summaryrefslogtreecommitdiff
path: root/src/wasm/wasm-binary.cpp
Commit message (Collapse)AuthorAgeFilesLines
...
* Refactor name processing (escaping/deduplication) to a shared place. NFC (#3609)Alon Zakai2021-02-241-29/+29
| | | | (not 100% NFC since it also fixes a bug by moving a line out of a loop)
* Support type use before definition in binaries (#3588)Thomas Lively2021-02-191-90/+181
| | | | | | Update parsing of binary type sections to use TypeBuilder to support uses before definitions. Now that both the binary and text parsers support out-of-order type uses, this PR also relaxes the logic for emitting types to allow uses to be emitted before definitions.
* [Wasm Exceptions] Fix binary parsing of a normal break to a try in a ↵Alon Zakai2021-02-191-4/+0
| | | | | | | | | | | | | | | | | | singleton (#3581) The fix here is to remove the code with // maybe we don't need a block here? That would remove a try's block if we thought it wasn't needed. However, it just checked for exception branches, but not normal branches, which are also possible. At that location, we don't have a good way to find out if the block has other branches to it aside from scanning its contents. So this PR just gives up on doing so, which means we add an unnecessary block if the optimizer is not run. If this matters we could make the binary parser more complicated by remembering whether a block had branches in the past, but I'm not sure if it's worth it.
* [EH] Change catch_all's opcode (#3574)Heejin Ahn2021-02-191-5/+2
| | | | | | | | | | We decided to change `catch_all`'s opcode from 0x05, which is the same as `else`, to 0x19, to avoid some complicated handling in the tools. See: https://github.com/WebAssembly/exception-handling/issues/147 lso this contains the original cpp file used to generate dwarf_with_exceptions.wasm; instructions to generate the wasm from that cpp file are in the comments.
* [EH] Make rethrow's target a try label (#3568)Heejin Ahn2021-02-181-10/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I was previously mistaken about `rethrow`'s argument rule and thought it only counted `catch`'s depth. But it turns out it follows the same rule `delegate`'s label: the immediate argument follows the same rule as when computing branch labels, but it only can target `try` labels (semantically it targets that `try`'s corresponding `catch`); otherwise it will be a validation failure. Unlike `delegate`, `rethrow`'s label denotes not where to rethrow, but which exception to rethrow. For example, ```wasm try $l0 catch ($l0) try $l1 catch ($l1) rethrow $l0 ;; rethrow the exception caught by 'catch ($l0)' end end ``` Refer to this comment for the more detailed informal semantics: https://github.com/WebAssembly/exception-handling/issues/146#issuecomment-777714491 --- This also reverts some of `delegateTarget` -> `exceptionTarget` changes done in #3562 in the validator. Label validation rules apply differently for `delegate` and `rethrow` for try-catch. For example, this is valid: ```wasm try $l0 try delegate $l0 catch ($l0) end ``` But this is NOT valid: ```wasm try $l0 catch ($l0) try delegate $l0 end ``` So `try`'s label should be used within try-catch range (not catch-end range) for `delegate`s. But for the `rethrow` the rule is different. For example, this is valid: ```wasm try $l0 catch ($l0) rethrow $l0 end ``` But this is NOT valid: ```wasm try $l0 rethrow $l0 catch ($l0) end ``` So the `try`'s label should be used within catch-end range instead.
* [EH] Rename delegateTarget to exceptionTarget (NFC) (#3562)Heejin Ahn2021-02-131-13/+14
| | | | | | | | | | | | | So far `Try`'s label is only targetted by `delegate`s, but it turns out `rethrow` also has to follow the same rule as `delegate` so it needs to target a `Try` label. So this renames variables like `delegateTargetNames` to `exceptionTargetNames` and methods like `replaceDelegateTargets` to `replaceExceptionTargets`. I considered `tryTarget`, but the branch/block counterpart name we use is not `blockTarget` but `branchTarget`, so I chose `exceptionTarget`. The patch that fixes `rethrow`'s target will follow; this is the preparation for that.
