| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
LLVM recently split the bulk-memory-opt feature out from bulk-memory,
containing just memory.copy and memory.fill. This change follows that,
making bulk-memory-opt also enabled when all of bulk-memory is enabled.
It also introduces call-indirect-overlong following LLVM, but ignores
it, since Binaryen has always allowed the encoding (i.e. command
line flags enabling or disabling the feature are accepted but
ignored).
|
|
|
|
| |
The only internal use was in wasm2js, which doesn't need it. Fix API
tests to explicitly drop expressions as necessary.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously allowed valid expressions to have stale types as long as
those stale types were supertypes of the most precise possible types for
the expressions. Allowing stale types like this could mask bugs where we
failed to propagate precise type information, though.
Make validation stricter by requiring all expressions except for control
flow structures to have the most precise possible types. Control flow
structures are exempt because many passes that can refine types wrap the
refined expressions in blocks with the old type to avoid the need for
refinalization. This pattern would be broken and we would need to
refinalize more frequently without this exception for control flow
structures.
Now that all non-control flow expressions must have precise types,
remove functionality relating to building select instructions with
non-precise types. Since finalization of selects now always calculates a
LUB rather than using a provided type, remove the type parameter from
BinaryenSelect in the C and JS APIs.
Now that stale types are no longer valid, fix a bug in TypeSSA where it
failed to refinalize module-level code. This bug previously would not
have caused problems on its own, but the stale types could cause
problems for later runs of Unsubtyping. Now the stale types would cause
TypeSSA output to fail validation.
Also fix a bug where Builder::replaceWithIdenticalType was in fact
replacing with refined types.
Fixes #7087.
|
|
|
|
|
|
|
|
|
|
| |
When IRBuilder builds an empty non-block scope such as a function body,
an if arm, a try block, etc, it needs to produce some expression to
represent the empty contents. Previously it produced a nop, but change
it to produce an empty block instead. The binary writer and printer have
special logic to elide empty blocks, so this produces smaller output.
Update J2CLOpts to recognize functions containing empty blocks as
trivial to avoid regressing one of its tests.
|
|
|
| |
Ensure the "fp16" feature is enabled for FP16 instructions.
|
|
|
|
|
| |
Also use TableInit in the interpreter to initialize module's table
state, which will now handle traps properly, fixing #6431
|
|
|
|
|
|
|
| |
Add functions to:
* Set and get the trapsNeverHappen, closedWorld, generateStackIR and optimizeStackIR flags
* Manage the list of passes to skip.
|
|
|
|
|
|
|
| |
Implement `ref.i31_shared` the new instruction for creating references
to shared i31s. Implement binary and text parsing and emitting as well
as interpretation. Copy the upstream spec test for i31 and modify it so
that all the heap types are shared. Comment out some parts that we do
not yet support.
|
|
|
|
|
|
|
|
|
| |
Rename instructions `extern.internalize` into `any.convert_extern` and
`extern.externalize` into `extern.convert_any` to follow more closely
the spec. This was changed in
https://github.com/WebAssembly/gc/issues/432.
The legacy name is still accepted in text inputs and in the C and JS
APIs.
|
|
|
|
|
| |
Add the feature and flags to enable and disable it. Require the new feature to
be enabled for shared heap types to validate. To make the test work, update the
validator to actually check features for global types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The stringview types from the stringref proposal have three irregularities that
break common invariants and require pervasive special casing to handle properly:
they are supertypes of `none` but not subtypes of `any`, they cannot be the
targets of casts, and they cannot be used to construct nullable references. At
the same time, the stringref proposal has been superseded by the imported
strings proposal, which does not have these irregularities. The cost of
maintaing and improving our support for stringview types is no longer worth the
benefit of supporting them.
Simplify the code base by entirely removing the stringview types and related
instructions that do not have analogues in the imported strings proposal and do
not make sense in the absense of stringviews.
Three remaining instructions, `stringview_wtf16.get_codeunit`,
`stringview_wtf16.slice`, and `stringview_wtf16.length` take stringview operands
in the stringref proposal but cannot be removed because they lower to operations
from the imported strings proposal. These instructions are changed to take
stringref operands in Binaryen IR, and to allow a graceful upgrade path for
users of these instructions, the text and binary parsers still accept but ignore
`string.as_wtf16`, which is the instruction used to convert stringrefs to
stringviews. The binary writer emits code sequences that use scratch locals and `string.as_wtf16` to keep the output valid.
