summaryrefslogtreecommitdiff
path: root/test/lit/passes/flatten_all-features.wast
Commit message (Collapse)AuthorAgeFilesLines
* Make more Ifs unreachable (#7094)Thomas Lively2024-11-271-9/+3
| | | | | | | | | | | | | | | | | | | Previously the only Ifs that were typed unreachable were those in which both arms were unreachable and those in which the condition was unreachable that would have otherwise been typed none. This caused problems in IRBuilder because Ifs with unreachable conditions and value-returning arms would have concrete types, effectively hiding the unreachable condition from the logic for dropping concretely typed expressions preceding an unreachable expression when finishing a scope. Relax the conditions under which an If can be typed unreachable so that all Ifs with unreachable conditions or two unreachable arms are typed unreachable. Propagating unreachability more eagerly this way makes various optimizations of Ifs more powerful. It also requires new handling for unreachable Ifs with concretely typed arms in the Printer to ensure that printed wat remains valid. Also update Unsubtyping, Flatten, and CodeFolding to account for the newly unreachable Ifs.
* [Parser] Enable the new text parser by default (#6371)Thomas Lively2024-04-251-4/+3
| | | | | | | | | | | | | | The new text parser is faster and more standards compliant than the old text parser. Enable it by default in wasm-opt and update the tests to reflect the slightly different results it produces. Besides following the spec, the new parser differs from the old parser in that it: - Does not synthesize `loop` and `try` labels unnecessarily - Synthesizes different block names in some cases - Parses exports in a different order - Parses `nop`s instead of empty blocks for empty control flow arms - Does not support parsing Poppy IR - Produces different error messages - Cannot parse `pop` except as the first instruction inside a `catch`
* Do not repeat types names in text output (#6499)Thomas Lively2024-04-161-7/+7
| | | | | | | | | | For types that do not have explicit names, we generate index-based names in the printer. However, we did not previously ensure that the generated types were not already used as explicit names, so it was possible to print the same name for multiple types, which is not valid. Fix the problem by skipping indices that are already used as type names. Fixes #6492.
* Fix incorrect wat in tests (#6207)Thomas Lively2024-01-081-3/+3
| | | | | | | | | The new wat parser is much more strict than the legacy wat parser; the latter accepts all sorts of things that the spec does not allow. To ease an eventual transition to using the new wat parser by default, update the tests to use the standard text format in many places where they previously did not. We do not yet have a way to prevent new errors from being introduced into the test suite, but at least there will now be many fewer errors when it comes time to make the switch.
* Require `then` and `else` with `if` (#6201)Thomas Lively2024-01-041-304/+474
| | | | | | | | | | | | We previously supported (and primarily used) a non-standard text format for conditionals in which the condition, if-true expression, and if-false expression were all simply s-expression children of the `if` expression. The standard text format, however, requires the use of `then` and `else` forms to introduce the if-true and if-false arms of the conditional. Update the legacy text parser to require the standard format and update all tests to match. Update the printer to print the standard format as well. The .wast and .wat test inputs were mechanically updated with this script: https://gist.github.com/tlively/85ae7f01f92f772241ec994c840ccbb1
* Drop support for non-standard quoted function names (#6188)Thomas Lively2023-12-201-13/+13
| | | | | | | | | | | | | | | | | | We previously supported a non-standard `(func "name" ...` syntax for declaring functions exported with the quoted name. Since that is not part of the standard text format, drop support for it, replacing it with the standard `(func $name (export "name") ...` syntax instead. Also replace our other usage of the quoted form in our text output, which was where we quoted names containing characters that are not allowed to appear in standard names. To handle that case, adjust our output from `"$name"` to `$"name"`, which is the standards-track way of supporting such names. Also fix how we detect non-standard name characters to match the spec. Update the lit test output generation script to account for these changes, including by making the `$` prefix on names mandatory. This causes the script to stop interpreting declarative element segments with the `(elem declare ...` syntax as being named "declare", so prevent our generated output from regressing by counting "declare" as a name in the script.
* Simplify and consolidate type printing (#5816)Thomas Lively2023-08-241-13/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When printing Binaryen IR, we previously generated names for unnamed heap types based on their structure. This was useful for seeing the structure of simple types at a glance without having to separately go look up their definitions, but it also had two problems: 1. The same name could be generated for multiple types. The generated names did not take into account rec group structure or finality, so types that differed only in these properties would have the same name. Also, generated type names were limited in length, so very large types that shared only some structure could also end up with the same names. Using the same name for multiple types produces incorrect and unparsable output. 2. The generated names were not useful beyond the most trivial examples. Even with length limits, names for nontrivial types were extremely long and visually noisy, which made reading disassembled real-world code more challenging. Fix these problems by emitting simple indexed names for unnamed heap types instead. This regresses readability for very simple examples, but the trade off is worth it. This change also reduces the number of type printing systems we have by one. Previously we had the system in Print.cpp, but we had another, more general and extensible system in wasm-type-printing.h and wasm-type.cpp as well. Remove the old type printing system from Print.cpp and replace it with a much smaller use of the new system. This requires significant refactoring of Print.cpp so that PrintExpressionContents object now holds a reference to a parent PrintSExpression object that holds the type name state. This diff is very large because almost every test output changed slightly. To minimize the diff and ease review, change the type printer in wasm-type.cpp to behave the same as the old type printer in Print.cpp except for the differences in name generation. These changes will be reverted in much smaller PRs in the future to generally improve how types are printed.