* [EH] Support reading/writing of delegate (#3561)Heejin Ahn2021-02-121-54/+119
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for reading/writing of the new `delegate` instruction in the folded wast format, the stack IR format, the poppy IR format, and the binary format in Binaryen. We don't have a formal spec written down yet, but please refer to WebAssembly/exception-handling#137 and WebAssembly/exception-handling#146 for the informal semantics. In the current version of spec `delegate` is basically a rethrow, but with branch-like immediate argument so that it can bypass other catches/delegates in between. `delegate` is not represented as a new `Expression`, but it is rather an option within a `Try` class, like `catch`/`catch_all`. One special thing about `delegate` is, even though it is written _within_ a `try` in the folded wat format, like ```wasm (try (do ... ) (delegate $l) ) ``` In the unfolded wat format or in the binary format, `delegate` serves as a scope end instruction so there is no separate `end`: ```wasm try ... delegate $l ``` `delegate` semantically targets an outer `catch` or `delegate`, but we write `delegate` target as a `try` label because we only give labels to block-like scoping expressions. So far we have not given `Try` a label and used inner blocks or a wrapping block in case a branch targets the `try`. But in case of `delegate`, it can syntactically only target `try` and if it targets blocks or loops it is a validation failure. So after discussions in #3497, we give `Try` a label but this label can only be targeted by `delegate`s. Unfortunately this makes parsing and writing of `Try` expression somewhat complicated. Also there is one special case; if the immediate argument of `try` is the same as the depth of control flow stack, this means the 'delegate' delegates to the caller. To handle this case this adds a fake label `DELEGATE_CALLER_TARGET`, and when writing it back to the wast format writes it as an immediate value, unlike other cases in which we write labels. This uses `DELEGATE_FIELD_SCOPE_NAME_DEF/USE` to represent `try`'s label and `delegate`'s target. There are many cases that `try` and `delegate`'s labels need to be treated in the same way as block and branch labels, such as for hashing or comparing. But there are routines in which we automatically assume all label uses are branches. I thought about adding a new kind of defines such as `DELEGATE_FIELD_TRY_NAME_DEF/USE`, but I think it will also involve some duplication of existing routines or classes. So at the moment this PR chooses to use the existing `DELEGATE_FIELD_SCOPE_NAME_DEF/USE` for `try` and `delegate` labels and makes only necessary amount of changes in branch-utils. We can revisit this decision later if necessary. Many of changes to the existing test cases are because now all `try`s are automatically assigned a label. They will be removed in `RemoveUnusedNames` pass in the same way as block labels if not targeted by any delegates. This only supports reading and writing and has not been tested against any optimization passes yet. --- Original unfolded wat file to generate test/try-delegate.wasm: ```wasm (module (event $e) (func try try delegate 0 catch $e end) (func try try catch $e i32.const 0 drop try delegate 1 end catch $e end ) ) ```
* [reference-types] remove single table restriction in IR (#3517)Abbas Mashayekh2021-02-091-81/+202
| | | Adds support for modules with multiple tables. Adds a field for the table name to `CallIndirect` and updates the C/JS APIs accordingly.
* Use unordered maps of Name where possible (#3546)Alon Zakai2021-02-051-4/+4
| | | | | | | Unordered maps will hash the pointer, while ordered ones will compare the strings to find where to insert in the tree. I cannot confirm a speedup in time from this, though others can, but I do see a consistent improvement of a few % in perf stat results like number of instructions and cycles (and those results have little noise). And it seems logical that this could be faster.
* Prototype i32x4.widen_i8x16_{s,u} (#3535)Thomas Lively2021-02-011-0/+24
| | | | | | | | As proposed in https://github.com/WebAssembly/simd/pull/395. Note that the other instructions in the proposal have not been implemented in LLVM or in V8, so there is no need to implement them in Binaryen right now either. This PR introduces a new expression class for the new instructions because they uniquely take an immediate argument identifying which portion of the input vector to widen.