Future PRs will further align binaryen with the imported strings proposal
instead of the stringref proposal, for example by making `string` a subtype of
`extern` instead of a subtype of `any` and by removing additional instructions
that do not have analogues in the imported strings proposal.
|
|
|
|
| |
I recently add TableSize/Grow and noticed I didn't need these. It seems
they are superfluous.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we had passes --generate-stack-ir, --optimize-stack-ir, --print-stack-ir
that could be run like any other passes. After generating StackIR it was stashed on
the function and invalidated if we modified BinaryenIR. If it wasn't invalidated then
it was used during binary writing. This PR switches things so that we optionally
generate, optimize, and print StackIR only during binary writing. It also removes
all traces of StackIR from wasm.h - after this, StackIR is a feature of binary writing
(and printing) logic only.
This is almost NFC, but there are some minor noticeable differences:
1. We no longer print has StackIR in the text format when we see it is there. It
will not be there during normal printing, as it is only present during binary writing.
(but --print-stack-ir still works as before; as mentioned above it runs during writing).
2. --generate/optimize/print-stack-ir change from being passes to being flags that
control that behavior instead. As passes, their order on the commandline mattered,
while now it does not, and they only "globally" affect things during writing.
3. The C API changes slightly, as there is no need to pass it an option "optimize" to
the StackIR APIs. Whether we optimize is handled by --optimize-stack-ir which is
set like other optimization flags on the PassOptions object, so we don't need the
old option to those C APIs.
The main benefit here is simplifying the code, so we don't need to think about
StackIR in more places than just binary writing. That may also allow future
improvements to our usage of StackIR.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Keep debug locations at function start
The `fn_prolog_epilog.debugInfo` test is failing otherwise, since there
was debug information associated to the nop instruction at the beginning
of the function.
* Do not clear the debug information when reaching the end of the source map
The last segment should extend to the end of the function.
* Propagate debug location from the function prolog to its first instruction
* Fix printing of epilogue location
The text parser no longer propagates locations to the epilogue, so we
should always print the location if there is one.
* Fix debug location smearing
The debug location of the last instruction should not smear into the
function epilogue, and a debug location from a previous function should
not smear into the prologue of the current function.
|
|
|
|
|
|
|
|
| |
The implementation of calls with this option was incorrect because it cleared
the locals before evaluating the call arguments. The likely explanation for why
this was never noticed is that there are no users of this option, especially
since it is exposed in the C and JS APIs but not used internally.
Rather than try to fix the implementation, just remove the option.
|
|
|
|
|
|
|
|
|
| |
Move from segment indexes to names. This is a breaking change to make the API more
capable and consistent. An effort has been made to reduce the burden on C API users
where possible (specifically, you can avoid providing names and let Binaryen make them
for you, which will basically be numbers that match the indexes from before).
Fixes #6247
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously supported (and primarily used) a non-standard text format for
conditionals in which the condition, if-true expression, and if-false expression
were all simply s-expression children of the `if` expression. The standard text
format, however, requires the use of `then` and `else` forms to introduce the
if-true and if-false arms of the conditional. Update the legacy text parser to
require the standard format and update all tests to match. Update the printer to
print the standard format as well.
The .wast and .wat test inputs were mechanically updated with this script:
https://gist.github.com/tlively/85ae7f01f92f772241ec994c840ccbb1
|
|
|
|
|
| |
Update the legacy text parser and all tests to use the standard text format for shared memories, e.g. `(memory $m 1 1 shared)` rather than `(memory $m (shared 1 1))`. Also remove support for non-standard in-line "data" or "segment" declarations.
This change makes the tests more compatible with the new text parser, which only supports the standard format.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously supported a non-standard `(func "name" ...` syntax for declaring
functions exported with the quoted name. Since that is not part of the standard
text format, drop support for it, replacing it with the standard `(func $name
(export "name") ...` syntax instead.
Also replace our other usage of the quoted form in our text output, which was
where we quoted names containing characters that are not allowed to appear in
standard names. To handle that case, adjust our output from `"$name"` to
`$"name"`, which is the standards-track way of supporting such names. Also fix
how we detect non-standard name characters to match the spec.
