instructions, since these don't deal with compound types anyway.
|
|
|
|
|
|
|
| |
anyref future semantics were changed to only represent opaque host values, and thus renamed to externref.
[Chromium](https://bugs.chromium.org/p/v8/issues/detail?id=7748#c360) was just updated to today (not yet released). I couldn't find a Mozilla bugzilla ticket mentioning externref so I don't immediately know if they've updated yet.
https://github.com/WebAssembly/reference-types/pull/87
|
|
|
|
|
|
|
|
|
| |
This adds interpreter support for EH instructions. This adds
`ExceptionPackage` struct, which contains info of a thrown exception (an
event tag and thrown values), and the union in `Literal` can take a
`unique_ptr` to `ExceptionPackage`. We need a destructor, a copy
constructor, and an assignment operator for `Literal`, because the union
in `Literal` now has a member that cannot be trivially copied or
deleted.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used std::cerr as a workaround for that this logging
interfered with spec testing. But it's easy enough to filter
out this stuff for the spec tests.
The benefit to using std::cout is that as you can see in
the test output here, this is relevant test output - it's not
a side channel for debugging. If the rest of the interpreter
output is in std::cout but only traps are in std::cerr then
they might end up out of order etc., so best to keep them
all together.
This will allow easier additions of tests for fuzz testcases
|
|
|
|
|
|
|
| |
Since it wasn't easy to support tuples in Asyncify's call support
using temporary functions, we decided to allow tuple-typed globals
after all. This PR adds support for parsing, printing, lowering, and
interpreting tuple globals and also adds validation ensuring that
imported and exported globals do not have tuple types.
|
|
|
|
| |
Updates the interpreter to properly flow vectors of values, including
at function boundaries. Adds a small spec test for multivalue return.
|
|
|
|
|
|
|
|
|
|
|
| |
This makes the interpreter trap when the signature in `call_indirect`
instruction and that of the actual function in the table mismatch. This
also makes the `wasm-ctor-eval` not evaluate `call_indirect` in case the
signatures mismatch.
Before we only compared the arguments' signature and the function
signature, which was sufficient before we had subtypes, but now the
signature in `call_indirect` and that of the actual function can be
different even if the argument's signature is OK.
|
|
|
|
|
|
|
|
|
|
| |
* Remove implicit conversion operators from Type
Now types must be explicitly converted to uint32_t with Type::getID or
to ValueType with Type::getVT. This fixes #2572 for switches that use
Type::getVT.
* getVT => getSingle
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the reference type proposal. This includes support
for all reference types (`anyref`, `funcref`(=`anyfunc`), and `nullref`)
and four new instructions: `ref.null`, `ref.is_null`, `ref.func`, and
new typed `select`. This also adds subtype relationship support between
reference types.
This does not include table instructions yet. This also does not include
wasm2js support.
Fixes #2444 and fixes #2447.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Function signatures were previously redundantly stored on Function
objects as well as on FunctionType objects. These two signature
representations had to always be kept in sync, which was error-prone
and needlessly complex. This PR takes advantage of the new ability of
Type to represent multiple value types by consolidating function
signatures as a pair of Types (params and results) stored on the
Function object.
Since there are no longer module-global named function types,
significant changes had to be made to the printing and emitting of
function types, as well as their parsing and manipulation in various
passes.
The C and JS APIs and their tests also had to be updated to remove
named function types.
|
|
|
|
|
| |
This works more like llvm's unreachable handler in that is preserves
information even in release builds.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates spec test suite to that of the current up-to-date version
of https://github.com/WebAssembly/spec repo.
- All failing tests are added in `BLACKLIST` in shared.py with reasons.
- For tests that already existed and was passing and started failing
after the update, we add the new test to the blacklist and preserve
the old file by renaming it to 'old_[FILENAME].wast' not to lose test
coverage. When the cause of the error is fixed or the unsupported
construct gets support so the new test passes, we can delete the
corresponding 'old_[FILENAME].wast' file.
- Adds support for `spectest.print_[type] style imports.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current `<<` operator on `Literal` prints `[type].const` with it. But
`[type].const` is rather an instruction than a literal itself, and
printing it with the literals makes less sense when we later have
literals whose type don't have `const` instructions (such as reference
types).
This patch
- Makes `<<` operator on `Literal` print only its value
- Makes wasm-shell's shell interface comply with the spec interpreter's
printing format (`value : type`).
- Prints wasm-shell's `[trap]` message to stderr
These make all `fix_` routines for spec tests in check.py unnecessary.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Another round of trying to push upstream things from my fork.
This PR only adds support for anyref itself as an opaque type. It does NOT implement the full [reference types proposal](https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md)--so no table.get/set/grow/etc or ref.null, ref.func, etc.
Figured it was easier to review and merge as we go, especially if I did something fundamentally wrong.
***
I did put it under the `--enable-reference-types` flag as I imagine that even though this PR doesn't complete the full feature set, it probably is the right home. Lmk if not.
I'll also be adding a few github comments to places I want to point out/question.
|
|
|
|
| |
In WebAssembly/exception-handling#79 we agreed to rename `except_ref`
type to `exnref`.
|
|
|
|
| |
This adds except_ref type, which is a part of the exception handling
proposal.
|
|
|
| |
Applies the changes in #2065, and temprarily disables the hook since it's too slow to run on a change this large. We should re-enable it in a later commit.
|
|
|
| |
Mass change to apply clang-format to everything. We are applying this in a PR by me so the (git) blame is all mine ;) but @aheejin did all the work to get clang-format set up and all the manual work to tidy up some things to make the output nicer in #2048
|
|
|
|
|
|
|
|
|
|
| |
This corresponds to changes made to the initialization procedure in
the spec. It also removes all the heavy initialization work from the
external interface of the interpreter, which is a nice encapsulation
win.
Implementation of the interpretation of the remaining bulk memory
operations and more rigorous tests of that interpretation will come in
a follow-up PR.
|
|
|
|
|
| |
Adds support for the bulk memory proposal's passive segments. Uses a
new (data passive ...) s-expression syntax to mark sections as
passive.
|
|
|
|
| |
* Use modern T p = v; notation to initialize class fields
* Use modern X() = default; notation for empty class constructors
|