* [GC] br_on_null (#3528)Alon Zakai2021-02-011-0/+6
| | | | | | | | | | | This is only partial support, as br_on_null also has an extra optional value in the spec. Implementing that is cumbersome in binaryen, and there is ongoing spec discussions about it (see https://github.com/WebAssembly/function-references/issues/45 ), so for now we only support the simple case without the default value. Also fix prefixed opcodes to be LEBs in RefAs, which was noticed here as the change here made it noticeable whether the values were int8 or LEBs.
* [GC] ref.as_non_null (#3527)Alon Zakai2021-01-281-0/+6
| | | | | | This is different than the other RefAs variants in that it is part of the typed functions proposal, and not GC. But it is part of GC prototype 3. Note: This is not useful to us yet as we don't support non-nullable types.
* [GC] Add br_on_func/data/i31 (#3525)Alon Zakai2021-01-281-8/+22
| | | | | | | | This expands the existing BrOnCast into BrOn that can also handle the func/data/i31 variants. This is not as elegant as RefIs / RefAs in that BrOnCast has an extra rtt field, but I think it is still the best option. We already have optional fields on Break (the value and condition), so making rtt optional is not odd. And it allows us to share all the behavior of br_on_* which aside from the cast or the check itself, is identical - returning the value if the branch is not taken, etc.
* [GC] Update br_on_cast: the text format also no longer has a heap type (#3523)Alon Zakai2021-01-271-1/+1
| | | | | | | As a result, we cannot handle a br_on_cast with an unreachable RTT. The binary format solves the problem by ignoring unreachable code, and this makes the text format do the same. A nice benefit of this is that we can remove the castType extra field.
* Memcpy data instead of bytewise copies (#3521)Philip Pfaffe2021-01-271-19/+22
| | | | | | wasm-finalize currently makes byte-wise copies of section data in the user and data sections. If the section is large, that's extraordinarily expensive. With a memcpy instead I see a speedup of 1.6 for a large wasm binary with DWARF data.
* [GC] ref.as_* (#3520)Alon Zakai2021-01-271-0/+25
| | | | | | | | These are similar to is, but instead of returning an i32 answer, they trap on an invalid value, and return it otherwise. These could in theory be in a single RefDoThing, with opcodes for both As and Is, but as the return values are different, that would be a little odd, and the name would be less clear.
* [GC] ref.is_func/data/i31 (#3519)Alon Zakai2021-01-261-0/+15
|
* [GC] RefIsNull => RefIs. (#3516)Alon Zakai2021-01-261-3/+10
| | | | | | | | This internal refactoring prepares us for ref.is_func/data/i31, by renaming the node and adding an "op" field. For now that field must always be "Null" which means it is a ref.is_null. This adjusts the C API to match the new IR shape. The high-level JS API is unchanged.
* Debug info handling for new EH try-catch (#3496)Alon Zakai2021-01-251-19/+25
| | | | | | | | We now have multiple catches in each try, and a possible catch-all. This changes our "extra delimiter" storage to store either an "else" (unchanged from before) or an arbitrary list of things - we use that for catches.
* Reorder i31ref and dataref (#3509)Heejin Ahn2021-01-231-3/+3
| | | | | | | | | | The binary spec (https://docs.google.com/document/d/1yAWU3dbs8kUa_wcnnirDxUu9nEBsNfq0Xo90OWx6yuo/edit#) lists `dataref` after `i31ref`, and `dataref` also comes after `i31ref` in its binary code in the value-increasing order. This reorders these two in wasm-type.h and other places, although in most of those places the order is irrelevant. This also adds C and JS API for `dataref`.