Update the lit test output generation script to account for these changes,
including by making the `$` prefix on names mandatory. This causes the script to
stop interpreting declarative element segments with the `(elem declare ...`
syntax as being named "declare", so prevent our generated output from regressing
by counting "declare" as a name in the script.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds basic support for the new instructions in the new EH proposal
passed at the Oct CG hybrid CG meeting:
https://github.com/WebAssembly/meetings/blob/main/main/2023/CG-10.md
https://github.com/WebAssembly/exception-handling/blob/main/proposals/exception-handling/Exceptions.md
This mainly adds two instructions: `try_table` and `throw_ref`. This is
the bare minimum required to read and write text and binary format, and
does not include analyses or optimizations. (It includes some analysis
required for validation of existing instructions.) Validation for
the new instructions is not yet included.
`try_table` faces the same problem with the `resume` instruction in
#6083 that without the module-level tag info, we are unable to know the
'sent types' of `try_table`. This solves it with a similar approach
taken in #6083: this adds `Module*` parameter to `finalize` methods,
which defaults to `nullptr` when not given. The `Module*` parameter is
given when called from the binary and text parser, and we cache those
tag types in `sentTypes` array within `TryTable` class. In later
optimization passes, as long as they don't touch tags, it is fine to
call `finalize` without the `Module*`. Refer to
https://github.com/WebAssembly/binaryen/pull/6083#issuecomment-1854634679
and #6096 for related discussions when `resume` was added.
|
|
|
|
|
|
|
|
| |
Once support for tuple.extract lands in the new WAT parser, this arity immediate
will let the parser determine how many values it should pop off the stack to
serve as the tuple operand to `tuple.extract`. This will usually coincide with
the arity of a tuple-producing instruction on top of the stack, but in the
spirit of treating the input as a proper stack machine, it will not have to and
the parser will still work correctly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously overloaded `drop` to mean both normal drops of single values and
also drops of tuple values. That works fine in the legacy text parser since it
can infer parent-child relationships directly from the s-expression structure of
the input, so it knows that a drop should drop an entire tuple if the
tuple-producing instruction is a child of the drop. The new text parser,
however, is much more like the binary parser in that it uses instruction types
to create parent-child instructions. The new parser always assumes that `drop`
is meant to drop just a single value because that's what it does in WebAssembly.
Since we want to continue to let `Drop` IR expressions consume tuples, and since
we will need a way to write tests for that IR pattern that work with the new
parser, introduce a new pseudoinstruction, `tuple.drop`, to represent drops of
tuples. This pseudoinstruction only exists in the text format and it parses to
normal `Drop` expressions. `tuple.drop` takes the arity of its operand as an
immediate, which will let the new parser parse it correctly in the future.
|
|
|
|
|
|
|
|
|
|
| |
Previously, the number of tuple elements was inferred from the number of
s-expression children of the `tuple.make` expression, but that scheme would not
work in the new wat parser, where s-expressions are optional and cannot be
semantically meaningful.
Update the text format to take the number of tuple elements (i.e. the tuple
arity) as an immediate. This new format will be able to be implemented in the
new parser as follow-on work.
|
|
|
| |
Helps #5951
|
|
|
|
|
|
|
| |
This PR is part of a series that adds basic support for the [typed continuations
proposal](https://github.com/wasmfx/specfx).
This particular PR simply extends `FeatureSet` with a corresponding entry for
this proposal.
|
|
|
|
|
|
|
|
| |
This instruction was standardized as part of the bulk memory proposal, but we
never implemented it until now. Leave similar instructions like table.copy as
future work.
Fixes #5939.
|
|
|
|
|
| |
Replace i31.new with ref.i31 in the printer, tests, and source code. Continue
parsing i31.new for the time being to allow a graceful transition. Also update
the JS API to reflect the new instruction name.
|
|
|
|
|
|
|
|
| |
Globally replace the source string "I31New" with "RefI31" in preparation for
renaming the instruction from "i31.new" to "ref.i31", as implemented in the spec
in https://github.com/WebAssembly/gc/pull/422. This would be NFC, except that it
also changes the string in the external-facing C APIs.
