| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
The only internal use was in wasm2js, which doesn't need it. Fix API
tests to explicitly drop expressions as necessary.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We previously allowed valid expressions to have stale types as long as
those stale types were supertypes of the most precise possible types for
the expressions. Allowing stale types like this could mask bugs where we
failed to propagate precise type information, though.
Make validation stricter by requiring all expressions except for control
flow structures to have the most precise possible types. Control flow
structures are exempt because many passes that can refine types wrap the
refined expressions in blocks with the old type to avoid the need for
refinalization. This pattern would be broken and we would need to
refinalize more frequently without this exception for control flow
structures.
Now that all non-control flow expressions must have precise types,
remove functionality relating to building select instructions with
non-precise types. Since finalization of selects now always calculates a
LUB rather than using a provided type, remove the type parameter from
BinaryenSelect in the C and JS APIs.
Now that stale types are no longer valid, fix a bug in TypeSSA where it
failed to refinalize module-level code. This bug previously would not
have caused problems on its own, but the stale types could cause
problems for later runs of Unsubtyping. Now the stale types would cause
TypeSSA output to fail validation.
Also fix a bug where Builder::replaceWithIdenticalType was in fact
replacing with refined types.
Fixes #7087.
|
|
|
|
|
|
|
| |
The instructions relaxed_fma and relaxed_fnma have been renamed to
relaxed_madd and relaxed_nmadd.
https://github.com/WebAssembly/relaxed-simd/blob/main/proposals/relaxed-simd/Overview.md#binary-format
|
|
|
|
|
| |
(#6721)
Fixes #6718
|
|
|
|
|
|
|
|
|
| |
Rename instructions `extern.internalize` into `any.convert_extern` and
`extern.externalize` into `extern.convert_any` to follow more closely
the spec. This was changed in
https://github.com/WebAssembly/gc/issues/432.
The legacy name is still accepted in text inputs and in the C and JS
APIs.
|
|
|
|
|
|
|
|
|
|
|
| |
validation (#6603)
GlobalRefining did not traverse module code, so it did not update global.gets
in other globals.
Add missing validation that actually errors on that: We did not check global.get
types.
These could be separate PRs but it would be difficult to test them separately.
|
|
|
|
|
|
| |
The stringref proposal has been superseded by the imported JS strings proposal,
but the former has many more operations than the latter. To reduce complexity,
remove all operations that are part of stringref but not part of imported
strings.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The stringview types from the stringref proposal have three irregularities that
break common invariants and require pervasive special casing to handle properly:
they are supertypes of `none` but not subtypes of `any`, they cannot be the
targets of casts, and they cannot be used to construct nullable references. At
the same time, the stringref proposal has been superseded by the imported
strings proposal, which does not have these irregularities. The cost of
maintaing and improving our support for stringview types is no longer worth the
benefit of supporting them.
Simplify the code base by entirely removing the stringview types and related
instructions that do not have analogues in the imported strings proposal and do
not make sense in the absense of stringviews.
Three remaining instructions, `stringview_wtf16.get_codeunit`,
`stringview_wtf16.slice`, and `stringview_wtf16.length` take stringview operands
in the stringref proposal but cannot be removed because they lower to operations
from the imported strings proposal. These instructions are changed to take
stringref operands in Binaryen IR, and to allow a graceful upgrade path for
users of these instructions, the text and binary parsers still accept but ignore
`string.as_wtf16`, which is the instruction used to convert stringrefs to
stringviews. The binary writer emits code sequences that use scratch locals and `string.as_wtf16` to keep the output valid.
Future PRs will further align binaryen with the imported strings proposal
instead of the stringref proposal, for example by making `string` a subtype of
`extern` instead of a subtype of `any` and by removing additional instructions
that do not have analogues in the imported strings proposal.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we had passes --generate-stack-ir, --optimize-stack-ir, --print-stack-ir
that could be run like any other passes. After generating StackIR it was stashed on
the function and invalidated if we modified BinaryenIR. If it wasn't invalidated then
it was used during binary writing. This PR switches things so that we optionally
generate, optimize, and print StackIR only during binary writing. It also removes
all traces of StackIR from wasm.h - after this, StackIR is a feature of binary writing
(and printing) logic only.