* [GC] Update GC binary format for prototype v3 (#3507)Alon Zakai2021-01-221-12/+0
| | | | | Some fields were removed, see https://docs.google.com/document/d/1yAWU3dbs8kUa_wcnnirDxUu9nEBsNfq0Xo90OWx6yuo/edit#
* Remove exnref and br_on_exn (#3505)Heejin Ahn2021-01-221-33/+0
| | | This removes `exnref` type and `br_on_exn` instruction.
* [GC] Add dataref type (#3500)Alon Zakai2021-01-211-0/+11
| | | | | This is not 100% of everything, but is enough to get tests passing, which includes full binary and text format support, getting all switches to compile without error, and some additions to InstrumentLocals.
* Prototype additional f64x2 conversions (#3501)Thomas Lively2021-01-191-0/+24
| | | | As proposed in https://github.com/WebAssembly/simd/pull/383, with opcodes coordinated with the WIP V8 prototype.
* [GC] Read and lower Let instructions (#3485)Alon Zakai2021-01-151-12/+78
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For now we don't support non-nullability, and can therefore lower a let into simpler things. That is, (let $x = ... ;; ) => (block $x = ... ;; ) This lets us handle wasm binaries with let, so that we can optimize them (with the current downside of losing non-nullability). This is still not trivial to do, sadly, because the indexing of lets is somewhat odd in the binary. A let modifies the indexes of other things declared before it, which means that index "0" means different things at different times. And this is trickier for us because we add more locals as needed for tuples and stacky code. So this PR makes us track the absolute local indexes from which each let started to allocate its locals. The binary testcase was created from this wat using wasp: (module (type $vector (array (field (mut f64)))) (func $main (local $x i32) (local $y i32) (drop (local.get $x)) ;; 0 is the index appearing in the binary ;; first let (array.new_with_rtt $vector (f64.const 3.14159) (i32.const 1) (rtt.canon $vector) ) (let (local $v (ref $vector)) (drop (local.get $v)) ;; 0 (drop (local.get $x)) ;; 1 ;; another one, nested (array.new_with_rtt $vector (f64.const 1234) (i32.const 2) (rtt.canon $vector) ) (let (local $w (ref $vector)) (drop (local.get $v)) ;; 1 (drop (local.get $w)) ;; 0 (drop (local.get $x)) ;; 2 ) ) ;; another one, later (array.new_with_rtt $vector (f64.const 2.1828) (i32.const 3) (rtt.canon $vector) ) (let (local $v (ref $vector)) (drop (local.get $v)) ;; 0 (drop (local.get $x)) ;; 1 ) (drop (local.get $x)) ;; 0 ) )
* Basic EH instrucion support for the new spec (#3487)Heejin Ahn2021-01-151-18/+42
| | | | | | | | | | | | | | | | | | | | This updates `try`-`catch`-`catch_all` and `rethrow` instructions to match the new spec. `delegate` is not included. Now `Try` contains not a single `catchBody` expression but a vector of catch bodies and events. This updates most existing routines, optimizations, and tests modulo the interpreter and the CFG traversal. Because the interpreter has not been updated yet, the EH spec test is temporarily disabled in check.py. Also, because the CFG traversal for EH is not yet updated, several EH tests in `rse_all-features.wast`, which uses CFG traversal, are temporarily commented out. Also added a few more tests in existing EH test functions in test/passes. In the previous spec, `catch` was catching all exceptions so it was assumed that anything `try` body throws is caught by its `catch`, but now we can assume the same only if there is a `catch_all`. Newly added tests test cases when there is a `catch_all` and cases there are only `catch`es separately.
* [GC] Fix minor binary format issues of ordering and immediates (#3472)Alon Zakai2021-01-111-18/+19
| | | | | | | | | Noticed by comparing to V8 and Wasp. After this things are almost identical, but there is also at least https://bugs.chromium.org/p/v8/issues/detail?id=11300 Test updates are due to having an instruction with two operands of which one is unreachable. The new order puts the non-unreachable first, so it is not removed by round-tripping through the binary format like before (which removes all unreachable code).
