| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
| |
This pass helps on at least one Java microbenchmark in a clear way. Real-world data
is mixed, with no obvious benefit. But it does optimize 819 callsites on the real-world
14 MB J2Wasm binary, so we may find it helps if/when we run into those code paths.
On that binary (the biggest we have for GC) this pass runs in 0.12 seconds, so there
is very little downside to enabling it. It is a fast linear-time operation.
|
|
|
|
| |
Apply cleanups suggested by aheejin in post-merge code review of previous
parser PRs.
|
| |
|
| |
|
|
|
|
| |
Spec and VM support for that is not yet stable (atm VMs do not allow complex user-
defined types to be passed around).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Equirecursive LUB calculations potentially require building new recursive heap
types that did not already exist in the system, so they have a complicated code
path that uses a TypeBuilder to construct a LUB from the ground up. In contrast,
nominal and isorecursive LUB calculations never introduce new heap types, so
computing their LUBs is much simpler. Previously we were using the same code
path with the TypeBuilder for all type systems out of convenience, but this
commit factors out the LUB calculations for nominal and isorecursive types into
a separate code path that does not use a TypeBuilder.
Not only should this make LUB calculations faster for GC workloads, it also
avoids a mysterious race condition during parallel LUB calculations with
isorecursive types that resulted in a temporary type escaping from one thread
and being used-after-free from another thread. It would be good to fix that bug
properly, but it is very difficult to investigate. Sweeping it under the rug
instead is the best trade off for now.
Fixes #4719.
|
|
|
|
|
|
| |
Begin implementing the second phase of parsing, parsing of type definitions.
Extend `valtype` to parse both user-defined and built in ref types, add `type`
as a top-level module field, and implement parsers for params, results, and
functype definitions.
|
|
|
|
|
|
|
|
|
|
|
| |
Implement the basic infrastructure for the full WAT parser with just enough
detail to parse basic modules that contain only imported globals. Parsing
functions correspond to elements of the grammar in the text specification and
are templatized over context types that correspond to each phase of parsing.
Errors are explicitly propagated via `Result<T>` and `MaybeResult<T>` types.
Follow-on PRs will implement additional phases of parsing and parsing for new
elements in the grammar.
|
|
|
|
| |
Otherwise when a type is only used on a global, it will be incorrectly omitted
from the output.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In GSI we look for a read of a global in a situation like this:
$global1: value1
$global2: value2
(struct.get $Type (ref))
If global inference shows this get must be of either $global1 or $global2, then we
can optimize to this:
(ref) == $global1 ? value1 : value2
We focus on the case of two values because 1 is handled by other passes, and >2
makes the tradeoffs less clear.
However, a simple extension is the case where there are more than 2 globals, but
there are only two values, and one value is unique to one global:
$global1: valueA
$global2: valueB
$global3: valueA
=>
(ref) == $global2 ? valueB : valueA
We can still use a single comparison here, on the global that has the
unique value. Then the else will handle all the other globals.
This increases the cases that GSI can optimize J2Wasm output by over 50%.
|
|
|
|
|
| |
Update the opcodes for all relaxed SIMD instructions and remove the unsigned dot
product instructions that are no longer in the proposal.
|
|
|
|
|
|
| |
Similar to #4004 but for 32-bit integers
i32(x) << 24 >> 24 ==> i32.extend8_s(x)
i32(x) << 16 >> 16 ==> i32.extend16_s(x)
|
|
|
|
|
|
|
|
| |
We have some possible use cases for this pass, and so are restoring
it.
This reverts the removal in #3261, fixes compile errors in internal API
changes since then, and flips the direction of the stack for the
wasm backend.
|
|
|
|
|
|
|
|
| |
BinaryenModulePrintStackIR: similar to BinaryenModulePrint
BinaryenModuleWriteStackIR: similar to BinaryenModuleWriteText
BinaryenModuleAllocateAndWriteStackIR: similar to BinaryenModuleAllocateAndWriteText
|
|
|
|
|
|
|
|
| |
#4659 adds a testcase with an import of (ref $struct). This could cause an error in
the fuzzer, since it wants to remove imports (because the various fuzzers cannot pass
in custom imports - they want to just run the wasm). When it tries to remove that
import it tries to create a constant for a struct reference, and fails. To fix that, add
enough support to create structs and arrays at least in the simple case where all their
fields are defaultable.
|
|
|
| |
This just moves code around + adds assertions.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add methods to `Token` for determining whether the token can be interpreted as a
particular token type, returning the interpreted value as appropriate. These
methods perform additional bounds checks for integers and NaN payloads that
could not be done during the initial lexing because the lexer did not know what
the intended token type was. The float methods also reinterpret integer tokens
as floating point tokens since the float grammar is a superset of the integer
grammar and inject the NaN payloads into parsed NaN values.