This is almost NFC, but there are some minor noticeable differences:
1. We no longer print has StackIR in the text format when we see it is there. It
will not be there during normal printing, as it is only present during binary writing.
(but --print-stack-ir still works as before; as mentioned above it runs during writing).
2. --generate/optimize/print-stack-ir change from being passes to being flags that
control that behavior instead. As passes, their order on the commandline mattered,
while now it does not, and they only "globally" affect things during writing.
3. The C API changes slightly, as there is no need to pass it an option "optimize" to
the StackIR APIs. Whether we optimize is handled by --optimize-stack-ir which is
set like other optimization flags on the PassOptions object, so we don't need the
old option to those C APIs.
The main benefit here is simplifying the code, so we don't need to think about
StackIR in more places than just binary writing. That may also allow future
improvements to our usage of StackIR.
|
|
|
|
| |
This allows reading a module that requires a particular
feature set. The old API assumed only MVP features.
|
|
|
| |
Fixes #6314.
|
|
|
|
|
|
|
|
|
| |
Move from segment indexes to names. This is a breaking change to make the API more
capable and consistent. An effort has been made to reduce the burden on C API users
where possible (specifically, you can avoid providing names and let Binaryen make them
for you, which will basically be numbers that match the indexes from before).
Fixes #6247
|
| |
|
| |
|
|
|
|
| |
(#6217)
|
|
|
|
|
|
|
|
| |
Globally replace the source string "I31New" with "RefI31" in preparation for
renaming the instruction from "i31.new" to "ref.i31", as implemented in the spec
in https://github.com/WebAssembly/gc/pull/422. This would be NFC, except that it
also changes the string in the external-facing C APIs.
A follow-up PR will make the corresponding behavioral change.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Match the spec and parse the shorthand binary and text formats as final and emit
final types without supertypes using the shorthands as well. This is a
potentially-breaking change, since the text and binary shorthands can no longer
be used to define types that have subtypes.
Also make TypeBuilder entries final by default to better match the spec and
update the internal APIs to use the "open" terminology rather than "final"
terminology. Future changes will update the text format to use the standard "sub
open" rather than the current "sub final" keywords. The exception is the new wat
parser, which supporst "sub open" as of this change, since it didn't support
final types at all previously.
|
|
|
|
|
|
|
|
|
|
|
| |
This is necessary for WasmGC producers using the C API, so that they can set the
heap type of functions. Otherwise the heap type is set structurally using params
and results in the old API.
The old API is kept for backwards compatibility and convenience (for the structural
case, which is all code before WasmGC basically).
Fixes #5826
|
|
|
|
|
|
|
|
|
|
|
| |
See WebAssembly/stringref#46.
This format is already adopted by V8: https://chromium-review.googlesource.com/c/v8/v8/+/3892695.
The text format is left unchanged (see #5607 for a discussion on the subject).
I have also added support for string.encode_lossy_utf8 and
string.encode_lossy_utf8 array (by allowing the replace policy for
Binaryen's string.encode_wtf8 instruction).
|
|
|
|
|
|
|
|
|
|
|
| |
This capability was originally introduced to support calculating LUBs in the
equirecursive type system, but has not been needed for anything except tests
since the equirecursive type system was removed. Since building basic heap types
is no longer useful and was a source of significant complexity, remove the APIs
that allowed it and the tests that used those APIs.
Also remove test/example/type-builder.cpp, since a significant portion of it
tested the removed APIs and the rest is already better tested in
test/gtest/type-builder.cpp.
|
|
|
|
|
| |
And since the only type system left is the standard isorecursive type system,
remove `TypeSystem` and its associated APIs entirely. Delete a few tests that
only made sense under the isorecursive type system.
|
|
|
|
|
|
|
|
|
|
| |
All top-level Module elements are identified and referred to by Name, but for
historical reasons element and data segments were referred to by index instead.