* [GC] Fix parsing/printing of ref types using i31 (#3469)Alon Zakai2021-01-071-1/+2
| | | | | | | | | | | | This lets us parse (ref null i31) and (ref i31) and not just i31ref. It also fixes the parsing of i31ref, making it nullable for now, which we need to do until we support non-nullability. Fix some internal handling of i31 where we had just i31ref (which meant we just handled the non-nullable type). After fixing a bug in printing (where we didn't print out (ref null i31) properly), I found some a simplification, to remove TypeName.
* Prototype prefetch instructions (#3467)Thomas Lively2021-01-061-0/+21
| | | | As proposed in https://github.com/WebAssembly/simd/pull/352, using the opcodes used in the LLVM and V8 implementations.
* Prototype SIMD extending pairwise add instructions (#3466)Thomas Lively2021-01-051-8/+16
| | | | | | As proposed in https://github.com/WebAssembly/simd/pull/380, using the opcodes used in LLVM and V8. Since these opcodes overlap with the opcodes of i64x2.all_true and i64x2.any_true, which have long since been removed from the SIMD proposal, this PR also removes those instructions.
* [GC] Add br_on_cast (#3451)Alon Zakai2020-12-171-4/+8
| | | | | | | | | | | | | | | | The tricky part here, as pointed out by aheejin in my previous attempt, is that we need to know the type of the value we send if the branch is taken. We can normally calculate that from the rtt parameter's type - we are casting to that RTT, so we know what type that is - but if the rtt is unreachable, that's a problem. To fix that, store the cast type on BrOnCast instructions. This includes a test with a br_on_cast that succeeds and sends the cast value, one that fails and passes through the uncast value, and also of one with an unreachable RTT. This includes a fix for Precompute, as noticed by that new test. If a break is taken, with a ref as a value, we can't precompute it - for the same reasons we can't precompute a ref in general, that it is a pointer to possibly shared data.
* More refactoring of branch utility code to remove boilerplate. (#3448)Alon Zakai2020-12-161-2/+3
| | | | | | | | | | | | | | | | | | | This is almost NFC, but it may emit slightly different IR in cases that don't matter much. Specifically, (block (result i32) ;; can also be unreachable (unreachable) (i32.const 1) ) That can be finalized to have type unreachable or i32, as both are valid. After this PR we should consistently do the same thing in all places. (Either option would be ok - we prefer to keep the type if there is one.) In practice, DCE will remove all the dead code anyhow, leaving no difference to matter. However, the IR is different without DCE, and that may be noticeable in an unoptimized build - but it should have no effect on behavior, just on the binary.
* Use enums for mutability and nullability (#3443)Thomas Lively2020-12-141-7/+17
| | | | | Previously we were using bools for both of these concepts, but using enums makes the code clearer. In particular, the PR removes many instances of `/*nullability=*/ true`.
* Prototype SIMD instructions implemented in LLVM (#3440)Thomas Lively2020-12-111-0/+40
| | | | | | - i64x2.eq (https://github.com/WebAssembly/simd/pull/381) - i64x2 widens (https://github.com/WebAssembly/simd/pull/290) - i64x2.bitmask (https://github.com/WebAssembly/simd/pull/368) - signselect ops (https://github.com/WebAssembly/simd/pull/124)
* [GC] Add ref.test and ref.cast (#3439)Alon Zakai2020-12-111-8/+14
| | | | This adds enough to read and write them and test that, but leaves interpreter support for later.
* [GC] Add Array operations (#3436)Alon Zakai2020-12-101-47/+47
| | | | | | | | | | | | | | array.new/get/set/len - pretty straightforward after structs and all the infrastructure for them. Also fixes validation of the unnecessary heapType param in the text and binary formats in structs as well as arrays. Fixes printing of packed types in type names, which emitted i32 for them. That broke when we emitted the same name for an array of i8 and i32 as in the new testing here. Also fix a bug in Field::operator< which was wrong for packed types; again, this was easy to notice with the new testing.