Move all bounds checking to these new classifier functions to have it in one
place.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This optimizes constants in the megamorphic case of two: when we
know two function references are possible, we could in theory emit this:
(select
(ref.func A)
(ref.func B)
(ref.eq
(..ref value..) ;; globally, only 2 things are possible here, and one has
;; ref.func A as its value, and the other ref.func B
(ref.func A))
That is, compare to one of the values, and emit the two possible values there.
Other optimizations can then turn a call_ref on this select into an if over
two direct calls, leading to devirtualization.
We cannot compare a ref.func directly (since function references are not
comparable), and so instead we look at immutable global structs. If we
find a struct type that has only two possible values in some field, and
the structs are in immutable globals (which happens in the vtable case
in j2wasm for example), then we can compare the references of the struct
to decide between the two values in the field.
|
|
|
|
| |
This moves it out of the validator so it can be used elsewhere. It will be
used in #4685
|
|
|
|
|
|
|
|
|
| |
SimplifyLocals (#4705)
Followup to #4703, this also handles the case where there is a non-
nullable local.set in the value of a nullable one, which we also cannot
optimize.
Fixes #4702
|
|
|
|
|
|
|
| |
Binaryen will not change dominance in SimplifyLocals, however, the current spec's
notion of dominance is simpler than ours, and we must not optimize certain cases in
order to still validate. See details in the comment and test.
Helps #4702
|
|
|
|
|
|
| |
The first way to should detect this is if the main function actually
doesn't take any params. They we fallback to looking deeper.
In preparation for https://reviews.llvm.org/D75277
|
|
|
|
|
|
|
|
|
| |
This part to finalize is currently not used and was added in preparation
for https://reviews.llvm.org/D75277.
However, the better solution to dealing with this alternative name for
main is on the emscripten side. The main reason for this is that
doing the rename here in binaryen would require finalize to always
re-write the binary, which is expensive.
|
|
|
|
|
|
|
|
| |
Previously we were tracking whether integer tokens were signed but we did not
differentiate between positive and negative signs. Unfortunately, without
differentiating them, there's no way to tell the difference between an in-bounds
negative integer and a wildly out-of-bounds positive integer when trying to
perform bounds checks for s32 tokens. Fix the problem by tracking not only
whether there is a sign on an integer token, but also what the sign is.
|
| |
|
| |
|
|
|
|
|
|
| |
wat-parser-internal.h was already quite large after implementing just the lexer,
so it made sense to rename it to be lexer-specific and start a new file for the
higher-level parser. Also make it a proper .cpp file and split the testable
interface out into wat-lexer.h.
|
|
|
|
|
|
| |
calls (#4660)
This extends the existing call_indirect code to do the same for call_ref,
basically. The shared code is added to a new helper utility.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds exported tags to `exports` section in wasm-emscripten-finalize
metadata so Emscripten can use it.
Also fixes a bug in the parser. We have only recognized the export
format of
```wasm
(tag $e2 (param f32))
(export "e2" (tag $e2))
```
and ignored this format:
```wasm
(tag $e1 (export "e1") (param i32))
```
Companion patch: https://github.com/emscripten-core/emscripten/pull/17064
|
|
|
|
| |
Improve comments and variable names to make it clear that we allocate and build
a separate string only when necessary to handle escape sequences.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rather than trying to actually implement the parsing of float values, which
cannot be done naively due to precision concerns, just parse the float grammar
then postprocess the parsed text into a form we can pass to `strtod` to do the
actual parsing of the value.
Since the float grammar reuses `num` and `hexnum` from the integer grammar but
does not care about overflow, add a mode to `LexIntCtx`, `num`, and `hexnum` to
allow parsing overflowing numbers.