Fix this inconsistency by using Names to refer to segments from expressions that
use them. Also parse and print segment names like we do for other elements.
The C API is partially converted to use names instead of indices, but there are
still many functions that refer to data segments by index. Finishing the
conversion can be done in the future once it becomes necessary.
|
|
|
|
|
|
|
|
| |
To match the standard instruction name, rename the expression class without
changing any parsing or printing behavior. A follow-on PR will take care of the
functional side of this change while keeping support for parsing the old name.
This change will allow `ArrayInit` to be used as the expression class for the
upcoming `array.init_data` and `array.init_elem` instructions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Exposes the constants
**Unary**
* BinaryenRelaxedTruncSVecF32x4ToVecI32x4
* BinaryenRelaxedTruncSVecF32x4ToVecI32x4
* BinaryenRelaxedTruncZeroSVecF64x2ToVecI32x4
* BinaryenRelaxedTruncZeroUVecF64x2ToVecI32x4
**Binary**
* BinaryenRelaxedSwizzleVecI8x16
* BinaryenRelaxedMinVecF32x4
* BinaryenRelaxedMaxVecF32x4
* BinaryenRelaxedMinVecF64x2
* BinaryenRelaxedMaxVecF64x2
* BinaryenRelaxedQ15MulrSVecI16x8
* BinaryenDotI8x16I7x16SToVecI16x8
**SIMDTernary**
* BinaryenRelaxedFmaVecF32x4
* BinaryenRelaxedFmsVecF32x4
* BinaryenRelaxedFmaVecF64x2
* BinaryenRelaxedFmsVecF64x2
* BinaryenLaneselectI8x16
* BinaryenLaneselectI16x8
* BinaryenLaneselectI32x4
* BinaryenLaneselectI64x2
* BinaryenDotI8x16I7x16AddSToVecI32x4
so the respective instructions can be produced and inspected with the C API.
|
|
|
|
| |
Adds APIs for string.from_code_point, string.new_utf8_try,
string.new_utf8_array_try (#5459) and string.compare (#5453).
|
|
|
|
|
|
| |
`struct` has replaced `data` in the upstream spec, so update Binaryen's types to
match. We had already supported `struct` as an alias for data, but now remove
support for `data` entirely. Also remove instructions like `ref.is_data` that
are deprecated and do not make sense without a `data` type.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These operations are deprecated and directly representable as casts, so remove
their opcodes in the internal IR and parse them as casts instead. For now, add
logic to the printing and binary writing of RefCast to continue emitting the
legacy instructions to minimize test changes. The few test changes necessary are
because it is no longer valid to perform a ref.as_func on values outside the
func type hierarchy now that ref.as_func is subject to the ref.cast validation
rules.
RefAsExternInternalize, RefAsExternExternalize, and RefAsNonNull are left
unmodified. A future PR may remove RefAsNonNull as well, since it is also
expressible with casts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Replace `RefIs` with `RefIsNull`
The other `ref.is*` instructions are deprecated and expressible in terms of
`ref.test`. Update binary and text parsing to parse those instructions as
`RefTest` expressions. Also update the printing and emitting of `RefTest`
expressions to emit the legacy instructions for now to minimize test changes and
make this a mostly non-functional change. Since `ref.is_null` is the only
`RefIs` instruction left, remove the `RefIsOp` field and rename the expression
class to `RefIsNull`.
The few test changes are due to the fact that `ref.is*` instructions are now
subject to `ref.test` validation, and in particular it is no longer valid to
perform a `ref.is_func` on a value outside of the `func` type hierarchy.
|
|
|
| |
This new variant of ref.test returns 1 if the input is null.
|
|
|
|
|
|
|
|
|
| |
The latest upstream version of ref.cast is parameterized with a target reference
type, not just a heap type, because the nullability of the result is
parameterizable. As a first step toward implementing these new, more flexible
ref.cast instructions, change the internal representation of ref.cast to use the
expression type as the cast target rather than storing a separate heap type
field. For now require that the encoded semantics match the previously allowed
semantics, though, so that none of the optimization passes need to be updated.
|
|
|
|
| |
Equirecursive is no longer standards track and its implementation is extremely
complex. Remove it.
|
|
|
|
|
|
|
|
|
|
| |
This makes Binaryen's default type system match the WasmGC spec.