* Read and write data segments names in names section (#3435)Sam Clegg2020-12-091-1/+39
|
* [GC] Add struct.new and start to test interesting execution (#3433)Alon Zakai2020-12-091-15/+22
| | | | | | | | | | | | | | With struct.new read/write support, we can start to do interesting things! This adds a test of creating a struct and seeing that references behave like references, that is, if we write to the value X refers to, and if Y refers to the same thing, when reading from Y's value we see the change as well. The test is run through all of -O1, which uncovered a minor issue in Precompute: We can't try to precompute a reference type, as we can't replace a reference with a value. Note btw that the test shows the optimizer properly running CoalesceLocals on reference types, merging two locals.
* [GC] Add basic RTT support (#3432)Alon Zakai2020-12-081-8/+26
| | | | | | | | | | | | | | | | This adds rtt.canon and rtt.sub together with RTT type support that is necessary for them. Together this lets us test roundtripping the instructions and types. Also fixes a missing traversal over globals in collectHeapTypes, which the example from the GC docs requires, as the RTTs are in globals there. This does not yet add full interpreter support and other things. It disables initial contents on GC in the fuzzer, to avoid the fuzzer breaking. Renames the binary ID for exnref, which is being removed from the spec, and which overlaps with the binary ID for rtt.
* Intern HeapTypes and clean up types code (#3428)Thomas Lively2020-12-071-31/+33
| | | | | | | | | Interns HeapTypes using the same patterns and utilities already used to intern Types. This allows HeapTypes to efficiently be compared for equality and hashed, which may be important for very large struct types in the future. This change also has the benefit of increasing symmetry between the APIs of Type and HeapType, which will make the developer experience more consistent. Finally, this change will make TypeBuilder (#3418) much simpler because it will no longer have to introduce TypeInfo variants to refer to HeapTypes indirectly.
* [GC] Add struct.set (#3430)Alon Zakai2020-12-071-2/+5
| | | | | | | | | | Mostly straightforward after struct.get. This renames the value field in struct.get to ref. I think this makes more sense because struct.set has both a reference to a thing, and a value to set onto that thing. So calling the former ref seems more consistent, giving us ref, value. This mirrors load/store for example where we use ptr, value, and ref is playing the role of ptr here basically.
* [GC] Add struct.get instruction parsing and execution (#3429)Alon Zakai2020-12-071-21/+39
| | | | | | | | | | | | | | | | | | | | This is the first instruction that uses a GC Struct or Array, so it's where we start to actually need support in the interpreter for those values, which is added here. GC data is modeled as a gcData field on a Literal, which is just a Literals. That is, both a struct and an array are represented as an array of values. The type which is alongside would indicate if it's a struct or an array. Note that the data is referred to using a shared_ptr so it should "just work", but we'll only be able to really test that once we add struct.new and so can verify that references are by reference and not value, etc. As the first instruction to care about i8/16 types (which are only possible in a Struct or Array) this adds support for parsing and emitting them. This PR includes fuzz fixes for some minor things the fuzzer found, including some bad printing of not having ResultTypeName in necessary places (found by the text format roundtripping fuzzer).
* [GC] Support reading and writing of Struct and Array types (#3423)Alon Zakai2020-12-051-32/+59
| | | | | | This adds support in the text and binary format handling, which allows us to have a full test of reading and writing the types. This also adds a "name" field to struct fields, which the text format supports.
* [Types] Refactor signature collection to heap type collection. NFC. (#3420)Alon Zakai2020-12-031-8/+13
| | | | | | | | | This will allow writing GC types in the future, which are non-signature heap types. To allow this PR to work, it adds operator< for HeapType so that it can be used in the data structures that collect uses. Drive-by fix of a weird hack with sending a Name* in Print.