A follow-up PR will make the corresponding behavioral change.
|
|
|
|
|
| |
Now that the WasmGC spec has settled on a way of validating non-nullable locals,
we no longer need this experimental feature that allowed nonstandard uses of
non-nullable locals.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When printing Binaryen IR, we previously generated names for unnamed heap types
based on their structure. This was useful for seeing the structure of simple
types at a glance without having to separately go look up their definitions, but
it also had two problems:
1. The same name could be generated for multiple types. The generated names did
not take into account rec group structure or finality, so types that differed
only in these properties would have the same name. Also, generated type names
were limited in length, so very large types that shared only some structure
could also end up with the same names. Using the same name for multiple types
produces incorrect and unparsable output.
2. The generated names were not useful beyond the most trivial examples. Even
with length limits, names for nontrivial types were extremely long and visually
noisy, which made reading disassembled real-world code more challenging.
Fix these problems by emitting simple indexed names for unnamed heap types
instead. This regresses readability for very simple examples, but the trade off
is worth it.
This change also reduces the number of type printing systems we have by one.
Previously we had the system in Print.cpp, but we had another, more general and
extensible system in wasm-type-printing.h and wasm-type.cpp as well. Remove the
old type printing system from Print.cpp and replace it with a much smaller use
of the new system. This requires significant refactoring of Print.cpp so that
PrintExpressionContents object now holds a reference to a parent
PrintSExpression object that holds the type name state.
This diff is very large because almost every test output changed slightly. To
minimize the diff and ease review, change the type printer in wasm-type.cpp to
behave the same as the old type printer in Print.cpp except for the differences
in name generation. These changes will be reverted in much smaller PRs in the
future to generally improve how types are printed.
|
|
|
| |
Renaming the multimemory flag in Binaryen to match its naming in LLVM.
|
|
|
|
| |
The function type should be printed there just like for non-imported
functions.
|
|
|
|
|
|
|
|
|
|
|
| |
Data/Elem (#5692)
ArrayNewSeg => ArrayNewSegData, ArrayNewSegElem
ArrayInit => ArrayInitData, ArrayInitElem
Basically we remove the opcode and use the class type to differentiate them.
This adds some code but it makes the representation simpler and more compact in
memory, and it will help with #5690
|
|
|
|
|
| |
These complement array.copy, which we already supported, as an initial complete
set of bulk array operations. Replace the WIP spec tests with the upstream spec
tests, lightly edited for compatibility with Binaryen.
|
|
|
|
|
|
|
|
|
|
| |
All top-level Module elements are identified and referred to by Name, but for
historical reasons element and data segments were referred to by index instead.
Fix this inconsistency by using Names to refer to segments from expressions that
use them. Also parse and print segment names like we do for other elements.
The C API is partially converted to use names instead of indices, but there are
still many functions that refer to data segments by index. Finishing the
conversion can be done in the future once it becomes necessary.
|
|
|
|
|
|
|
|
| |
To match the standard instruction name, rename the expression class without
changing any parsing or printing behavior. A follow-on PR will take care of the
functional side of this change while keeping support for parsing the old name.
This change will allow `ArrayInit` to be used as the expression class for the
upcoming `array.init_data` and `array.init_elem` instructions.
|
|
|
|
|
|
| |
`struct` has replaced `data` in the upstream spec, so update Binaryen's types to
match. We had already supported `struct` as an alias for data, but now remove
support for `data` entirely. Also remove instructions like `ref.is_data` that
are deprecated and do not make sense without a `data` type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These operations are deprecated and directly representable as casts, so remove
their opcodes in the internal IR and parse them as casts instead. For now, add
logic to the printing and binary writing of RefCast to continue emitting the
legacy instructions to minimize test changes. The few test changes necessary are
because it is no longer valid to perform a ref.as_func on values outside the
func type hierarchy now that ref.as_func is subject to the ref.cast validation
rules.
RefAsExternInternalize, RefAsExternExternalize, and RefAsNonNull are left
unmodified. A future PR may remove RefAsNonNull as well, since it is also
expressible with casts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Replace `RefIs` with `RefIsNull`
The other `ref.is*` instructions are deprecated and expressible in terms of
`ref.test`. Update binary and text parsing to parse those instructions as
`RefTest` expressions. Also update the printing and emitting of `RefTest`
expressions to emit the legacy instructions for now to minimize test changes and
make this a mostly non-functional change. Since `ref.is_null` is the only
`RefIs` instruction left, remove the `RefIsOp` field and rename the expression
class to `RefIsNull`.