Update the way type definitions without supertypes are printed to reduce the
output diff for MVP tests that do not involve WasmGC. Also port some
type-builder.cpp tests from test/example to test/gtest since they needed to be
rewritten to work with isorecursive type anyway.
A follow-on PR will remove equirecursive types completely.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds C APIs to inspect compound struct, array and signature heap types:
Obtain field types, field packed types and field mutabilities of struct types:
BinaryenStructTypeGetNumFields (to iterate)
BinaryenStructTypeGetFieldType
BinaryenStructTypeGetFieldPackedType
BinaryenStructTypeIsFieldMutable
Obtain element type, element packed type and element mutability of array types:
BinaryenArrayTypeGetElementType
BinaryenArrayTypeGetElementPackedType
BinaryenArrayTypeIsElementMutable
Obtain parameter and result types of signature types:
BinaryenSignatureTypeGetParams
BinaryenSignatureTypeGetResults
|
|
|
|
|
|
|
|
|
|
| |
Adds heap type utility to the C API:
BinaryenHeapTypeIsBasic
BinaryenHeapTypeIsSignature
BinaryenHeapTypeIsStruct
BinaryenHeapTypeIsArray
BinaryenHeapTypeIsSubType
|
|
|
| |
Adds `BinaryenHeapTypeNone`, `BinaryenHeapTypeNoext` and `BinaryenHeapTypeNofunc` to obtain the bottom heap types. Also adds `BinaryenHeapTypeIsBottom` to test whether a given heap type is a bottom type, and `BinaryenHeapTypeGetBottom` to obtain the respective bottom type given a heap type.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to
them can only possibly be null. To simplify the IR and increase type precision,
introduce new invariants that all `ref.null` instructions must be typed with one
of these new bottom types and that `Literals` have a bottom type iff they
represent null values. These new invariants requires several additional changes.
First, it is now possible that the `ref` or `target` child of a `StructGet`,
`StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom
reference type, so it is not possible to determine what heap type annotation to
emit in the binary or text formats. (The bottom types are not valid type
annotations since they do not have indices in the type section.)
To fix that problem, update the printer and binary emitter to emit unreachables
instead of the instruction with undetermined type annotation. This is a valid
transformation because the only possible value that could flow into those
instructions in that case is null, and all of those instructions trap on nulls.
That fix uncovered a latent bug in the binary parser in which new unreachables
within unreachable code were handled incorrectly. This bug was not previously
found by the fuzzer because we generally stop emitting code once we encounter an
instruction with type `unreachable`. Now, however, it is possible to emit an
`unreachable` for instructions that do not have type `unreachable` (but are
known to trap at runtime), so we will continue emitting code. See the new
test/lit/parse-double-unreachable.wast for details.
Update other miscellaneous code that creates `RefNull` expressions and null
`Literals` to maintain the new invariants as well.
|
|
|
| |
Fixes #5041
|
|
|
|
| |
BinaryenSetMemory (#4963)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In practice typed function references will not ship before GC and is not
independently useful, so it's not necessary to have a separate feature for it.
Roll the functionality previously enabled by --enable-typed-function-references
into --enable-gc instead.
This also avoids a problem with the ongoing implementation of the new GC bottom
heap types. That change will make all ref.null instructions in Binaryen IR refer
to one of the bottom heap types. But since those bottom types are introduced in
GC, it's not valid to emit them in binaries unless unless GC is enabled. The fix
if only reference types is enabled is to emit (ref.null func) instead
of (ref.null nofunc), but that doesn't always work if typed function references
are enabled because a function type more specific than func may be required.