For NaNs, store the payload as a separate value rather than as part of the
parsed double. The payload will be injected into the NaN at a higher level of
the parser once we know whether we are parsing an f64 or an f32 and therefore
know what the allowable payload values are.
|
|
|
|
|
| |
Also include reserved words that look like keywords to avoid having to find and
enumerate all the valid keywords. Invalid keywords will be rejected at a higher
level in the parser instead.
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
We were missing CallRef in the CFG traversal code in a place where we
note possible exceptions. As a result we thought CallRef cannot throw, and
were missing some control flow edges.
To actually detect the problem, we need to validate non-nullable locals
properly, which we were not doing. This adds that as well.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Begin implementing a new text format parser that will accept the
standard text format. Start with a lexer that can iterate over
tokens in an underlying text buffer. The initial supported tokens
are integers, parentheses, and whitespace including comments.
The implementation is in a new private internal header so it can
be included into a gtest source file even though it is not meant
to be a public API. Once the parser is more complete, there will
be an additional public header exposing a more concise public API
and the private header will be included into a source file that
implements that public API.
The new parser will improve on the existing text format parser
not only because it will accept the full standard text format,
but also because its code will be simpler and easier to maintain
and because it will hopefully be faster as well. The new parser
will be built out of small functions that closely mirror the
grammar productions given in the spec and will heavily use C++17
features like string_view, optional, and variant to provide more
self-documenting and efficient code.
Future PRs will add support for lexing other kinds of tokens
followed by support for parsing more complex constructs.
|
|
|
| |
Based on #3573 plus minor fixes
|
|
|
|
|
|
|
|
|
|
| |
Optionally avoid updating types in TypeUpdating::updateParamTypes(). That update
is incomplete if the function signature is also changing, which is the case in
SignatureRefining (but not DeadArgumentElimination). "Incomplete" means that
we updated the local.get type, but the function signature does not match yet. That
incomplete state can hit an internal error in GlobalTypeRewriter::updateSignatures
where it updates types. To avoid that, do the entire full update only there (in
GlobalTypeRewriter::updateSignatures).
|
|
|
|
|
|
| |
We were checking that nominal modules only had a single element in their type
sections, but that's not correct for the prototype nominal binary format we
still want to support. The test for this missed catching the bug because it
wasn't actually parsing in nominal mode.
|
|
|
|
|
|
|
|
|
|
| |
Share the logic for parsing imported and non-imported globals of the formats:
(import "module" "base" (global $name? type))
(global $name? type init)
This fixes #4676, since the deleted logic for parsing imported globals did not
handle parsing GC types correctly.
|
| |
|
|
|
|
|
|
| |
With only reference types but not GC, we cannot easily create a constant
for eqref for example. Only GC adds i31.new etc. To avoid assertions in
the fuzzer, avoid randomly picking (ref eq) etc., that is, keep it nullable
so that we can emit a (ref.null eq) if we need a constant value of that type.
|
|
|
|
|
|
| |
The old code would short-circuit and not do anything after we managed
any reduction in the loop here. That would end up doing entire iterations of
the whole pipeline before removing another element segment, which could
be slow.
|
| |
|
|
|
|
|
| |
Being a const reference allows writing insert({a, b}), which will be
useful in a future PR, and there is no reason to actually update the
reference.
|
| |
|
|
|
|
|
|
| |
Also improve comments.
As suggested in #4647
|
|
|
|
|
|
|
| |
There's no reason not to allow growing by zero slots, but previously doing so
would trigger an assertion. This caused a crash when roundtripping a trivial
module.
Fixes #4667.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we could return different results depending on the order we
noted things:
note(anyref.null);
note(funcref.null);
get() => anyref.null
note(funcref.null);
note(anyref.null);
get() => funcref.null
This is correct, as nulls are equal anyhow, and any could be used in
the location we are optimizing. However, it can lead to nondeterminism
if the caller's order of notes is nondeterministic. That is the case in
DeadArgumentElimination, where we scan functions in parallel, then
merge them without special ordering.
To fix this, make the note operation symmetric. That seems simplest and
least likely to be confusing. We can use the LUB to do that.
To avoid duplicating the null logic, refactor note() to use combine().
|
|
|
|
|
| |
If we don't think that preventing copies in assignment makes sense by
itself (since we allow them on construction) then I think we can just
remove the restriction and also the implicit copy constructor.
|