* Use Names instead of indices to identify segments (#5618)Thomas Lively2023-04-041-1/+1
| | | | | | | | | | All top-level Module elements are identified and referred to by Name, but for historical reasons element and data segments were referred to by index instead. Fix this inconsistency by using Names to refer to segments from expressions that use them. Also parse and print segment names like we do for other elements. The C API is partially converted to use names instead of indices, but there are still many functions that refer to data segments by index. Finishing the conversion can be done in the future once it becomes necessary.
* Change the default type system to isorecursive (#5239)Thomas Lively2022-11-231-47/+47
| | | | | | | | | | This makes Binaryen's default type system match the WasmGC spec. Update the way type definitions without supertypes are printed to reduce the output diff for MVP tests that do not involve WasmGC. Also port some type-builder.cpp tests from test/example to test/gtest since they needed to be rewritten to work with isorecursive type anyway. A follow-on PR will remove equirecursive types completely.
* Implement bottom heap types (#5115)Thomas Lively2022-10-071-7/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to them can only possibly be null. To simplify the IR and increase type precision, introduce new invariants that all `ref.null` instructions must be typed with one of these new bottom types and that `Literals` have a bottom type iff they represent null values. These new invariants requires several additional changes. First, it is now possible that the `ref` or `target` child of a `StructGet`, `StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom reference type, so it is not possible to determine what heap type annotation to emit in the binary or text formats. (The bottom types are not valid type annotations since they do not have indices in the type section.) To fix that problem, update the printer and binary emitter to emit unreachables instead of the instruction with undetermined type annotation. This is a valid transformation because the only possible value that could flow into those instructions in that case is null, and all of those instructions trap on nulls. That fix uncovered a latent bug in the binary parser in which new unreachables within unreachable code were handled incorrectly. This bug was not previously found by the fuzzer because we generally stop emitting code once we encounter an instruction with type `unreachable`. Now, however, it is possible to emit an `unreachable` for instructions that do not have type `unreachable` (but are known to trap at runtime), so we will continue emitting code. See the new test/lit/parse-double-unreachable.wast for details. Update other miscellaneous code that creates `RefNull` expressions and null `Literals` to maintain the new invariants as well.
* [Wasm GC] Support non-nullable locals in the "1a" form (#4959)Alon Zakai2022-08-311-4/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | An overview of this is in the README in the diff here (conveniently, it is near the top of the diff). Basically, we fix up nn locals after each pass, by default. This keeps things easy to reason about - what validates is what is valid wasm - but there are some minor nuances as mentioned there, in particular, we ignore nameless blocks (which are commonly added by various passes; ignoring them means we can keep more locals non-nullable). The key addition here is LocalStructuralDominance which checks which local indexes have the "structural dominance" property of 1a, that is, that each get has a set in its block or an outer block that precedes it. I optimized that function quite a lot to reduce the overhead of running that logic after each pass. The overhead is something like 2% on J2Wasm and 0% on Dart (0%, because in this mode we shrink code size, so there is less work actually, and it balances out). Since we run fixups after each pass, this PR removes logic to manually call the fixup code from various places we used to call it (like eh-utils and various passes). Various passes are now marked as requiresNonNullableLocalFixups => false. That lets us skip running the fixups after them, which we normally do automatically. This helps avoid overhead. Most passes still need the fixups, though - any pass that adds a local, or a named block, or moves code around, likely does. This removes a hack in SimplifyLocals that is no longer needed. Before we worked to avoid moving a set into a try, as it might not validate. Now, we just do it and let fixups happen automatically if they need to: in the common code they probably don't, so the extra complexity seems not worth it. Also removes a hack from StackIR. That hack tried to avoid roundtrip adding a nondefaultable local. But we have the logic to fix that up now, and opts will likely keep it non-nullable as well. Various tests end up updated here because now a local can be non-nullable - previous fixups are no longer needed. Note that this doesn't remove the gc-nn-locals feature. That has been useful for testing, and may still be useful in the future - it basically just allows nn locals in all positions (that can't read the null default value at the entry). We can consider removing it separately. Fixes #4824
* Avoid adding new unneeded names to blocks in text roundtripping (#4943)Alon Zakai2022-08-221-19/+19
| | | | | | | | | | | | | | | | | | | | | | | Previously the wat parser would turn this input: (block (nop) ) into something like this: (block $block17 (nop) ) It just added a name all the time, in case the block is referred to by an index later even though it doesn't have a name. This PR makes us rountrip more precisely by not adding such names: if there was no name before, and there is no break by index, then do not add a name. In addition, this will be useful for non-nullable locals since whether a block has a name or not matters there. Like #4912, this makes us more regular in our usage of block names.
* Restore the `extern` heap type (#4898)Thomas Lively2022-08-171-21/+25
| | | | | | | The GC proposal has split `any` and `extern` back into two separate types, so reintroduce `HeapType::ext` to represent `extern`. Before it was originally removed in #4633, externref was a subtype of anyref, but now it is not. Now that we have separate heaptype type hierarchies, make `HeapType::getLeastUpperBound` fallible as well.
* Fix name of port_passes_tests_to_lit.py script. NFC (#4902)Sam Clegg2022-08-121-1/+1
| | | I was reading these tests and failing to find the names script.
* Remove externref (#4633)Thomas Lively2022-05-041-22/+18
| | | | | | Remove `Type::externref` and `HeapType::ext` and replace them with uses of anyref and any, respectively, now that we have unified these types in the GC proposal. For backwards compatibility, continue to parse `extern` and `externref` and maintain their relevant C API functions.
* Port test/passes/flatten* to lit (#3971)Thomas Lively2021-07-121-0/+3538