Getting rid of typed function references as a separate feature makes this a
nonissue.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds C-API bindings for the following expression classes:
RefTest
RefCast
BrOn with operations BrOnNull, BrOnNonNull, BrOnCast, BrOnCastFail, BrOnFunc, BrOnNonFunc, BrOnData, BrOnNonData, BrOnI31, BrOnNonI31
StructNew with operations StringNewUTF8, StringNewWTF8, StringNewReplace, StringNewWTF16, StringNewUTF8Array, StringNewWTF8Array, StringNewReplaceArray, StringNewWTF16Array
StructGet
StructSet
ArrayNew
ArrayInit
ArrayGet
ArraySet
ArrayLen
ArrayCopy
StringNew
StringConst
StringMeasure with operations StringMeasureUTF8, StringMeasureWTF8, StringMeasureWTF16, StringMeasureIsUSV, StringMeasureWTF16View
StringEncode with operations StringEncodeUTF8, StringEncodeWTF8, StringEncodeWTF16, StringEncodeUTF8Array, StringEncodeWTF8Array, StringEncodeWTF16Array
StringConcat
StringEq
StringAs with operations StringAsWTF8, StringAsWTF16, StringAsIter
StringWTF8Advance
StringWTF16Get
StringIterNext
StringIterMove with operations StringIterMoveAdvance, StringIterMoveRewind
StringSliceWTF with operations StringSliceWTF8, StringSliceWTF16
StringSliceIter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Those instructions need to know if the memory is 64-bit or not. We looked that
up on the module globally, which is convenient, but in the C API this was actually
a breaking change, it turns out. To keep things working, provide that information
when creating a MemoryGrow or MemorySize, as another parameter in the C
API. In the C++ API (wasm-builder), support both modes, and default to the
automatic lookup.
We already require a bunch of other explicit info when creating expressions, like
making a Call requires the return type (we don't look it up globally), and even a
LocalGet requires the local type (we don't look it up on the function), so this is
consistent with those.
Fixes #4946
|
|
|
|
|
|
|
| |
The GC proposal has split `any` and `extern` back into two separate types, so
reintroduce `HeapType::ext` to represent `extern`. Before it was originally
removed in #4633, externref was a subtype of anyref, but now it is not. Now that
we have separate heaptype type hierarchies, make `HeapType::getLeastUpperBound`
fallible as well.
|
|
|
|
|
|
|
| |
This PR removes the single memory restriction in IR, adding support for a single module to reference multiple memories. To support this change, a new memory name field was added to 13 memory instructions in order to identify the memory for the instruction.
It is a goal of this PR to maintain backwards compatibility with existing text and binary wasm modules, so memory indexes remain optional for memory instructions. Similarly, the JS API makes assumptions about which memory is intended when only one memory is present in the module. Another goal of this PR is that existing tests behavior be unaffected. That said, tests must now explicitly define a memory before invoking memory instructions or exporting a memory, and memory names are now printed for each memory instruction in the text format.
There remain quite a few places where a hardcoded reference to the first memory persist (memory flattening, for example, will return early if more than one memory is present in the module). Many of these call-sites, particularly within passes, will require us to rethink how the optimization works in a multi-memories world. Other call-sites may necessitate more invasive code restructuring to fully convert away from relying on a globally available, single memory pointer.
|
|
|
| |
Introduces the necessary APIs to use the type builder from C. Enables construction of compound heap types (arrays, structs and signatures) that may be recursive, including assigning concrete names to the built types and, in case of structs, their fields.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Basic reference types like `Type::funcref`, `Type::anyref`, etc. made it easy to
accidentally forget to handle reference types with the same basic HeapTypes but
the opposite nullability. In principle there is nothing special about the types
with shorthands except in the binary and text formats. Removing these shorthands
from the internal type representation by removing all basic reference types
makes some code more complicated locally, but simplifies code globally and
encourages properly handling both nullable and non-nullable reference types.
|
| |
|
| |
|