The few test changes are due to the fact that `ref.is*` instructions are now
subject to `ref.test` validation, and in particular it is no longer valid to
perform a `ref.is_func` on a value outside of the `func` type hierarchy.
|
|
|
|
|
|
|
| |
As noted in #4739, legacy language emitting nan and infinity
exists, with the observation that it can be removed once asm.js
is no longer used and global NaN is available.
This commit removes that asm.js-specific code accordingly.
|
|
|
|
|
|
|
|
|
|
| |
This makes Binaryen's default type system match the WasmGC spec.
Update the way type definitions without supertypes are printed to reduce the
output diff for MVP tests that do not involve WasmGC. Also port some
type-builder.cpp tests from test/example to test/gtest since they needed to be
rewritten to work with isorecursive type anyway.
A follow-on PR will remove equirecursive types completely.
|
|
|
|
|
|
|
|
|
| |
In order to test them, fix the binary and text parsers to accept passive data
segments even if a module has no memory. In addition to parsing and emitting the
new instructions, also implement their validation and interpretation. Test the
interpretation directly with wasm-shell tests adapted from the upstream spec
tests. Running the upstream spec tests directly would require fixing too many
bugs in the legacy text parser, so it will have to wait for the new text parser
to be ready.
|
|
|
| |
The C API still returned non nullable types for `dataref` (`ref data` instead of `ref null data`) and `i31ref` (`ref i31` instead of `ref null i31`). This PR aligns with the current state of the GC proposal, making them nullable when obtained via the C API.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to
them can only possibly be null. To simplify the IR and increase type precision,
introduce new invariants that all `ref.null` instructions must be typed with one
of these new bottom types and that `Literals` have a bottom type iff they
represent null values. These new invariants requires several additional changes.
First, it is now possible that the `ref` or `target` child of a `StructGet`,
`StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom
reference type, so it is not possible to determine what heap type annotation to
emit in the binary or text formats. (The bottom types are not valid type
annotations since they do not have indices in the type section.)
To fix that problem, update the printer and binary emitter to emit unreachables
instead of the instruction with undetermined type annotation. This is a valid
transformation because the only possible value that could flow into those
instructions in that case is null, and all of those instructions trap on nulls.
That fix uncovered a latent bug in the binary parser in which new unreachables
within unreachable code were handled incorrectly. This bug was not previously
found by the fuzzer because we generally stop emitting code once we encounter an
instruction with type `unreachable`. Now, however, it is possible to emit an
`unreachable` for instructions that do not have type `unreachable` (but are
known to trap at runtime), so we will continue emitting code. See the new
test/lit/parse-double-unreachable.wast for details.
Update other miscellaneous code that creates `RefNull` expressions and null
`Literals` to maintain the new invariants as well.
|
|
|
|
|
|
|
|
| |
The previous code was making emscripten-specific assumptions about
imports basically all coming from the `env` module.
I can't find a way to make this backwards compatible so may do a
combined roll with the emscripten-side change:
https://github.com/emscripten-core/emscripten/pull/17806
|
|
|
| |
This finalizes the multi memories feature introduced in #4968.
|
|
|
|
|
|
| |
This import was being injected and then used to implement trapping.
Rather than injecting an import that doesn't exist in the original
module we instead use the existing mechanism to implement this as
an internal helper.
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we were assuming asmLibraryArg which is what emscripten
passes as the `env` import object but using this method is more
flexible and should allow wasm2js to work with import that are
not all form a single object.
The slight size increase here is just temporary until emscripten
gets updated.
See https://github.com/emscripten-core/emscripten/pull/17737
|
|
|
|
| |
BinaryenSetMemory (#4963)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In practice typed function references will not ship before GC and is not
independently useful, so it's not necessary to have a separate feature for it.
Roll the functionality previously enabled by --enable-typed-function-references
into --enable-gc instead.
This also avoids a problem with the ongoing implementation of the new GC bottom
heap types. That change will make all ref.null instructions in Binaryen IR refer
to one of the bottom heap types. But since those bottom types are introduced in
GC, it's not valid to emit them in binaries unless unless GC is enabled. The fix
if only reference types is enabled is to emit (ref.null func) instead
of (ref.null nofunc), but that doesn't always work if typed function references
are enabled because a function type more specific than func may be required.
Getting rid of typed function references as a separate feature makes this a
nonissue.
|