summaryrefslogtreecommitdiff
path: root/src/wasm-debug.h
Commit message (Collapse)AuthorAgeFilesLines
* Modernize code to C++17 (#3104)Max Graey2021-11-221-6/+2
|
* Warn when running a pass not compatible with DWARF (#3506)Alon Zakai2021-01-261-0/+5
| | | | | | | | | | | | Previously the addDefault* methods would avoid adding opt passes that we know are incompatible with DWARF. However, that didn't handle the case of passes that are added in other ways. For example, when running Asyncify, emcc will run --flatten before, and that pass is not compatible with DWARF. This PR lets us warn on that by annotating the passes themselves. Then we use those annotation to either not run a pass at all (matching the previous behavior) or to show a warning when necessary. Fixes emscripten-core/emscripten#13288 . That is, concretely after this PR running asyncify + DWARF will show a warning to the user.
* DWARF: Function location tracking (#2592)Alon Zakai2020-01-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Track the beginning and end of each function, both when reading and writing. We track expressions and functions separately, instead of having a single big map of (oldAddr) => (newAddr) because of the potentially ambiguous case of the final expression in a function: it's end might be identical in offset to the end of the function. So we have two different things that map to the same offset. However, if the context is "the end of the function" then the updated address is the new end of the function, even if the function ends with a different instruction now, as the old last instruction might have moved or been optimized out. Concretely, we have getNewExprAddr and getNewFuncAddr, so we can ask to update the location of either an expression or a function, and use that contextual information. This checks for the DIE tag in order to know what we are looking for. To be safe, if we hit an unknown tag, we halt, so that we don't silently miss things. As the test updates show, the new things we can do thanks to this PR are to update compile unit and subprogram low_pc locations. Note btw that in the first test (dwarfdump_roundtrip_dwarfdump.bin.txt) we change 5 to 0: that is correct since that test does not write out DWARF (it intentionally has no -g), so we do not track binary locations while writing, and so we have nothing to update to (the other tests show actual updating). Also fix the order in the python test runner code to show a diff of expected to encountered, and not the reverse, which confused me.
* DWARF debug line updating (#2545)Alon Zakai2019-12-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With this, we can update DWARF debug line info properly as we write a new binary. To do that we track binary locations as we write. Each instruction is mapped to the location it is written to. We must also adjust them as we move code around because of LEB optimization (we emit a function or a section with a 5-byte LEB placeholder, the maximal size; later we shrink it which is almost always possible). writeDWARFSections() now takes a second param, the new locations of instructions. It then maps debug line info from the original offsets in the binary to the new offsets in the binary being written. The core logic for updating the debug line section is in wasm-debug.cpp. It basically tracks state machine logic both to read the existing debug lines and to emit the new ones. I couldn't find a way to reuse LLVM code for this, but reading LLVM's code was very useful here. A final tricky thing we need to do is to update the DWARF section's internal size annotation. The LLVM YAML writing code doesn't do that for us. Luckily it's pretty easy, in fixEmittedSection we just update the first 4 bytes in place to have the section size, after we've emitted it and know the size. This ignores debug lines with a 0 in the line, col, or addr, see WebAssembly/debugging#9 (comment) This ignores debug line offsets into the middle of instructions, which LLVM sometimes emits for some reason, see WebAssembly/debugging#9 (comment) Handling that would likely at least double our memory usage, which is unfortunate - we are run in an LTO manner, where the entire app's DWARF is present, and it may be massive. I think we should see if such odd offsets are a bug in LLVM, and if we can fix or prevent that. This does not emit "special" opcodes for debug lines. Those are purely an optimization, which I wanted to leave for later. (Even without them we decrease the size quite a lot, btw, as many lines have 0s in them...) This adds some testing that shows we can load and save fib2.c and fannkuch.cpp properly. The latter includes more than one function and has nontrivial code. To actually emit correct offsets a few minor fixes are done here: * Fix the code section location tracking during reading - the correct offset we care about is the body of the code section, not including the section declaration and size. * Fix wasm-stack debug line emitting. We need to update in BinaryInstWriter::visit(), that is, right before writing bytes for the instruction. That differs from * BinaryenIRWriter::visit which is a recursive function that also calls the children - so the offset there would be of the first child. For some reason that is correct with source maps, I don't understand why, but it's wrong for DWARF... * Print code section offsets in hex, to match other tools. Remove DWARFUpdate pass, which was useful for testing temporarily, but doesn't make sense now (it just updates without writing a binary). cc @yurydelendik
* DWARF parsing and writing support using LLVM (#2520)Alon Zakai2019-12-191-0/+48
This imports LLVM code for DWARF handling. That code has the Apache 2 license like us. It's also the same code used to emit DWARF in the common toolchain, so it seems like a safe choice. This adds two passes: --dwarfdump which runs the same code LLVM runs for llvm-dwarfdump. This shows we can parse it ok, and will be useful for debugging. And --dwarfupdate writes out the DWARF sections (unchanged from what we read, so it just roundtrips - for updating we need #2515). This puts LLVM in thirdparty which is added here. All the LLVM code is behind USE_LLVM_DWARF, which is on by default, but off in JS for now, as it increases code size by 20%. This current approach imports the LLVM files directly. This is not how they are intended to be used, so it required a bunch of local changes - more than I expected actually, for the platform-specific stuff. For now this seems to work, so it may be good enough, but in the long term we may want to switch to linking against libllvm. A downside to doing that is that binaryen users would need to have an LLVM build, and even in the waterfall builds we'd have a problem - while we ship LLVM there anyhow, we constantly update it, which means that binaryen would need to be on latest llvm all the time too (which otherwise, given DWARF is quite stable, we might not need to constantly update). An even larger issue is that as I did this work I learned about how DWARF works in LLVM, and while the reading code is easy to reuse, the writing code is trickier. The main code path is heavily integrated with the MC layer, which we don't have - we might want to create a "fake MC layer" for that, but it sounds hard. Instead, there is the YAML path which is used mostly for testing, and which can convert DWARF to and from YAML and from binary. Using the non-YAML parts there, we can convert binary DWARF to the YAML layer's nice Info data, then convert that to binary. This works, however, this is not the path LLVM uses normally, and it supports only some basic DWARF sections - I had to add ranges support, in fact. So if we need more complex things, we may end up needing to use the MC layer approach, or consider some other DWARF library. However, hopefully that should not affect the core binaryen code which just calls a library for DWARF stuff. Helps #2400