* [GC types] Refactoring to allow future heap type parsing. NFC (#3409)Alon Zakai2020-12-021-39/+33
| | | | | | | | | | Defined types in wasm are really one of the "heap types": a signature type, or (with GC) a struct or an array type. This refactors the binary and text parsers to load the defined types into an array of heap types, so that we can start to parse GC types. This replaces the existing array of signature types (which could not support a struct or an array). Locally this PR can parse and print as text simple GC types. For that it was necessary to also fix Type::getFeatures for GC.
* [TypedFunctionReferences] Enable call_ref in fuzzer, and fix minor misc fuzz ↵Alon Zakai2020-11-251-1/+9
| | | | | | | | | | | | | | | | | | | | bugs (#3401) * Count signatures in tuple locals. * Count nested signature types (confirming @aheejin was right, that was missing). * Inlining was using the wrong type. * OptimizeInstructions should return -1 for unhandled types, not error. * The fuzzer should check for ref types as well, not just typed function references, similar to what GC does. * The fuzzer now creates a function if it has no other option for creating a constant expression of a function type, then does a ref.func of that. * Handle unreachability in call_ref binary reading. * S-expression parsing fixes in more places, and add a tiny fuzzer for it. * Switch fuzzer test to just have the metrics, and not print all the fuzz output which changes a lot. Also fix noprint handling which only worked on binaries before. * Fix Properties::getLiteral() to use the specific function type properly, and make Literal's function constructor require that, to prevent future bugs. * Turn all input types into nullable types, for now.
* [TypedFunctionReferences] Implement call_ref (#3396)Alon Zakai2020-11-241-0/+30
| | | | | | | | Includes minimal support in various passes. Also includes actual optimization work in Directize, which was easy to add. Almost has fuzzer support, but the actual makeCallRef is just a stub so far. Includes s-parser support for parsing typed function references types.
* [TypedFunctionReferences] Add Typed Function References feature and use the ↵Alon Zakai2020-11-231-16/+129
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | types (#3388) This adds the new feature and starts to use the new types where relevant. We use them even without the feature being enabled, as we don't know the features during wasm loading - but the hope is that given the type is a subtype, it should all work out. In practice, if you print out the internal type you may see a typed function reference-specific type for a ref.func for example, instead of a generic funcref, but it should not affect anything else. This PR does not support non-nullable types, that is, everything is nullable for now. As suggested by @tlively this is simpler for now and leaves nullability for later work (which will apparently require let or something else, and many passes may need to be changed). To allow this PR to work, we need to provide a type on creating a RefFunc. The wasm-builder.h internal API is updated for this, as are the C and JS APIs, which are breaking changes. cc @dcodeIO We must also write and read function types properly. This PR improves collectSignatures to find all the types, and also to sort them by the dependencies between them (as we can't emit X in the binary if it depends on Y, and Y has not been emitted - we need to give Y's index). This sorting ends up changing a few test outputs. InstrumentLocals support for printing function types that are not funcref is disabled for now, until we figure out how to make that work and/or decide if it's important enough to work on. The fuzzer has various fixes to emit valid types for things (mostly whitespace there). Also two drive-by fixes to call makeTrivial where it should be (when we fail to create a specific node, we can't just try to make another node, in theory it could infinitely recurse). Binary writing changes here to replace calls to a standalone function to write out a type with one that is called on the binary writer object itself, which maintains a mapping of type indexes (getFunctionSignatureByIndex).
* [wasm-builder] Construct module elements as unique_ptrs (#3391)Thomas Lively2020-11-191-11/+11
| | | | | | | | | When Functions, Globals, Events, and Exports are added to a module, if they are not already in std::unique_ptrs, they are wrapped in a new std::unique_ptr owned by the Module. This adds an extra layer of indirection when accessing those elements that can be avoided by allocating those elements as std::unique_ptrs. This PR updates wasm-builder to allocate module elements via std::make_unique rather than `new`. In the future, we should remove the raw pointer versions of Module::add* to encourage using std::unique_ptrs more broadly.
* Quick followup to #3349 - avoid unnecessary allocations (#3354)Alon Zakai2020-11-131-6/+31
|